MiCOM P40 Agile
P241, P242, P243

Technical Manual
Rotating Machine Protection Relay

Hardware version: J (P241), K (P242/3)
Software version: 60
Publication reference: P24x/EN M/I72
CONTENTS

Safety Section P24x/EN SS/I72

Section 1 Introduction P24x/EN IT/I72

Section 2 Technical Data P24x/EN TD/I72

Section 3 Getting Started P24x/EN GS/I72

Section 4 Settings P24x/EN ST/I72

Section 5 Operation P24x/EN OP/I72

Section 6 Application Notes P24x/EN AP/I72

Section 7 Programmable Logic P24x/EN PL/I72

Section 8 Measurements and Recording P24x/EN MR/I72

Section 9 Firmware Design P24x/EN FD/I72

Section 10 Commissioning P24x/EN CM/I72

Section 11 Maintenance P24x/EN MT/I72

Section 12 Troubleshooting P24x/EN TS/I72

Section 13 SCADA Communications P24x/EN SC/I72

Section 14 Symbols and Glossary P24x/EN SG/I72

Section 15 Installation P24x/EN IN/I72

Section 16 Firmware and Service Manual Version History P24x/EN VH/I72
SAFETY SECTION
CONTENTS

1. OVERVIEW 3
2. HEALTH AND SAFETY 4
3. SYMBOLS 5
4. INSTALLING, COMMISSIONING AND SERVICING 6
 4.1 Lifting Hazards 6
 4.2 Electrical Hazards 6
5. DECOMMISSIONING AND DISPOSAL 12
6. REGULATORY COMPLIANCE 13
 6.1 EMC Compliance: 2014/30/EU 13
 6.2 LVD Compliance: 2014/35/EU 13
 6.3 R&TTE Compliance: 2014/53/EU 13
 6.4 UL/CUL Compliance 13
 6.5 ATEX Compliance: 2014/34/EU 13
1. OVERVIEW

This chapter provides information about the safe handling of the equipment. The equipment must be properly installed and handled in order to maintain it in a safe condition and to keep personnel safe at all times. You must be familiar with information contained in this chapter before unpacking, installing, commissioning, or servicing the equipment.
2. HEALTH AND SAFETY

Personnel associated with the equipment must be familiar with the contents of this Safety Information.

When electrical equipment is in operation, dangerous voltages are present in certain parts of the equipment. Improper use of the equipment and failure to observe warning notices will endanger personnel.

Only qualified personnel may work on or operate the equipment. Qualified personnel are individuals who are:

- familiar with the installation, commissioning, and operation of the equipment and the system to which it is being connected.
- familiar with accepted safety engineering practices and are authorised to energise and de-energise equipment in the correct manner.
- trained in the care and use of safety apparatus in accordance with safety engineering practices
- trained in emergency procedures (first aid).

The documentation provides instructions for installing, commissioning and operating the equipment. It cannot, however cover all conceivable circumstances. In the event of questions or problems, do not take any action without proper authorisation. Please contact your local sales office and request the necessary information.
3. **SYMBOLS**

Throughout this manual you will come across the following symbols. You will also see these symbols on parts of the equipment.

- **Exclamation mark: Refer to equipment documentation. Failure to do so could result in damage to the equipment.**

- **Triangle with lightning bolt: Risk of electric shock.**

- **Triangle with sun: Risk of damage to eyesight.**

- **Earthen symbol: Earth terminal. Note: This symbol may also be used for a protective conductor (earth) terminal if that terminal is part of a terminal block or sub-assembly.**

- **Protective conductor (earth) terminal.**

- **Instructions on disposal requirements.**

The term 'Earth' used in this manual is the direct equivalent of the North American term 'Ground'.
4. INSTALLING, COMMISSIONING AND SERVICING

4.1 Lifting Hazards

Many injuries are caused by:

- Lifting heavy objects
- Lifting things incorrectly
- Pushing or pulling heavy objects
- Using the same muscles repetitively

Plan carefully, identify any possible hazards and determine how best to move the product. Look at other ways of moving the load to avoid manual handling. Use the correct lifting techniques and Personal Protective Equipment (PPE) to reduce the risk of injury.

4.2 Electrical Hazards

- All personnel involved in installing, commissioning, or servicing this equipment must be familiar with the correct working procedures.

- Consult the equipment documentation before installing, commissioning, or servicing the equipment.

- Always use the equipment as specified. Failure to do so will jeopardise the protection provided by the equipment.

- Removal of equipment panels or covers may expose hazardous live parts. Do not touch until the electrical power is removed. Take care when there is unlocked access to the rear of the equipment.

- Isolate the equipment before working on the terminal strips.

- Use a suitable protective barrier for areas with restricted space, where there is a risk of electric shock due to exposed terminals.

- Disconnect power before disassembling. Disassembly of the equipment may expose sensitive electronic circuitry. Take suitable precautions against electrostatic voltage discharge (ESD) to avoid damage to the equipment.

- NEVER look into optical fibres or optical output connections. Always use optical power meters to determine operation or signal level.
Testing may leave capacitors charged to dangerous voltage levels. Discharge capacitors by reducing test voltages to zero before disconnecting test leads.

Operate the equipment within the specified electrical and environmental limits.

Before cleaning the equipment, ensure that no connections are energised. Use a lint free cloth dampened with clean water.

Contact fingers of test plugs are normally protected by petroleum jelly, which should not be removed.

4.3 UL/CSA/CUL Requirements

The information in this section is applicable only to equipment carrying UL/CSA/CUL markings.

Equipment intended for rack or panel mounting is for use on a flat surface of a Type 1 enclosure, as defined by Underwriters Laboratories (UL).

To maintain compliance with UL and CSA/CUL, install the equipment using UL/CSA-recognised parts for: cables, protective fuses, fuse holders and circuit breakers, insulation crimp terminals, and replacement internal batteries.

4.4 Fusing Requirements

Where UL/CSA listing of the equipment is required for external fuse protection, a UL or CSA Listed fuse must be used for the auxiliary supply. The listed protective fuse type is: Class J time delay fuse, with a maximum current rating of 15 A and a minimum DC rating of 250 V dc (for example type AJT15).

Where UL/CSA listing of the equipment is not required, a high rupture capacity (HRC) fuse type with a maximum current rating of 16 Amps and a minimum dc rating of 250 V dc may be used for the auxiliary supply (for example Red Spot type NIT or TIA).
For P50 models, use a 1A maximum T-type fuse.
For P60 models, use a 4A maximum T-type fuse.

Digital input circuits should be protected by a high rupture capacity NIT or TIA fuse with maximum rating of 16 A. for safety reasons, current transformer circuits must never be fused. Other circuits should be appropriately fused to protect the wire used.
CTs must NOT be fused since open circuiting them may produce lethal hazardous voltages

4.5 Equipment Connections

Terminals exposed during installation, commissioning and maintenance may present a hazardous voltage unless the equipment is electrically isolated.

Tighten M4 clamping screws of heavy duty terminal block connectors to a nominal torque of 1.3 Nm. Tighten captive screws of terminal blocks to 0.5 Nm minimum and 0.6 Nm maximum.

Always use insulated crimp terminations for voltage and current connections.

Always use the correct crimp terminal and tool according to the wire size.

Watchdog (self-monitoring) contacts are provided to indicate the health of the device on some products. We strongly recommend that you hard wire these contacts into the substation's automation system, for alarm purposes.

4.6 Protection Class 1 Equipment Requirements

Earth the equipment with the supplied PCT (Protective Conductor Terminal).

Do not remove the PCT.

The PCT is sometimes used to terminate cable screens. Always check the PCT’s integrity after adding or removing such earth connections.

Use a locknut or similar mechanism to ensure the integrity of stud-connected PCTs.
The recommended minimum PCT wire size is 2.5 mm² for countries whose mains supply is 230 V (e.g. Europe) and 3.3 mm² for countries whose mains supply is 110 V (e.g. North America). This may be superseded by local or country wiring regulations. For P60 products, the recommended minimum PCT wire size is 6 mm². See product documentation for details.

The PCT connection must have low-inductance and be as short as possible.

All connections to the equipment must have a defined potential. Connections that are pre-wired, but not used, should be earthed, or connected to a common grouped potential.

4.7 Pre-energisation Checklist

- Check voltage rating/polarity (rating label/equipment documentation).
- Check CT circuit rating (rating label) and integrity of connections.
- Check protective fuse or miniature circuit breaker (MCB) rating.
- Check integrity of the PCT connection.
- Check voltage and current rating of external wiring, ensuring it is appropriate for the application.

4.8 Peripheral Circuitry

Do not open the secondary circuit of a live CT since the high voltage produced may be lethal to personnel and could damage insulation. Short the secondary of the line CT before opening any connections to it.

For most General Electric equipment with ring-terminal connections, the threaded terminal block for current transformer termination is automatically shorted if the module is removed. Therefore external shorting of the CTs may not be required. Check the equipment documentation and wiring diagrams first to see if this applies.

Where external components such as resistors or voltage dependent resistors (VDRs) are used, these may present a risk of electric shock or burns if touched.
Take extreme care when using external test blocks and test plugs such as the MMLG, MMLB and P990, as hazardous voltages may be exposed. Ensure that CT shorting links are in place before removing test plugs, to avoid potentially lethal voltages.

Data communication cables with accessible screens and/or screen conductors, (including optical fibre cables with metallic elements), may create an electric shock hazard in a sub-station environment if both ends of the cable screen are not connected to the same equipotential bonded earthing system.

To reduce the risk of electric shock due to transferred potential hazards:

i. The installation shall include all necessary protection measures to ensure that no fault currents can flow in the connected cable screen conductor.

ii. The connected cable shall have its screen conductor connected to the protective conductor terminal (PCT) of the connected equipment at both ends. This connection may be inherent in the connectors provided on the equipment but, if there is any doubt, this must be confirmed by a continuity test.

iii. The protective conductor terminal (PCT) of each piece of connected equipment shall be connected directly to the same equipotential bonded earthing system.

iv. If, for any reason, both ends of the cable screen are not connected to the same equipotential bonded earth system, precautions must be taken to ensure that such screen connections are made safe before work is done to, or in proximity to, any such cables.

v. No equipment shall be connected to any download or maintenance circuits or connectors of this product except temporarily and for maintenance purposes only.

vi. Equipment temporarily connected to this product for maintenance purposes shall be protectively earthed (if the temporary equipment is required to be protectively earthed), directly to the same equipotential bonded earthing system as the product.

Small Form-factor Pluggable (SFP) modules which provide copper Ethernet connections typically do not provide any additional safety isolation. Copper Ethernet SFP modules must only be used in connector positions intended for this type of connection.

4.9 Upgrading/Servicing

Do not insert or withdraw modules, PCBs or expansion boards from the equipment while energised, as this may result in damage to the equipment. Hazardous live voltages would also be exposed, endangering personnel.

Internal modules and assemblies can be heavy and may have sharp edges. Take care when inserting or removing modules into or out of the IED.
5. DECOMMISSIONING AND DISPOSAL

Before decommissioning, completely isolate the equipment power supplies (both poles of any dc supply). The auxiliary supply input may have capacitors in parallel, which may still be charged. To avoid electric shock, discharge the capacitors using the external terminals before decommissioning.

Avoid incineration or disposal to water courses. Dispose of the equipment in a safe, responsible and environmentally friendly manner, and if applicable, in accordance with country-specific regulations.
6. **REGULATORY COMPLIANCE**

Compliance with the European Commission Directive on EMC and LVD is demonstrated using a technical file.

6.1 EMC Compliance: 2014/30/EU

The product specific Declaration of Conformity (DoC) lists the relevant harmonised standard(s) or conformity assessment used to demonstrate compliance with the EMC directive.

6.2 LVD Compliance: 2014/35/EU

The product specific Declaration of Conformity (DoC) lists the relevant harmonized standard(s) or conformity assessment used to demonstrate compliance with the LVD directive.

Safety related information, such as the installation overvoltage category, pollution degree and operating temperature ranges are specified in the Technical Data section of the relevant product documentation and/or on the product labelling.

Unless otherwise stated in the Technical Data section of the relevant product documentation, the equipment is intended for indoor use only. Where the equipment is required for use in an outdoor location, it must be mounted in a specific cabinet or housing to provide the equipment with the appropriate level of protection from the expected outdoor environment.

6.3 R&TTE Compliance: 2014/53/EU

Radio and Telecommunications Terminal Equipment (R&TTE) directive 2014/53/EU. Conformity is demonstrated by compliance to both the EMC directive and the Low Voltage directive, to zero volts.

6.4 UL/CUL Compliance

If marked with this logo, the product is compliant with the requirements of the Canadian and USA Underwriters Laboratories.

The relevant UL file number and ID is shown on the equipment.

6.5 ATEX Compliance: 2014/34/EU

Products marked with the 'explosion protection' Ex symbol (shown in the example, below) are compliant with the ATEX directive. The product specific Declaration of Conformity (DoC) lists the Notified Body, Type Examination Certificate, and relevant harmonized standard or conformity assessment used to demonstrate compliance with the ATEX directive.

The ATEX Equipment Protection level, Equipment group, and Zone definition will be marked on the product.

For example:

\[\text{Ex II (2) G}\]
Where:

'II' Equipment Group: Industrial.

'(2)G' High protection equipment category, for control of equipment in gas atmospheres in Zone 1 and 2. This equipment (with parentheses marking around the zone number) is not itself suitable for operation within a potentially explosive atmosphere.
INTRODUCTION
Introduction

MiCOM P40 Agile P241, P242, P243
CONTENTS

1 MICO M DOCUMENTATION STRUCTURE 5
2 INTRODUCTION TO MICO M 7
3 PRODUCT SCOPE 8
 3.1 Functional overview 8
 3.2 Ordering options 12

FIGURES

Figure 1: Functional diagram 11

TABLES

Table 1: Functional overview 10
Introduction

MiCOM P40 Agile P241, P242, P243
1 MICOM DOCUMENTATION STRUCTURE

The manual provides a functional and technical description of the MiCOM protection relay and a comprehensive set of instructions for the relay’s use and application.

The chapter contents are summarized below:

P24x/EN IT Introduction
A guide to the MiCOM range of relays and the documentation structure. General safety aspects of handling Electronic Equipment are discussed with particular reference to relay safety symbols. Also a general functional overview of the relay and brief application summary is given.

P24x/EN TD Technical Data
Technical data including setting ranges, accuracy limits, recommended operating conditions, ratings and performance data. Compliance with norms and international standards is quoted where appropriate.

P24x/EN GS Getting Started
A guide to the different user interfaces of the protection relay describing how to start using it. This chapter provides detailed information regarding the communication interfaces of the relay, including a detailed description of how to access the settings database stored within the relay.

P24x/EN ST Settings
List of all relay settings, including ranges, step sizes and defaults, together with a brief explanation of each setting.

P24x/EN OP Operation
A comprehensive and detailed functional description of all protection and non-protection functions.

P24x/EN AP Application Notes
This chapter includes a description of common power system applications of the relay, calculation of suitable settings, some typical worked examples, and how to apply the settings to the relay.

P24x/EN PL Programmable Logic
Overview of the programmable scheme logic and a description of each logical node. This chapter includes the factory default (PSL) and an explanation of typical applications.

P24x/EN MR Measurements and Recording
Detailed description of the relays recording and measurements functions including the configuration of the event and disturbance recorder and measurement functions.

P24x/EN FD Firmware Design
Overview of the operation of the relay’s hardware and software. This chapter includes information on the self-checking features and diagnostics of the relay.

P24x/EN CM Commissioning
Instructions on how to commission the relay, comprising checks on the calibration and functionality of the relay.

P24x/EN MT Maintenance
A general maintenance policy for the relay is outlined.

P24x/EN TS Troubleshooting
Advice on how to recognize failure modes and the recommended course of action. Includes guidance on who in General Electric to contact for advice.
This chapter provides an overview regarding the SCADA communication interfaces of the relay. Detailed protocol mappings, semantics, profiles and interoperability tables are not provided within this manual. Separate documents are available per protocol, available for download from our website.

List of common technical abbreviations found within the product documentation.

Recommendations on unpacking, handling, inspection and storage of the relay. A guide to the mechanical and electrical installation of the relay is provided, incorporating earthing recommendations. All external wiring connections to the relay are indicated.

History of all hardware and software releases for the product.

The UPCT is a standalone document which is used in conjunction with the P24x technical manual. This document describes how to use the programmable curve tool facility available in P24x software version 57 and later.
INTRODUCTION TO MICOM

MiCOM is a comprehensive solution capable of meeting all electricity supply requirements. It comprises a range of components, systems and services from General Electric.

Central to the MiCOM concept is flexibility.

MiCOM provides the ability to define an application solution and, through extensive communication capabilities, integrate it with your power supply control system.

The components within MiCOM are:

- P range protection relays;
- C range control products;
- M range measurement products for accurate metering and monitoring;
- S range versatile PC support and substation control packages.

MiCOM products include extensive facilities for recording information on the state and behavior of the power system using disturbance and fault records. They can also provide measurements of the system at regular intervals to a control center enabling remote monitoring and control to take place.

For up-to-date information on any MiCOM product, visit our website.
3 PRODUCT SCOPE

The MiCOM P241/2/3 universal motor protection relays have been developed and designed for the protection of medium sized to large rotating machines, both synchronous and induction. The MiCOM P243 can also offer motor differential protection, providing the neutral star point of the machine is accessible, in addition to the features of the P241/2. The P242/3 also includes 10 function keys for integral scheme or operator control functionality and tri-color (red/yellow/green) LEDs.

3.1 Functional overview

The P241/2/3 universal motor protection relays contain a wide variety of protection functions. The protection features are summarized below:

<table>
<thead>
<tr>
<th>PROTECTION FUNCTIONS OVERVIEW</th>
<th>P24x</th>
</tr>
</thead>
<tbody>
<tr>
<td>87 Three-phase machine differential protection is provided to detect stator phase faults. The differential protection can be selected as percentage biased or high impedance.</td>
<td>3</td>
</tr>
<tr>
<td>50/51 Four non-directional overcurrent protection stages are provided for protection against three-phase and phase-earth short circuit faults. Stage 1 and 2 may be set Inverse Definite Minimum Time (IDMT) or Definite Time (DT); stages 3 and 4 may be set DT only.</td>
<td>1/2/3</td>
</tr>
<tr>
<td>50N/51N Two stages of earth fault protection are provided for stator earth faults. Each stage can be set to either non-directional or directional forward. Stage 1 can be set Inverse Definite Minimum Time (IDMT) or Definite Time (DT). Stage 2 can be set Definite Time (DT) only. The earth fault current can be detected using internally derived current from the 3 phases.</td>
<td>1/2/3</td>
</tr>
<tr>
<td>50N/51N/67N Two stages of sensitive earth fault protection are provided. Each stage can be set to either non-directional or directional forward. Stage 1 can be set Inverse Definite Minimum Time (IDMT) or Definite Time (DT). Stage 2 can be set to Definite Time (DT) only. The earth fault current is detected by using current measured from a sensitive current input.</td>
<td>1/2/3</td>
</tr>
<tr>
<td>32N/64N The sensitive earth fault element can also be configured as a wattmetric element suitable for Petersen Coil earthed systems. This form of protection uses the same sensitive earth fault directional characteristic but with a current, voltage and residual power threshold.</td>
<td>1/2/3</td>
</tr>
<tr>
<td>32R One stage of reverse power protection is provided, which measures active power to detect power flow from the motor to the system when the busbar is lost.</td>
<td>1/2/3</td>
</tr>
<tr>
<td>37 Two stages of under power are used to detect a loss of load due to a shaft failure or a pump running unprimed. This feature is disabled during starting.</td>
<td>1/2/3</td>
</tr>
<tr>
<td>40 A two stage offset mho definite time impedance element is provided to detect failure of the machine excitation. A power factor alarm element is also available to offer more sensitive protection.</td>
<td>1/2/3</td>
</tr>
<tr>
<td>49 Thermal overload protection based on I1 and I2 is provided to protect the stator/rotor against overloading due to balanced and unbalanced currents. Both alarm and trip stages are provided.</td>
<td>1/2/3</td>
</tr>
<tr>
<td>46 Two negative phase sequence overcurrent elements are provided to detect a phase failure or unbalanced load. Stage 1 can be set Definite Time (DT) only and Stage 2 can be set Inverse Definite Minimum Time (IDMT) only.</td>
<td>1/2/3</td>
</tr>
<tr>
<td>55 Two stages (lag and Lead) of power factor protection are provided for out-of-step protection on synchronous machines. Both stages can be set to Definite Time (DT) only. Requires breaker status (52a) to operate.</td>
<td>1/2/3</td>
</tr>
</tbody>
</table>
PROTECTION FUNCTIONS OVERVIEW

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>59N</td>
<td>Residual overvoltage protection is available for stator earth fault protection where there is an isolated or high impedance earth. The residual voltage can be measured from a residual voltage input or can be calculated from the three phase to neutral voltage measurements. Two independent stages of protection are provided for each measured neutral voltage input and also for the calculated value. Stage 1 can be selected as either Inverse Definite Minimum Time (IDMT) or Definite Time (DT). Stage 2 can be selected as Definite Time (DT) only.</td>
<td>1/2/3</td>
</tr>
<tr>
<td>27</td>
<td>A 2 stage undervoltage protection element, phase to neutral or phase to phase measuring is provided. Stage 1 may be selected as either IDMT or DT and stage 2 is DT only.</td>
<td>1/2/3</td>
</tr>
<tr>
<td>59</td>
<td>A 2 stage overvoltage protection element, phase to neutral or phase to phase measuring is provided. Both stages can be selected as DT only. One stage of undervoltage is provided. Input voltage magnitudes are monitored (phase to neutral measuring) to ensure they are correct before allowing the machine to start. Input voltage rotation is also checked by monitoring negative phase sequence voltage > positive phase sequence voltage.</td>
<td>1/2/3</td>
</tr>
<tr>
<td>47</td>
<td>Two definite time stages of negative sequence overvoltage are provided.</td>
<td>1/2/3</td>
</tr>
<tr>
<td>81U</td>
<td>2 stages of definite time underfrequency protection are provided to protect machines against loss of supply. This feature is disabled during starting.</td>
<td>1/2/3</td>
</tr>
<tr>
<td>48/51LR</td>
<td>A starting current detector and a starting time delay protects the motor from excessively long starts. This protection function is activated either by the 52a contact, the starting current or both the 52a contact and the starting current.</td>
<td>1/2/3</td>
</tr>
<tr>
<td>14</td>
<td>Where the motor stall withstand time may be shorter than the starting time, a digital input is provided to accommodate a speed switch to distinguish between start and stall.</td>
<td>1/2/3</td>
</tr>
<tr>
<td>50S</td>
<td>A stall during running is given by a current exceeding the programmed current threshold following a successful start.</td>
<td>1/2/3</td>
</tr>
<tr>
<td>66</td>
<td>For the number of starts limitation protection a separate count of “hot” and “cold” starts is maintained by the relay using the data held in the motor thermal replica. Starting is blocked if the permitted number of starts is exceeded by the use of a time between starts timer.</td>
<td>1/2/3</td>
</tr>
<tr>
<td>27 (remanent)</td>
<td>Used to detect when the rotor has completely stopped, in order to allow re-starting of the motor. Operation can be triggered by either a remanant voltage threshold or by a time delay.</td>
<td>1/2/3</td>
</tr>
<tr>
<td>RTD</td>
<td>10 RTDs (PT100/Ni100/Ni120) are provided to monitor the temperature accurately in the windings and bearings of the machine. Each RTD has an instantaneous alarm and definite time trip stage.</td>
<td>Option</td>
</tr>
<tr>
<td>50BF</td>
<td>A 2 stage circuit breaker failure function is provided.</td>
<td>1/2/3</td>
</tr>
<tr>
<td>47</td>
<td>Both input voltage phase rotation and magnitude are monitored to ensure they are correct before allowing the machine to start.</td>
<td>1/2/3</td>
</tr>
<tr>
<td>VTS</td>
<td>Voltage transformer supervision is provided (1, 2 & 3 phase fuse failure detection) to prevent mal-operation of voltage dependent protection elements upon loss of a VT input signal.</td>
<td>1/2/3</td>
</tr>
<tr>
<td>CTS</td>
<td>Current transformer supervision is provided to prevent mal-operation of current dependent protection elements upon loss of a CT input signal. CTS is provided for both sets of 3 phase CTs in the P243 relay.</td>
<td>1/2/3</td>
</tr>
<tr>
<td>CLIO</td>
<td>4 analog (or current loop) inputs are provided for transducers (vibration, tachometers etc.). Each input has a definite time trip and alarm stage. Each input can be independently selected as 0-1/0-10/0-20/4-20 mA. 4 analogue (or current loop) outputs are provided for the analogue measurements in the relay. Each output can be independently selected as 0-1/0-10/0-20/4-20 mA.</td>
<td>Option</td>
</tr>
</tbody>
</table>
A facility is provided using an offline graphical programmable curve tool. This enables the user to configure a customized multiples of a current setting versus operating time curve and an associated reset curve. Two pairs of configurable operate-reset curves are made available to the user, one pair for thermal and one pair for overcurrent or sensitive/derived earth fault protection. The curves can be defined as a number of curve points or a user defined formula. The curves can then be downloaded to the relay and can also be extracted from the relay. The user programmable curves are available for Thermal, first and second stage overcurrent, first stage sensitive earth fault and first stage derived earth fault protection functions. To find out how to use the tool, see the Px4x/EN UPCT/B11 document.

A phase rotation facility (ABC/ACB) is provided to maintain correct operation of all the protection functions even when the motor is running in a reverse direction. This is achieved through user configurable settings available to two setting groups.

Reacceleration, Low Voltage Ride Through and Auto Re-start functions are provided following a voltage reduction in the system.

Programmable function keys
Programmable LEDs (tri-color P242/3, red P241)
Digital inputs (order option)
Output relays (order option)
Front communication port (EIA(RS)232)
Rear communication port (KBUS/EIA(RS)485). The following communications protocols are supported; Courier, MODBUS and IEC 870-5-103 (VDEW).
Rear communication port (Fiber Optic). The following communications protocols are supported; Courier, MODBUS, and IEC 870-5-103 (VDEW).
Second rear communication port (EIA(RS)232/EIA(RS)485). Courier protocol.
Rear IEC 61850 Ethernet communication port.
Redundant IEC 61850 Ethernet communication port.
Time synchronization port (IRIG-B)

Table 1: Functional overview
The P24x supports the following relay management functions in addition to the functions shown above.

- Measurement of all instantaneous & integrated values
- Circuit breaker, status & condition monitoring
- Trip circuit and coil supervision (using PSL)
- 2 Alternative setting groups
- Control inputs
- Programmable Scheme Logic
- Programmable allocation of digital inputs and outputs
- Sequence of event recording
- Comprehensive disturbance recording (waveform capture)
- Fault recording
- Fully customizable menu texts
- Multi-level password protection
- Power-up diagnostics and continuous self-monitoring of relay
- Commissioning test facilities
- Real time clock/time synchronization - time synchronization possible from IRIG-B input, opto input or communications

Application overview

Figure 1: Functional diagram
3.2 Ordering options

Information required with order

<table>
<thead>
<tr>
<th>Variants</th>
<th>Order Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>P241 Motor Protection Relay (40TE Case)</td>
<td>P241</td>
</tr>
<tr>
<td>Vx Aux Rating</td>
<td></td>
</tr>
<tr>
<td>24-54 Vdc</td>
<td>7</td>
</tr>
<tr>
<td>48-125 Vdc (40-100 Vac)</td>
<td>6</td>
</tr>
<tr>
<td>110-250 Vdc (100-240 Vac)</td>
<td>9</td>
</tr>
<tr>
<td>In/Vn Rating</td>
<td></td>
</tr>
<tr>
<td>In = 1A/5A, Vn = 100/120V</td>
<td>11</td>
</tr>
</tbody>
</table>

Hardware Options

- Nothing
- IRIG-B only (Modulated)
- Fiber Optic Rear Comms Port
- IRIG-B (Modulated) & Fiber Optic Rear Comms Port
- Ethernet (100 Mbits/s) without IRIG-B
- 2nd Rear Comms. Board
- IRIG-B (Modulated) & 2nd Rear Comms Board
- Ethernet (100Mbits/s) plus IRIG-B (Modulated)
- Ethernet (100Mbits/s) plus IRIG-B (Un-modulated)
- IRIG-B (Un-modulated)
- Redundant Ethernet Self-Healing Ring, 2 multi-mode fibre ports + Modulated IRIG-B
- Redundant Ethernet Self-Healing Ring, 2 multi-mode fibre ports + Un-modulated IRIG-B
- Redundant Ethernet RSTP, 2 multi-mode fibre ports + Modulated IRIG-B
- Redundant Ethernet RSTP, 2 multi-mode fibre ports + Un-modulated IRIG-B
- Redundant Ethernet Dual-Homing Star, 2 multi-mode fibre ports + Modulated IRIG-B
- Redundant Ethernet Dual-Homing Star, 2 multi-mode fibre ports + Un-modulated IRIG-B
- Redundant Ethernet PRP/HSR, 2 fibre ports + Modulated IRIG-B
- Redundant Ethernet PRP/HSR, 2 fibre ports + Unmodulated IRIG-B
- Redundant Ethernet PRP/HSR/RSTP, 2 multi-mode fibre ports + Modulated/Un-Modulated IRIG-B
- Redundant Ethernet PRP/HSR/RSTP, 2 coper ports RJ45 + Modulated/Un-Modulated IRIG-B
- Single Ethernet, 1 multi-mode fibre ports + Modulated/Un-Modulated IRIG-B

Product Specific

- 8 Logic Inputs + 7 Relay Outputs
- 8 Logic Inputs + 7 Relay Outputs + RTDs
- 8 Logic Inputs + 7 Relay Outputs + CLIo
- 12 Logic Inputs + 11 Relay Outputs

Protocol Options

- K-bus
- Modbus
- IEC 60870-5-103 (VDEW)
- IEC 61850 + Courier (via rear RS485 port)

Mounting

- Panel Mounting, with Harsh Environment Coating

Language

- Multilingual - English, French, German, Spanish
- Multilingual - English, French, German, Russian
- Multilingual - English, French, Chinese

Software Issue

- Unless specified the latest version will be delivered

Customisation

- Default
- Customer specific

Design Suffix
MiCOM P40 Agile P241, P242, P243

Variants

<table>
<thead>
<tr>
<th>P242</th>
<th>Motor Protection Relay (60TE Case)</th>
</tr>
</thead>
</table>

Vx Aux Rating

<table>
<thead>
<tr>
<th>Rating</th>
<th>Order Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-54 Vdc</td>
<td>7</td>
</tr>
<tr>
<td>48-125 Vdc (40-100 Vac)</td>
<td>8</td>
</tr>
<tr>
<td>110-250 Vdc (100-240 Vac)</td>
<td>9</td>
</tr>
</tbody>
</table>

In/Vn Rating

<table>
<thead>
<tr>
<th>Rating</th>
<th>Order Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>In = 1A/5A, Vn = 100/120V</td>
<td>1</td>
</tr>
</tbody>
</table>

Hardware Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Order Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nothing</td>
<td>1</td>
</tr>
<tr>
<td>IRIG-B only (Modulated)</td>
<td>2</td>
</tr>
<tr>
<td>Fiber Optic Rear Comms Port</td>
<td>3</td>
</tr>
<tr>
<td>IRIG-B (Modulated) & Fiber Optic Rear Comms Port</td>
<td>4</td>
</tr>
<tr>
<td>Ethernet (100 Mbits/s) without IRIG-B</td>
<td>6</td>
</tr>
<tr>
<td>2nd Rear Comms Port</td>
<td>7</td>
</tr>
<tr>
<td>IRIG-B (Modulated) plus 2nd Rear Comms Port</td>
<td>8</td>
</tr>
<tr>
<td>Ethernet (100Mbit/s) plus IRIG-B (Modulated)</td>
<td>A</td>
</tr>
<tr>
<td>Ethernet (100Mbit/s) plus IRIG-B (Un-modulated)</td>
<td>B</td>
</tr>
<tr>
<td>IRIG-B (Un-modulated)</td>
<td>C</td>
</tr>
<tr>
<td>Redundant Ethernet Self-Healing Ring, 2 multi-mode fibre ports + Modulated IRIG-B</td>
<td>G</td>
</tr>
<tr>
<td>Redundant Ethernet Self-Healing Ring, 2 multi-mode fibre ports + Un-modulated IRIG-B</td>
<td>H</td>
</tr>
<tr>
<td>Redundant Ethernet RSTP, 2 multi-mode fibre ports + Modulated IRIG-B</td>
<td>J</td>
</tr>
<tr>
<td>Redundant Ethernet RSTP, 2 multi-mode fibre ports + Un-modulated IRIG-B</td>
<td>K</td>
</tr>
<tr>
<td>Redundant Ethernet Dual-Homing Star, 2 multi-mode fibre ports + Modulated IRIG-B</td>
<td>L</td>
</tr>
<tr>
<td>Redundant Ethernet Dual-Homing Star, 2 multi-mode fibre ports + Un-modulated IRIG-B</td>
<td>M</td>
</tr>
<tr>
<td>Redundant Ethernet PRP/HSR, 2 fibre ports + Modulated IRIG-B</td>
<td>N</td>
</tr>
<tr>
<td>Redundant Ethernet PRP/HSR, 2 fibre ports + Unmodulated IRIG-B</td>
<td>P</td>
</tr>
<tr>
<td>Redundant Ethernet PRP/HSR/RSTP, 2 multi-mode fibre ports + Modulated/Un-Modulated IRIG-B</td>
<td>R</td>
</tr>
<tr>
<td>Redundant Ethernet PRP/HSR/RSTP, 2 coper ports RJ45 + Modulated/Un-Modulated IRIG-B</td>
<td>S</td>
</tr>
<tr>
<td>Single Ethernet, 1 multi-mode fibre ports + Modulated/Un-Modulated IRIG-B</td>
<td>T</td>
</tr>
</tbody>
</table>

Product Specific

<table>
<thead>
<tr>
<th>Feature</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 Logic inputs & 16 Relay Outputs</td>
<td>A</td>
</tr>
<tr>
<td>16 Logic inputs & 16 Relay Outputs + RTDs</td>
<td>B</td>
</tr>
<tr>
<td>16 Logic inputs & 16 Relay Outputs + CLIO</td>
<td>C</td>
</tr>
<tr>
<td>16 Logic inputs & 16 Relay Outputs + RTDs & CLIO</td>
<td>D</td>
</tr>
</tbody>
</table>

Protocol Options

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-bus</td>
<td>1</td>
</tr>
<tr>
<td>Modbus</td>
<td>2</td>
</tr>
<tr>
<td>IEC 60870-5-103 (VDEW)</td>
<td>3</td>
</tr>
<tr>
<td>IEC 61850 + Courier (via rear RS485 port)</td>
<td>6</td>
</tr>
</tbody>
</table>

Mounting

<table>
<thead>
<tr>
<th>Mounting</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel Mounting, with Harsh Environment Coating</td>
<td>M</td>
</tr>
</tbody>
</table>

Language

<table>
<thead>
<tr>
<th>Language</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multilingual - English, French, German, Spanish</td>
<td>0</td>
</tr>
<tr>
<td>Multilingual - English, French, German, Russian</td>
<td>5</td>
</tr>
<tr>
<td>Multilingual - English, French, Chinese</td>
<td>C</td>
</tr>
</tbody>
</table>

Software Version

<table>
<thead>
<tr>
<th>Version Details</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unless specified the latest version will be delivered</td>
<td></td>
</tr>
</tbody>
</table>

Customisation

<table>
<thead>
<tr>
<th>Customisation</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>0</td>
</tr>
<tr>
<td>Customer specific</td>
<td>A</td>
</tr>
</tbody>
</table>

Design Suffix

<table>
<thead>
<tr>
<th>Suffix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Variants</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td>P243 Motor Protection Relay (80TE Case)</td>
</tr>
<tr>
<td>Vx Aux Rating</td>
</tr>
<tr>
<td>24-54 Vdc</td>
</tr>
<tr>
<td>48-125 Vdc (40-100 Vac)</td>
</tr>
<tr>
<td>110-250 Vdc (100-240 Vac)</td>
</tr>
<tr>
<td>In/Vn Rating</td>
</tr>
<tr>
<td>In = 1A/5A, Vn = 100/120V</td>
</tr>
<tr>
<td>Hardware Options</td>
</tr>
<tr>
<td>Nothing</td>
</tr>
<tr>
<td>IRIG-B only (Modulated)</td>
</tr>
<tr>
<td>Fiber Optic Rear Comms Port</td>
</tr>
<tr>
<td>IRIG-B (Modulated) & Fiber Optic Rear Comms Port</td>
</tr>
<tr>
<td>Ethernet (100 Mbits/s) without IRIG-B</td>
</tr>
<tr>
<td>2nd Rear Comms Port</td>
</tr>
<tr>
<td>IRIG-B (Modulated) & 2nd Rear Comms Port</td>
</tr>
<tr>
<td>Ethernet (100Mbit/s) plus IRIG-B (Modulated)</td>
</tr>
<tr>
<td>Ethernet (100Mbit/s) plus IRIG-B (Un-modulated)</td>
</tr>
<tr>
<td>IRIG-B (Un-modulated)</td>
</tr>
<tr>
<td>Redundant Ethernet Self-Healing Ring, 2 multi-mode fibre ports + Modulated IRIG-B</td>
</tr>
<tr>
<td>Redundant Ethernet Self-Healing Ring, 2 multi-mode fibre ports + Un-modulated IRIG-B</td>
</tr>
<tr>
<td>Redundant Ethernet RSTP, 2 multi-mode fibre ports + Modulated IRIG-B</td>
</tr>
<tr>
<td>Redundant Ethernet RSTP, 2 multi-mode fibre ports + Un-modulated IRIG-B</td>
</tr>
<tr>
<td>Redundant Ethernet Dual-Homing Star, 2 multi-mode fibre ports + Modulated IRIG-B</td>
</tr>
<tr>
<td>Redundant Ethernet Dual-Homing Star, 2 multi-mode fibre ports + Un-modulated IRIG-B</td>
</tr>
<tr>
<td>Redundant Ethernet PRP/HSR, 2 fibre ports + Modulated IRIG-B</td>
</tr>
<tr>
<td>Redundant Ethernet PRP/HSR, 2 fibre ports + Unmodulated IRIG-B</td>
</tr>
<tr>
<td>Redundant Ethernet PRP/HSR/RSTP, 2 multi-mode fibre ports + Modulated/Un-Modulated IRIG-B</td>
</tr>
<tr>
<td>Redundant Ethernet PRP/HSR/RSTP, 2 coper ports RJ45 + Modulated/Un-Modulated IRIG-B</td>
</tr>
<tr>
<td>Single Ethernet, 1 multi-mode fibre ports + Modulated/Un-Modulated IRIG-B</td>
</tr>
<tr>
<td>Product Specific</td>
</tr>
<tr>
<td>16 Logic inputs & 16 Relay Outputs</td>
</tr>
<tr>
<td>16 Logic inputs & 16 Relay Outputs + RTDs</td>
</tr>
<tr>
<td>16 Logic inputs & 16 Relay Outputs + CLIO</td>
</tr>
<tr>
<td>16 Logic inputs & 16 Relay Outputs + RTDs & CLIO</td>
</tr>
<tr>
<td>Protocol Options</td>
</tr>
<tr>
<td>K-bus</td>
</tr>
<tr>
<td>Modbus</td>
</tr>
<tr>
<td>IEC 60870-5-103 (VDEW)</td>
</tr>
<tr>
<td>IEC 61850 + Courier (via rear RS485 port)</td>
</tr>
<tr>
<td>Mounting</td>
</tr>
<tr>
<td>Panel Mounting, with Harsh Environment Coating</td>
</tr>
<tr>
<td>Rack Mounting, with Harsh Environment Coating</td>
</tr>
<tr>
<td>Language</td>
</tr>
<tr>
<td>Multilingual - English, French, German, Spanish</td>
</tr>
<tr>
<td>Multilingual - English, French, German, Russian</td>
</tr>
<tr>
<td>Multilingual - English, French, Chinese</td>
</tr>
<tr>
<td>Software Version</td>
</tr>
<tr>
<td>Unless specified the latest version will be delivered</td>
</tr>
<tr>
<td>Customisation</td>
</tr>
<tr>
<td>Default</td>
</tr>
<tr>
<td>Customer specific</td>
</tr>
<tr>
<td>Design Suffix</td>
</tr>
</tbody>
</table>
MiCOM P40 Agile P241, P242, P243

TECHNICAL DATA
Technical Data

MiCOM P40 Agile P241, P242, P243
Technical Data

MiCOM P40 Agile P241, P242, P243

Technical data

Mechanical specifications

Design
Modular MiCOM Px40 platform relay, P241 in 40TE case, P242 in 60TE case, P243 in 80TE case.
Mounting is front of panel flush mounting or 19" rack mounted (ordering options).

Enclosure protection
Per IEC 60529: 1992:
- IP 52 Protection (front panel) against dust and dripping water,
- IP 50 Protection for rear and sides of the case, against dust,
- IP 10 Protection Product safety protection for the rear due to live connections on the terminal block.

Weight
- P241 (40TE): 7.3kg
- P242 (60TE): 9.2kg (with RTD, CLIO cards)
- P243 (80TE): 11.5kg (with RTD, CLIO cards)

Terminals

AC current and voltage measuring inputs
Located on heavy duty (black) terminal block: Threaded M4 terminals, for ring lug connection.
CT inputs have integral safety shorting, upon removal of the terminal block.

General input/output terminals
For power supply, opto inputs, output contacts and RP1 rear communications.
Located on general purpose (grey) blocks: Threaded M4 terminals, for ring lug connection.

Case protective earth connection
Two rear stud connections, threaded M4. Must be earthed (grounded) for safety, minimum earth wire size 2.5 mm².

Front port serial PC interface
EIA(RS)232 DCE, 9 pin D-type female connector Socket SK1.
Courier protocol for interface to MiCOM S1 Studio or MiCOM S1 Agile software.
Isolation to ELV (extra low voltage) level. Maximum cable length 15 m.

Front download/monitor port
EIA(RS)232, 25 pin D-type female connector Socket SK2.
For firmware and menu text downloads.
Isolation to ELV level.

Rear communications port (RP1)
EIA(RS)485 signal levels, two wire connections located on general purpose block, M4 screw.
For screened twisted pair cable, multidrop, 1000 m max.
For K-Bus, IEC-60870-5-103 or MODBUS Isolation to SELV (safety extra low voltage) level.

Optional rear fiber connection for SCADA/DCS
BFOC 2.5 -(ST®)-interface for glass fiber, as per IEC 874-10.
850 nm short-haul fibers, one Tx and one Rx.
For Courier, IEC-60870-5-103 or MODBUS

Optional second rear communications port (RP2)
EIA(RS)232, 9 pin D-type female connector, socket SK4.
Courier protocol: K-Bus, EIA(RS)232, or EIA(RS)485 connection.
Isolation to SELV level.

Optional rear IRIG-B interface modulated or un-modulated
BNC plug
Isolation to SELV level.
50 ohm coaxial cable.

Optional rear Ethernet connection for IEC 61850

10BaseT/100BaseTX communications
Interface in accordance with IEEE802.3 and IEC 61850
Isolation: 1.5 kV
Connector type: RJ45
Cable type: Screened Twisted Pair (STP)

100 base FX interface
Interface in accordance with IEEE802.3 and IEC 61850
Wavelength: 1300 nm
Fiber: multi-mode 50/125 μm or 62.5/125 μm
Connector style: BFOC 2.5 -(ST®)
Optional rear redundant Ethernet connection for IEC 61850 (2 Fibre Optic or 2 RJ45 ports)

100 base FX interface
Interface in accordance with IEEE802.3 and IEC 61850
Wavelength: 1300 nm
Fiber: multi-mode 50/125 µm or 62.5/125 µm
Connector style: BFOC 2.5 -(ST®)
Transmitter optical characteristics 100 base FX interface

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Optical Power BOL 62.5/125 µm, NA = 0.275 Fiber EOL</td>
<td>PO</td>
<td>-19</td>
<td>-16.8</td>
<td>-14</td>
<td>dBm avg.</td>
</tr>
<tr>
<td>Output Optical Power BOL 50/125 µm, NA = 0.20 Fiber EOL</td>
<td>PO</td>
<td>-22.5</td>
<td>-20.3</td>
<td>-14</td>
<td>dBm avg.</td>
</tr>
<tr>
<td>Optical Extinction Ratio</td>
<td></td>
<td>10</td>
<td>-10</td>
<td>%</td>
<td>dB</td>
</tr>
<tr>
<td>Output Optical Power at Logic “0” State</td>
<td>PO (“0”)</td>
<td>-45</td>
<td></td>
<td>dBm avg.</td>
<td></td>
</tr>
</tbody>
</table>

BOL - Beginning of life
EOL - End of life

Receiver optical characteristics 100 base FX interface

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Optical Power Minimum at Window Edge</td>
<td>PIN Min. (W)</td>
<td>-33.5</td>
<td>-31</td>
<td>dBm avg.</td>
<td></td>
</tr>
<tr>
<td>Input Optical Power Minimum at Eye Center</td>
<td>PIN Min. (C)</td>
<td>-34.5</td>
<td>-31.8</td>
<td>Bm avg.</td>
<td></td>
</tr>
<tr>
<td>Input Optical Power Maximum</td>
<td>PIN Max.</td>
<td>-14</td>
<td>-11.8</td>
<td>dBm avg.</td>
<td></td>
</tr>
</tbody>
</table>

Fiber defect connector (watchdog relay) – redundant Ethernet board
Connector (3 terminals): 2 NC contacts
Rated voltage: 250 V
Continuous current: 5 A
Short-duration current: 30 A for 3 s

Breaking capacity:
DC: 50 W resistive
DC: 25 W inductive (L/R = 40 ms)
AC: 1500 VA resistive (cos Φ = unity)
AC: 1500 VA inductive (cos Φ = 0.5)
Subject to maxima of 5 A and 250 V

10BaseT/100BaseTX Communications
The same as optional rear Ethernet connection for IEC 61850

Ratings

AC measuring inputs
Nominal frequency: 50 and 60 Hz (settable)
Operating range: 45 to 65 Hz

AC current
Nominal current (In): 1 and 5 A dual rated.
(1 A and 5 A inputs use different transformer tap connections, check correct terminals are wired).
Nominal burden
< 0.04 VA at In, <40 mΩ (0-30 In) In = 1 A
< 0.01 VA at In, <8 mΩ (0-30 In) In = 5 A
Thermal withstand:
continuous 4 In for 10 s; 30 In for 1 s; 100 In
Standard: linear to 64 In (non-offset AC current).
Sensitive: linear to 2 In (non-offset AC current).

AC voltage
Nominal voltage (Vn): 100 to 120 V phase-phase
Nominal burden per phase: < 0.02 VA rms at 110/√3 V
Thermal withstand:
continuous 2 Vn for 10 s: 2.6 Vn
Linear to 200 V.

Power supply

Auxiliary voltage (Vx)
Three ordering options:
(i) Vx: 24 to 48 Vdc
(ii) Vx: 48 to 110 Vdc, and 40 to 100 Vac (rms)
(iii) Vx: 110 to 250 Vdc, and 100 to 240 Vac (rms)

Operating range
(i) 19 to 65 V (dc only for this variant)
(ii) 37 to 150 V (dc), 32 to 110 V (ac)
(iii) 87 to 300 V (dc), 80 to 265 V (ac).
With a tolerable ac ripple of up to 12% for a dc supply, per IEC 60255-11: 1979.

Nominal burden
Quiescent burden: 11 W. (Extra 1.25 W when fitted with second rear communications board).
Additions for energized binary inputs/outputs:
Per opto input:
- 0.09 W (24 to 54 V),
- 0.12 W (110/125 V),
- 0.19 W (220/250 V).
Per energized output relay: 0.13 W

Power-up time
Time to power up < 11 s.

Power supply interruption
3 power supply options:
(i) Vx: 24 to 48 V dc
(ii) Vx: 48 to 110 V dc, 40 to 100 V ac (rms)
(iii) Vx: 110 to 250 V dc, 100 to 240 V ac (rms)
Per IEC 60255-11: 2008
The relay will withstand a 100% interruption in the DC supply without de-energizing as follows:
(i) Vx: 24 to 48 V dc
- Quiescent / half load
 - 20 ms at 24 V
 - 50 ms at 36 V
 - 100 ms at 48 V
- maximum loading:
 - 20 ms at 24 V
 - 50 ms at 36 V
 - 100 ms at 48 V
(ii) Vx: 48 to 110 V dc
- Quiescent / half load
 - 20 ms at 36 V
 - 50 ms at 60 V
 - 100 ms at 72 V
- 200 ms at 110 V
- maximum loading:
 - 20 ms at 36 V
 - 50 ms at 60 V
 - 100 ms at 85 V
 - 200 ms at 110 V
(iii) Vx: 110 to 250 V dc
- Quiescent / half load
 - 50 ms at 110 V
 - 100 ms at 160 V
 - 200 ms at 210 V
- maximum loading:
 - 20 ms at 85 V
 - 50 ms at 98 V
 - 100 ms at 135 V
 - 200 ms at 174 V
Per IEC 60255-11: 2008:
The relay will withstand an interruption in the AC supply without de-energizing as follows:
(ii) Vx = 40 to 100 V ac
- Quiescent / half load
 - 50 ms at 27 V for 100% voltage dip
- maximum loading:
 - 10 ms at 27 V for 100% voltage dip
(iii) Vx = 100 to 240 V ac
- Quiescent / half load
 - 50 ms at 80 V for 100% voltage dip
- maximum loading:
 - 50 ms at 80 V for 100% voltage dip

Battery backup
Front panel mounted
Type ½ AA, 3.6 V Lithium Thionyl Chloride Battery (SAFT advanced battery reference LS14250)
Battery life (assuming relay energized for 90% time) >10 years

Field voltage output
Regulated 48 Vdc
Current limited at 112 mA maximum output
Operating range 40 to 60 V with alarm at <35 V.

Digital (“Opto”) inputs
Universal opto inputs with programmable voltage thresholds (24/27, 30/34, 48/54, 110/125, 220/250 V). May be energized from the 48 V field voltage, or the external battery supply.
Rated nominal voltage: 24 to 250 Vdc
Operating range: 19 to 265 Vdc
Withstand: 300 Vdc, 300 Vrms.
Peak current of opto input when energized is 3.5 mA (0-300 V)
Nominal pick-up and reset thresholds:
Nominal battery 24/27: 60 - 80% DO/PU
- (logic 0) <16.2
- (logic 1) >19.2
Nominal battery 24/27: 50 - 70% DO/PU
- (logic 0) <12.0
- (logic 1) >16.8
Nominal battery 30/34: 60 - 80% DO/PU
- (logic 0) <20.4
- (logic 1) >24.0
Nominal battery 30/34: 50 - 70% DO/PU
- (logic 0) <15.0
- (logic 1) >21.0
Nominal battery 48/54: 60 - 80% DO/PU
- (logic 0) <32.4
- (logic 1) >38.4
Nominal battery 48/54: 50 - 70% DO/PU
- (logic 0) <24.0
- (logic 1) >33.6
Nominal battery 110/125: 60 - 80% DO/PU
- (logic 0) <75.0
- (logic 1) >88.0
Nominal battery 110/125: 50 - 70% DO/PU
- (logic 0) <55.0
- (logic 1) >77.0
Nominal battery 220/250: 60 - 80% DO/PU
- (logic 0) <150.0
- (logic 1) >176.0
Nominal battery 220/250: 50 - 70% DO/PU
- (logic 0) <110
- (logic 1) >154
Recognition time:
- <2 ms with long filter removed,
- <12 ms with half cycle ac immunity filter on
Output contacts

Standard contacts
General purpose relay outputs for signaling, tripping and alarming:

Continuous Carry Ratings (Not Switched):
Maximum continuous current: 10 A (UL: 8 A)
Short duration withstand carry: 30 A for 3 s
250 A for 30 ms
Rated voltage: 300 V

Make & Break Capacity:
DC: 50 W resistive
DC: 62.5 W inductive (L/R = 50 ms)
AC: 2500 VA resistive (cos ϕ = unity)
AC: 2500 VA inductive (cos ϕ = 0.7)

Make, Carry:
30 A for 3 secs, dc resistive, 10,000 operations (subject to the above limits of make / break capacity and rated voltage)

Make, Carry & Break:
30 A for 200 ms, ac resistive, 2,000 operations (subject to the above limits of make / break capacity & rated voltage)
4 A for 1.5 secs, dc resistive, 10,000 operations (subject to the above limits of make / break capacity & rated voltage)

0.5 A for 1 sec, dc inductive, 10,000 operations (subject to the above limits of make / break capacity & rated voltage)

10 A for 1.5 secs, ac resistive / inductive, 10,000 operations (subject to the above limits of make / break capacity & rated voltage)

Durability:
Loaded contact: 10 000 operations minimum,
Unloaded contact: 100 000 operations minimum.

Operate Time
Less than 5 ms
Reset Time
Less than 5 ms

Watchdog contacts
Non-programmable contacts for relay healthy/relay fail indication:
Breaking capacity:
DC: 30 W resistive
DC: 15 W inductive (L/R = 40 ms)
AC: 375 VA inductive (cos ϕ = 0.7)

IRIG-B 12X Interface (modulated)
External clock synchronization per IRIG standard 200-98, format B12x
Input impedance 6 kΩ at 1000 Hz

Modulation ratio: 3:1 to 6:1
Input signal, peak-peak: 200 mV to 20 V

IRIG-B 00X Interface (Un-modulated)
External clock synchronization per IRIG standard 200-98, format B00X.
Input signal TTL level
Input impedance at dc 10 kΩ

Environmental conditions

Ambient temperature range
Per IEC 60255-6: 1988:
Operating temperature range:
-25°C to +55°C (or -13°F to +131°F)
Storage and transit:
-25°C to +70°C (or -13°F to +158°F)
Per IEC 60608-2-1: 2007
-25°C storage (96 hours)
-40°C operation (96 hours)
Per IEC 60608-2-2: 2007
+85°C storage (96 hours)
+85°C operation (96 hours)

Ambient humidity range
Per IEC 60608-2-3: 1969:
56 days at 93% relative humidity and +40 °C
Per IEC 60608-2-30: 1980
Damp heat cyclic, six (12 + 12) hour cycles, 93% RH, +25 to +55°C

Corrosive environments
Per IEC 60608-2-60: 1995, Part 2, Test Ke,
Method (class) 3
Industrial corrosive environment/poor environmental control, mixed gas flow test.
21 days at 75% relative humidity and +30°C exposure to elevated concentrations of H2S, NO2, Cl2 and SO2.

Type tests

Insulation
Per IEC 60255-27: 2005:
Insulation resistance > 100 MΩ at 500 Vdc
(Using only electronic/brushless insulation tester).

Creepage distances and clearances
IEC 60255-27: 2005
Pollution degree 3,
Overvoltage category III,
Impulse test voltage 5 kV.

High voltage (dielectric) withstand
(i) Per IEC 60255-27: 2005, 2 kV rms
Technical Data

MiCOM P40 Agile P241, P242, P243

AC, 1 minute:
Between all independent circuits.
Between independent circuits and protective (earth) conductor terminal.
1 kV rms AC for 1 minute, across open watchdog contacts.
1 kV rms AC for 1 minute, across open contacts of changeover output relays.
1 kV rms AC for 1 minute for all D-type EIA(RS)232/EIA(RS)485 ports between the communications port terminals and protective (earth) conductor terminal.

1.5 kV rms AC for 1 minute, across open contacts of normally open output relays.
1 kV rms AC for 1 minute, across open watchdog contacts.
1 kV rms AC for 1 minute, across open contacts of changeover output relays.

Impulse voltage withstand test
Per IEC 60255-27: 2005:
Front time: 1.2 µs, Time to half-value: 50 µs,
Peak value: 5 kV, 0.5J
Between all independent circuits.
Between all independent circuits and protective (earth) conductor terminal.
Between the terminals of independent circuits.
EIA(RS)232 & EIA(RS)485 ports and normally open contacts of output relays excepted.

Electromagnetic compatibility (EMC)

1 MHz burst high frequency disturbance test
Per IEC 60255-22-1: 1988, Class III,
Common-mode test voltage: 2.5 kV,
Differential test voltage: 1.0 kV,
Test duration: 2 s, Source impedance: 200 Ω
(EIA(RS)232 ports excepted).

Damped oscillatory test
100 kHz and 1 MHz
Common mode test voltage: 2.5 kV
Power Supply, Relay contacts, CT, VT, Opto Input, Communications, IRIG-B
Differential mode test voltage: 1 kV
Power Supply, Relay contacts, CT, VT, Opto Input
3 MHz, 10 MHz and 30 MHz
Common mode test voltage: 4 kV
Power Supply, Relay contacts, CT, VT, Opto Input, Communications, IRIG-B

Immunity to electrostatic discharge
Per IEC 60255-22-2: 1996, Class 4,
15 kV discharge in air to user interface, display, communication port and exposed metalwork.
8 kV point contact discharge to any part of the front of the product.

Electrical fast transient or burst requirements
Per IEC 60255-22-4: 2002 and EN61000-4-4:2004. Test severity Class III and IV:
Amplitude: 2 kV, burst frequency 5 kHz (Class III),
Amplitude: 4 kV, burst frequency 2.5 kHz (Class IV).
Applied directly to auxiliary supply, and applied to all other inputs. (EIA(RS)232 ports excepted).
Amplitude: 4 kV, burst frequency 5 kHz (Class IV) applied directly to auxiliary.

Surge withstand capability
Per IEEE/ANSI C37.90.1: 2002:
4 kV fast transient and 2.5 kV oscillatory
applied directly across each output contact, optically isolated input, and power supply circuit.
4 kV fast transient and 2.5 kV oscillatory
applied common mode to communications, IRIG-B.

Surge immunity test
(EIA(RS)232 ports excepted).
Per IEC 61000-4-5: 2005 Level 4,
Time to half-value: 1.2 / 50 µs,
Amplitude: 4 kV between all groups and protective (earth) conductor terminal,
Amplitude: 2 kV between terminals of each group.

Conducted/radiated immunity
For RTDs used for tripping applications the conducted and radiated immunity performance is guaranteed only when using totally shielded RTD cables (twisted leads).

Immunity to radiated electromagnetic energy
Per IEC 60255-22-3: 2000, Class III:
Test field strength, frequency band 80 to 1000 MHz:
10 V/m,
Test using AM: 1 kHz / 80%, Spot tests at 80, 160, 450, 900 MHz
Per IEEE/ANSI C37.90.2: 2004:
80 MHz to 1000 MHz, 1 kHz 80% am and am pulsed modulated.
Field strength of 35 V/m.

Radiated immunity from digital communications
Per EN61000-4-3: 2002, Level 4:
Test field strength, frequency band 800 to 960 MHz, and 1.4 to 2.0 GHz:
30 V/m,
Test using AM: 1 kHz/80%.
Radiated immunity from digital radio telephones
Per IEC 61000-4-3: 2002: 10 V/m, 900 MHz and 1.89 GHz.

Immunity to conducted disturbances induced by radio frequency fields
Per IEC 61000-4-6: 1996, Level 3, Disturbing test voltage: 10 V.

Power frequency magnetic field immunity
Per IEC 61000-4-8: 1994, Level 5, 100 A/m applied continuously, 1000 A/m applied for 3s.
Per IEC 61000-4-9: 1993, Level 5, 1000 A/m applied in all planes.
Per IEC 61000-4-10: 1993, Level 5, 100 A/m applied in all planes at 100 kHz/1 MHz with a burst duration of 2 s.

Conducted emissions
Per EN 55022: 1998 Class A:
0.15 - 0.5 MHz, 79 dBµV (quasi peak)
66 dBµV (average)
0.5 – 30 MHz, 73 dBµV (quasi peak)
60 dBµV (average).

Radiated emissions
Per EN 55022: 1998 Class A:
30 – 230 MHz, 40 dBµV/m at 10 m measurement distance
230 – 1 GHz, 47 dBµV/m at 10 m measurement distance.

EU directives

EMC compliance
Per 2006/95/EC:
Compliance to the European Commission Directive on EMC is claimed via the Technical Construction File route. Product Specific Standards were used to establish conformity: EN50263: 2000

Product safety
Compliance to the European Commission Low Voltage Directive. (LVD) is demonstrated using a Technical File. A product specific standard was used to establish conformity.
EN 60255-27: 2005

R&TTE compliance
Radio and Telecommunications Terminal Equipment (R & TTE) directive 99/5/EC. Compliance demonstrated by compliance to both the EMC directive and Low voltage directive, down to zero volts. Applicable to rear communications ports.

ATEX compliance
ATEX Potentially Explosive Atmospheres directive 94/9/EC, for equipment. The equipment is compliant with Article 1(2) of European directive 94/9/EC. It is approved for operation outside an ATEX hazardous area. It is however approved for connection to Increased Safety, “Ex e”, motors with rated ATEX protection, Equipment Category 2, to ensure their safe operation in gas Zones 1 and 2 hazardous areas.

CAUTION - Equipment with this marking is not itself suitable for operation within a potentially explosive atmosphere.

Compliance demonstrated by Notified Body certificates of compliance.

II (2) G

Note: Programmable IDMT curves shall not be used for ATEX applications. ATEX marked models are only approved for use with a fixed IDMT curve.

Mechanical robustness

Vibration test
Per IEC 60255-21-1: 1996:
Response Class 2
Endurance Class 2

Shock and bump
Per IEC 60255-21-2: 1996:
Shock response Class 2
Shock withstand Class 1
Bump Class 1

Seismic test
Per IEC 60255-21-3: 1995:
Class 2

Transit Packaging Performance
Product testing to simulate protection offered by primary packaging carton, to ISTA 1C specification

Vibration and Drop Release Tests:
MiCOM P40 Agile P241, P242, P243

Vibration tests in 3 orientations, vibratory movement 7 Hz, amplitude 5.3 mm, acceleration 1.05g
Drop tests - 10 drops from 61 cm height on multiple carton faces, edges and corners

P24x third party compliances
Underwriters laboratory (UL)

File Number: E202519
Original Issue Date: 21-04-2005
(Complies with Canadian and US requirements).

Energy Networks Association (ENA)

Certificate Number: 104 Issue 2
Assessment Date: 16-04-2004
Protection functions

Thermal overload

Accuracy
Setting accuracy: ±5%
Reset: 97% of thermal setting ±5%
Thermal alarm Pick-up:
Calculated trip time ±5% or 40 ms whichever is greater
Thermal overload Pick-up:
Calculated trip time ±5% or 40 ms whichever is greater
Cooling time accuracy: ±5% of theoretical
Repeatability: <2.5%

4-Stage non-directional short-circuit protection

Accuracy
Pick-up: Setting ±5%
Drop-off: 0.95 x Setting ±5%
Minimum trip level (IDMT): 1.05 x Setting ±5%
IDMT characteristic shape: ±5% or 40 ms whichever is greater
IEEE reset: ±5% or 50 ms whichever is greater
DT operation: ±2% or 50 ms whichever is greater
DT Reset: ±5%
Characteristic UK: IEC 6025-3…1998
Characteristic US: IEEE C37.112…1996
* Under reference conditions

Sensitive directional earth fault

SEF Accuracy
Pick-up: Setting ±5%
Drop-off: 0.95 x Setting ±5%
IDMT trip level elements: 1.05 x Setting ±5%
IDMT characteristic shape: ±5% or 40 ms whichever is greater
IEEE reset: ±5% or 40 ms whichever is greater
DT operation: ±2% or 40 ms whichever is greater
DT reset: ±5%
Repeatability: <2.5%

Wattmetric SEF accuracy
\[P = 0 \text{W Pick-up: } P > 0 \text{W Pick-up: } P > 0 \text{W Drop-off: } (0.95 \times \text{ISEF}) \text{ or } 0.9 \times P > \pm 5% \]
Boundary accuracy: ±5% with 1° hysteresis
Repeatability: <2.5%

Polarizing quantities accuracy
Operating boundary Pick-up: ±2° of RCA ±90°
Hysteresis: <3°
ISEF>Vnpol Pick-up: Setting ±10%
ISEF>Vnpol Drop-off: 0.9 x Setting or 0.7 V (whichever is greater) ±10%

2-Stage negative phase sequence overcurrent

Accuracy
I2>Pick-up: Setting ±5%
I2> Drop-off: 0.95 x Setting ±5%
Vpol Pick-up: Setting ±5%
Vpol Drop-off: 0.95 x Setting ±5%
DT operation: ±2% or 40 ms whichever is greater
IDMT operation: ±5% or 40 ms whichever is greater

2-Stage directional/non-directional derived earth fault

Accuracy
Pick-up: Setting ±5%
Drop-off: 0.95 x Setting ±5%
IDMT trip level elements: 1.05 x Setting ±5%
IDMT characteristic shape: ±5% or 40 ms whichever is greater
IEEE reset: ±5% or 40 ms whichever is greater
DT operation: ±2% or 40 ms whichever is greater
DT reset: ±5%
Repeatability: 2.5%

Zero polarizing
Operating pick-up: ±2%o of RCA ±90%
Hysteresis: <3°
VN > Pick-up: Setting ±10%
VN > Drop-off: 0.9 x Setting ±10%

Negative polarizing
Operating Pick-up: ±2%o of RCA ±90%
Hysteresis: <3°
VN 2 > Pick-up: Setting ±10%
VN 2 > Drop-off: 0.9 x Setting ±10%
I2 > Pick up: Setting ±10%
I2 > Drop-off: 0.9 x Setting ±10%
Stall protection
Pick-up: Setting ±5%

Timer accuracy
Timers: ±2% or 40 ms whichever is greater
Reset time: <30 ms

Motor differential protection
Accuracy
Pick-up: Formula ±5%
Drop-off: 95% of setting ±5%
Operating time: <30 ms for currents applied at 4x pickup level or greater
Repeatability: <7.5%
Disengagement time: <40 ms

Neutral displacement/residual overvoltage
Accuracy
DT/IDMT Pick-up: Setting ±5%
Drop-off: 0.95 x Setting ±5%
IDMT characteristic shape: ±5% or 40 ms whichever is greater
DT operation: ±2% 40 ms whichever is greater
Instantaneous operation <55 ms
Reset: <35 ms
Repeatability: <1%

Loss of load
Accuracy
Pick-up: Setting ±5% or 2 W
Drop-off:
0.95 of setting ±5%
Angle variation Pick-up:
Expected pick-up angle ±2 degree
Angle variation Drop-off:
Expected drop-off angle ±2.5 degree
Operating time: ±2% or 40 ms whichever is greater
Repeatability: <5%
Disengagement time: <50 ms
Instantaneous operating time: <50 ms

Out of step
Pick-up: Setting ±5%
DT operation: ±2% or 40 ms whichever is greater

Reverse power
Accuracy
Pick-up: Setting ±5% or 2 W
Drop-off:
0.95 of setting ±5%
Angle variation Pick-up:
Expected pick-up angle ±2 degree
Angle variation Drop-off:
Expected drop-off angle ±2.5 degree
Operating time: ±2% or 40 ms whichever is greater
Repeatability: <5%
Disengagement time: <50 ms
Instantaneous operating time: <50 ms

Anti-backspin
Pick-up: Setting ±5%
DT operation: ±2% or 40 ms whichever is greater
Repeatability: <1%

Field failure
Accuracy
Mho characteristic Pick-up:
Characteristic shape ±5%
Linear characteristic Pick-up:
Characteristic shape ±10%
Mho characteristic Drop-off:
105% of setting ±5%
Linear characteristic Drop-off:
105% of setting ±10%
Operating time: ±2% or 60 ms whichever is greater
Repeatability: <1%
Disengagement time: <50 ms

Voltage protection
Undervoltage
Accuracy
DT Pick-up: Setting ±5%
IDMT Pick-up: (0.95 x Setting) ±5%
Drop-off: 1.05 x Setting ±5%
IDMT characteristic shape: ±5% or 40 ms whichever is greater
DT operation: ±2% or 40 ms whichever is greater
Reset: <75 ms
Repeatability: <1%
Overvoltage

Accuracy
- **DT Pick-up:** Setting ±5%
- **IDMT Pick-up:** Setting ±5%
- **Drop-off:** 0.95 x Setting ±5%
- **IDMT characteristic shape:** ±5% or 40 ms whichever is greater
- **DT operation:** ±2% or 40 ms whichever is greater
- **Reset:** <75 ms
- **Repeatability:** <1%

2-Stage negative phase sequence overvoltage

Accuracy
- **Pick-up:** Setting ±5%
- **Drop-off:** 0.95 x Setting ±5%
- **Repeatability (operating threshold):** <1%
- **DT operation:** ±2% or 40 ms whichever is greater
- **Reset:** <75 ms
- **Repeatability:** <1%

Underfrequency

Accuracy
- **Pick-up:** Setting ±0.01 Hz
- **Drop-off:** (Setting +0.025 Hz) ±0.01 Hz
- **DT operation:** ±2% or 40 ms whichever is greater
- **Reset:** <75 ms
- **Repeatability:** <1%

* The operating will also include a time for the relay to frequency track 20 Hz/second.

Resistive temperature detectors

Accuracy
- **Pick-up:** Setting ±1°C
- **Drop-off:** 0.95 x Setting (min -2°C)
- **Operating time:** ±2% or <1.1 s

CB fail

Timer accuracy
- **Timers:** ±2% or 40 ms whichever is greater
- **Reset time:** <30 ms

Undercurrent accuracy
- **Pick-up:** ±10% or 25 mA whichever is greater
- **Operating time:** <12 ms (Typical <10 ms)
- **Reset:** <15 ms (Typical <10 ms)

CB state monitoring control and condition monitoring

Accuracy
- **Timers:** ±2% or 20 ms whichever is greater
- **Broken current accuracy:** ±5%

Programmable scheme logic

Accuracy
- **Output conditioner timer:** Setting ±2% or 50 ms whichever is greater
- **Dwell conditioner timer:** Setting ±2% or 50 ms whichever is greater
- **Pulse conditioner timer:** Setting ±2% or 50 ms whichever is greater

Measurements and recording facilities

Measurements

Accuracy
- **Current:** 0.05…3 In: ±1% of reading
- **Voltage:** 0.05…2 Vn: ±5% of reading
- **Power (W):** 0.2…2 Vn, 0.05…3 In: ±5% of reading at unity power factor
- **Reactive Power (VAr):** 0.2…2 Vn, 0.05…3 In: ±5% of reading at zero power factor
- **Apparent Power (VA):** 0.2…2 Vn, 0.05…3 In: ±5% of reading
- **Energy (Wh):** 0.2…2 Vn, 0.2…3 In: ±5% of reading at zero power factor
- **Energy (Varh):** 0.2…2 Vn, 0.2…3 In: ±5% of reading at zero power factor
- **Phase accuracy:** 0°…360: ±5%
- **Frequency:** 45…65 Hz: ±0.025 Hz

IRIG-B and real time clock

Performance
- **Year 2000:** Compliant
- **Real time accuracy:** <±1 second / day

Features
- Real time 24 hour clock settable in hours, minutes and seconds
- **Calendar settable from January 1994 to December 2092**
- **Clock and calendar maintained via battery after loss of auxiliary supply**
- **Internal clock synchronization using IRIG-B**
- **Interface for IRIG-B signal is BNC**
Current loop input and outputs

Accuracy
- Current loop input accuracy: ±1% of full scale
- CLI drop-off threshold: 0.95 x setting ±5% of full scale
- CLI sampling interval: 50 ms
- CLI instantaneous operating time: < 250 ms
- CLI DT operating time: ±2% setting or 200 ms whichever is the greater
- CLO conversion interval: 50 ms
- CLO latency: < 0.27 s depending on CLO output parameter’s internal refresh rate - (0.2 s)
- Current loop output accuracy: ±0.5% of full scale
- Repeatability: <5%

CLI - Current Loop Input (Analog Input)
CLO - Current Loop Output (Analog Output)

Other specifications
- CLI load resistance 0-1 mA: < 4 kΩ
- CLI load resistance 0-1 mA/0-20 mA/4 20 mA: <300 Ω
- Isolation between common input channels: zero
- Isolation between input channels and case earth/other circuits: 2 kV rms for 1 minute
- CLO compliance voltage 0-1 mA/0 10 mA: 10 V
- CLO compliance voltage 0-20 mA/4 20 mA: 8.8 V
- Isolation between common output channels: zero
- Isolation between output channels and case earth/other circuits: 2 kV rms for 1 minute

Disturbance records

Accuracy
- Magnitude and relative phases: ±5% of applied quantities
- Duration: ±2%
- Trigger Position: ±2% (minimum 100ms)
 - Record length: 50 records each 1.5 s duration (75 s total memory) with 8 analog channels and 32 digital channels (Courier, MODBUS), 8 records each 3 s (50 Hz) or 2.5 s (60 Hz) duration (IEC 60870-5-103).

Event, fault & maintenance records
- Maximum 250 events in a cyclic memory
- Maximum 5 fault records
- Maximum 5 maintenance records

Accuracy
- Event time stamp resolution: 1 ms
Settings, measurements and records list

Settings list

Global settings (system data)
- **Language**: English/French/German/Spanish
- **Frequency**: 50/60 Hz

Circuit breaker control (CB control)
- **CB Control by**: Disabled/Local/Remote/Opto/Opto + Local/Opto + Remote/Opto + Rem + Local
- **Close Pulse Time**: 0.1…5 sec
- **Trip Pulse Time**: 0.1…5 sec
- **Man Close Delay**: 0.0…60 sec

Date and time
- **IRIG-B Sync**: Disabled/Enabled
- **Battery Alarm**: Disabled/Enabled

Configuration
- **Setting Group**: Select via Menu/Select via Optos
- **Active Settings**: Group 1/2
- **Setting Group 1**: Disabled/Enabled
- **Setting Group 2**: Disabled/Enabled
- **Thermal Overload**: Disabled/Enabled
- **Short Circuit**: Disabled/Enabled
- **Sensitive E/F**: Disabled/Enabled
- **Neg. Seq. O/C**: Disabled/Enabled
- **3PH Volt Check**: Disabled/Enabled
- **Derived E/F**: Disabled/Enabled
- **Neg. Seq. O/V**: Disabled/Enabled
- **Stall Detection**: Disabled/Enabled
- **Differential**: Disabled/Enabled
- **Residual O/V NVD**: Disabled/Enabled
- **Limit Nb Starts**: Disabled/Enabled
- **Loss of Load**: Disabled/Enabled
- **Out of Step**: Disabled/Enabled
- **Reverse Power**: Disabled/Enabled
- **Anti-Backspin**: Disabled/Enabled
- **Field Failure**: Disabled/Enabled
- **Volt Protection**: Disabled/Enabled
- **Under Frequency**: Disabled/Enabled
- **RTD Inputs**: Disabled/Enabled
- **CB Fail**: Disabled/Enabled
- **Supervision**: Disabled/Enabled

CT and VT ratios
- **Main VT Primary**: 100…1000000 V
- **Main VT Sec’y**: 80…140 V
- **Phase CT Primary**: 1A…30 kA
- **Phase CT Sec’y**: 1A/5 A
- **SEF CT Primary**: 1A…30 kA
- **SEF CT Sec’y**: 1A/5 A
- **VT Connecting Mode**: 3 VT/2 VT + Residual/2 VT + Vremanent (Vremanent phase-phase)
- **NVD VT Primary**: 100…1000000 V
- **NVD VT Secondary**: 80…140 V

Sequence of event recorder (record control)
- **Alarm Event**: No/Yes
- **Relay O/P Event**: No/Yes
- **Opto Input Event**: No/Yes
- **General Event**: No/Yes
- **Fault Rec Event**: No/Yes
- **Maint Rec Event**: No/Yes
- **Protection Event**: No/Yes
- **DDB 31 - 0**: (up to):
 - **DDB 1022 - 992**: Binary function link strings, selecting which DDB signals will be stored as events, and which will be filtered out.

Oscillography (disturbance recorder)
- **Duration**: 0.10…10.50 s
- **Trigger Position**: 0.0…100.0%
- **Trigger Mode**: Single/Extended
- **Analog Channel 1**: (up to):
- **Analog Channel 8**: (depending on model):
 - **Disturbance channels selected from**: VA/VB/VC/IA/IB/IC/IA-2/IB-2/IC-2/IN/VAB/VCB/VN/VRM (depending on model)
Technical Data

MiCOM P40 Agile P241, P242, P243

Digital Input 1: (up to):
Digital Input 32:
Selected binary channel assignment from any DDB status point within the relay (opto input, output contact, alarms, starts, trips, controls, logic...).
Input 1 Trigger: No Trigger/Trigger Edge +/- (Low to High)/Trigger Edge +/- (High to Low)
(up to):
Input 32 Trigger: No Trigger/Trigger Edge +/- / Trigger Edge +/-

Measured operating data (measurer's setup)
Default Display:
3Ph + N Current
3Ph Voltage
Power
Date and Time
Description
Plant Reference
Frequency
Thermal State
Local Values: Primary/Secondary
Remote Values: Primary/Secondary
Measurement Ref: VA/VB/VC/IA/IB/IC
Demand Interval: 1...99 mins
Alarm Fix Demand: Invisible/Visible
3 Phase Watt Thresh: 1 In......120 In W
3 Phase Var Thresh: 1 In......120 In VAr
Alarm Energies: Invisible/Visible
W Fwd Thresh: 1 In......1000 In Wh
W Rev Thresh: 1 In......1000 In Wh
Var Fwd Thresh: 1 In......1000 In VArh
Var Rev Thresh: 1 In......1000 In VArh
Motor Hour Run >1: Disable/Enable
Motor Hour Run >2: Disable/Enable
Remote 2 Values: Primary/Secondary

Communications
RP1 Protocol:
Courier
IEC60870-5-103
Modbus
RP1 Address: (Courier or IEC870-5-103): 0...255
RP1 Address: (MODBUS): 1...247
RP1 InactivTimer: 1...30 mins
RP1 Baud Rate: (IEC 870-5-103):
9600/19200 bits/s
RP1 Baud Rate: (MODBUS, Courier):
9600/19200/38400 bits/s
RP1 Parity: Odd/Even/None
(MODBUS)
RP1 Meas Period: 1...60s
(IEC870-5-103)
RP1 PhysicalLink:
Copper (EIA(RS)485/K bus) or Fiber Optic
RP1 Time Sync: Disabled/Enabled

MODBUS IEC Timer: Standard/Reverse
RP1 CS103 Blocking:
Disabled
Monitor Blocking
Command Blocking
RP1 Port Config: (Courier):
K Bus
EIA485 (RS485)
RP1 Comms Mode: (Courier):
IEC 60870 FT1.2
IEC 60870 10-Bit No parity
Note: If RP1 Port Config is K Bus the baud rate is fixed at 64 kbits/s

Optional Ethernet or Redundant Ethernet port
NIC Protocol: data
NIC MAC Address: data
NIC Tunl Timeout: 1...30 mins
NIC Link Report: Alarm, Event, None
NIC Link Timeout: 0.1...60 s

Optional additional second rear communication (rear port2 (RP2))
RP2 Protocol:
Courier
RP2 Port Config:
EIA(RS)232
EIA(RS)485
K-Bus
RP2 Comms Mode:
IEC60870 FT1.2
IEC60870 10-Bit No parity
RP2 Address: 0...255
RP2 InactivTimer: 1...30 mins
RP2 Baud Rate:
9600/19200/38400 bits/s
Note: If RP2 Port Config is K Bus the baud rate is fixed at 64 kbits/s

Commission tests
Monitor Bit 1:
(up to):
Monitor Bit 8:
Binary function link strings, selecting which DDB signals have their status visible in the Commissioning menu, for test purposes
Test Mode:
Disabled
Test Mode
Blocked Contacts
Test Pattern:
Configuration of which output contacts are to be energized when the contact test is applied.

Circuit breaker condition monitoring (CB monitor setup)
Broken I^: 1.0...2.0
I^ Maintenance: Alarm Disabled/Enabled
I^th Maintenance: 1...25000
No. CB Ops Maint: Alarm
Disabled/Enabled
No. CB Ops Maint: 1...10000
CB Time Maint: Alarm Disabled/Enabled
CB Time Maint: 0.005...0.500 s

Opto coupled binary inputs (opto config)
Global Nominal V:
- 24 - 27 V
- 30 - 34 V
- 48 - 54 V
- 110 - 125 V
- 220 - 250 V
- Custom
Opto Input 1: (up to):
 Opto Input #: (# = max. opto no. fitted):
 Custom options allow independent thresholds to be set per opto, from the same range as above.
Opto Filter Control:
 Binary function link string, selecting which optos will have an extra 1/2 cycle noise filter, and which will not.
Characteristics:
 Standard 60% - 80%
 50% - 70%
Time stamping accuracy: ±1 msec

Control inputs into PSL (ctrl. I/P config.)
Hotkey Enabled:
 Binary function link string, selecting which of the control inputs will be driven from Hotkeys.
Control Input 1: Latched/Pulsed
 (up to):
Control Input 32: Latched/Pulsed
Ctrl Command 1: (up to):
Ctrl Command 32:
 ON/OFF
 SET/RESET
 IN/OUT
 ENABLED/DISABLED

Function keys
Fn. Key Status 1: (up to):
Fn. Key Status 10
 Disable
 Lock
 Unlock/Enable
Fn. Key 1 Mode: Toggled/Normal
 (up to):
Fn. Key 10 Mode: Toggled/Normal
Fn. Key 1 Label: (up to):
Fn. Key 10 Label:
 User defined text string to describe the function of the particular function key

IED configurator
Switch Conf.Bank: No Action/Switch Banks

IEC 61850 GOOSE
GoEna: Disabled/Enabled
Test Mode: Disabled/Pass Through/Forced
VOP Test Pattern: 0x00000000...
0xFFFFFFFF
Ignore Test Flag: No/Yes

Control input user labels (ctrl. I/P labels)
Control Input 1: (up to):
Control Input 32:
 User defined text string to describe the function of the particular control input

Settings in multiple groups
Note: All settings here onwards apply for setting groups # = 1 to 2.
Protection functions

System config.
Phase Sequence: Standard ABC/Reverse

Thermal
Ith Current Set: 0.2 In...1.5 In
K Coefficient: 0...10
Thermal Const T1: 1min...180min
Thermal Const T2: 1min...360min
Thermal Const Tr: 1min...999min
Thermal Trip: Disabled/Enabled
Thermal Alarm: Disabled/Enabled
Alarm Threshold: 0.2%...100%
Thermal Lockout: Disabled/Enabled
Lockout Thresh: 0.2...100%
Inh Trip Dur St: Disabled/Enabled
Maximum user curve time delay setting 1 x e^30

4-stage non-directional short circuit protection
Phase O/C: Sub Heading
I>1 Function:
Disabled
DT
IEC S Inverse
IEC V Inverse
IEC E Inverse
UK LT Inverse
UK Rectifier
RI
IEEE M Inverse
IEEE V Inverse
IEEE E Inverse
US Inverse
US ST Inverse
I>1 Current Set: 0.2...15 In
I>1 Time Delay: 0.040...100.00 s
I>1 TMS: 0.025...1.200
I>1 Time Dial: 0.01...100.00
I>1 K (RI): 0.10...10.00
I>1 Reset Char: DT/Inverse
I>1 tRESET: 0.00...100.00 s
I>2 as I>1
I>3 Status: Disabled/Enabled
I>3 Current Set: 0.20...15.00 In
I>3 Time Delay: 0.040...100.00 s
I>4 as I>3
Maximum user curve time delay setting 1 x e^30

IDMT curves
Inverse time (IDMT) characteristic
IDMT characteristics are selectable from a choice of four IEC/UK and five IEEE/US curves as shown in the table below.

<table>
<thead>
<tr>
<th>IDMT curve</th>
<th>Stand.</th>
<th>K</th>
<th>α</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard inverse</td>
<td>IEC</td>
<td>0.14</td>
<td>0.02</td>
<td>0</td>
</tr>
<tr>
<td>Very inverse</td>
<td>IEC</td>
<td>13.5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Extremely inverse</td>
<td>IEC</td>
<td>80</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Long time inverse</td>
<td>UK</td>
<td>120</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Moderately inverse</td>
<td>IEEE</td>
<td>0.0515</td>
<td>0.02</td>
<td>0.114</td>
</tr>
<tr>
<td>Very inverse</td>
<td>IEEE</td>
<td>19.61</td>
<td>2</td>
<td>0.491</td>
</tr>
<tr>
<td>Extremely inverse</td>
<td>IEEE</td>
<td>28.2</td>
<td>2</td>
<td>0.1217</td>
</tr>
<tr>
<td>Inverse</td>
<td>US-C08</td>
<td>5.95</td>
<td>2</td>
<td>0.18</td>
</tr>
<tr>
<td>Short time inverse</td>
<td>US-C02</td>
<td>0.16758</td>
<td>0.02</td>
<td>0.11858</td>
</tr>
</tbody>
</table>

The IEC extremely inverse curve becomes definite time at currents greater than 20 x setting. The IEC standard, very and long time inverse curves become definite time at currents greater than 30 x setting. The rectifier curve becomes definite time at currents greater than 8x settings.

The definite time part of the IEC inverse time characteristics at currents greater than 20x and 30x setting are only relevant for currents in the operating range of the relay. The operating range of the P241/2/3 current inputs...
is 0 – 64 In for the standard current inputs and is 0 – 2 In for the sensitive current input.

The RI curve (electromechanical) has been included in the first and second stage characteristic setting options for Phase Overcurrent and Earth Fault protections. The curve is represented by the following equation:

\[t = K \times \left(\frac{1}{0.339 - \left(\frac{0.236}{M} \right)^{0.236}} \right) \text{ in seconds} \]

With K adjustable from 0.1 to 10 in steps of 0.05

\[M = \frac{I}{I_s} \]

For all IEC/UK curves, the reset characteristic is definite time only.

For all IEEE/US curves, the reset characteristic can be selected as either inverse curve or definite time.

The inverse reset characteristics are dependent upon the selected IEEE/US IDMT curve as shown in the table below.

All inverse reset curves conform to the following formula:

\[t_{\text{RESET}} = \frac{TD \times S}{(1 - M^2)^{0.5}} \text{ in seconds} \]

Where:

\[TD = \text{Time dial setting for IEEE curves} \]
\[S = \text{Constant} \]
\[M = \frac{I}{I_s} \]

<table>
<thead>
<tr>
<th>Curve description</th>
<th>Standard</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderately inverse</td>
<td>IEEE</td>
<td>4.85</td>
</tr>
<tr>
<td>Very inverse</td>
<td>IEEE</td>
<td>21.6</td>
</tr>
<tr>
<td>Extremely inverse</td>
<td>IEEE</td>
<td>29.1</td>
</tr>
<tr>
<td>Inverse</td>
<td>US</td>
<td>5.95</td>
</tr>
<tr>
<td>Short time inverse</td>
<td>US</td>
<td>2.261</td>
</tr>
</tbody>
</table>
Earth fault
ISEF>1 Function:
 Disabled
 DT
 IEC S Inverse
 IEC V Inverse
 IEC E Inverse
 UK LT Inverse
 UK Rectifier
 IEEE M Inverse
 IEEE V Inverse
 IEEE E Inverse
 US Inverse
 US ST Inverse
ISEF>1 Direction:
 Non-Directional
 Directional Fwd
ISEF>1 Current:
 0.005 In…1 In
ISEF>1 T Delay:
 0.04…200.0 s
ISEF>1 TMS:
 0.025…1.2
ISEF>1 Time Dial:
 0.5…15
ISEF>1 Reset Chr:
 DT/Inverse
ISEF>1 tReset:
 0…100 s
ISEF>2 Function:
 Disabled/Enabled
ISEF>2 Direction:
 Non-Directional
 Directional Fwd
ISEF>2 Current Set:
 0.005 In…1 In
ISEF>2 T Delay:
 0.04…200.0 s
ISEF>2 Char Angle:
 -180°…+180°
ISEF> VN Pol Set:
 0.5…25 V

(Earth Fault Wattmetric)
PO> Function:
 Disabled/Enabled
PO> Current Set:
 0.005 In…1 In
PO> Voltage Set:
 0.5…80 V
PO> Coeff K Set:
 1…10
PO> Char Angle:
 -180°…+180°
PO> Time Delay:
 0.04…100 s

Negative sequence overcurrent
I2>1 Status: Disabled/DT
I2>1 Current Set:
 0.05…4 In
I2>1 Time Delay:
 0.04…200 s
I2>2 Status: Disabled/IMDT
I2>2 Current Set:
 0.05…4 In
I2>2 TMS:
 0.07…2

3 phase voltage check
Start Low V Set:
 0.1 Vn…1.0 Vn

Earth fault derived
IN>1 Function:
 Disabled
 DT
 IEC S Inverse
 IEC V Inverse
 IEC E Inverse
 UK LT Inverse
 UK Rectifier
 IEEE M Inverse
 IEEE V Inverse

IEEE E Inverse
US Inverse
US ST Inverse
IN>1 Direction:
 Non-Directional
 Directional Fwd
IN>1 Current Set:
 0.08 In…32 In
IN>1 T Delay:
 0.04…100 s
IN>1 TMS:
 0.025…1.2
IN>1 Time Dial:
 0.5…15
IN>1 Reset Chr:
 DT/Inverse
IN>1 tReset:
 0…100 s
IN>2 Function:
 Disabled/DT
IN>2 Direction:
 Non-Directional
 Directional Fwd
IN>2 Current:
 0.08 In…32 In
IN>2 T Delay:
 0.04…100 s
IN> Char Angle:
 -180°…+180°
IN> Type Pol Type:
 Zero Sequence
 Neg Sequence
IN> VN Pol Set:
 0.5…25 V
IN> V2pol Set:
 0.5…25 V
IN2> I2pol Set:
 0.002 In…0.8 In

Maximum user curve time delay setting
 1 x e^0.8

Stall detection
Prolonged Start:
 Disabled/Enabled
Start Criteria:
 52 a
 I
 52 a + I
Starting Current:
 1 In…5 In
Prol Start time:
 1…200 s
Stall Rotor Strt:
 Disabled/Enabled
Stall Detection:
 Disabled/Enabled
Stall Setting:
 1 In…5 In
Stall Time:
 0.1…60 s
Reacceleration:
 Disabled/Enabled
Reacc Low Voltage Setting:
 50…120 V
LV Ride Thru:
 Disabled/Enabled
Reac. High V Setting:
 50…120 V
Reac. Time:
 0.1…60 s
Auto Re-Start:
 Disabled/Enabled
Reac. Long Time:
 0.1…60 s
Reac. Shed Time:
 0…5940 s
Motor differential protection

Diff Function:
- Disabled
- Percentage Bias
- High Impedance

Diff Is1: 0.05…0.50 In
Diff k1: 0…20%
Diff Is2: 1…5.0 In
Diff k2: 20…150.00%

Residual O/V NVD

VN>1 Function:
- Disabled
- DT
- IDMT

VN>1 Voltage Set: 0.5…80 V
VN>1 Time Delay: 0.04…100 s
VN>1 TMS: 0.05…100
VN>2 Status: Disabled/DT
VN>2 Voltage Set: 0.5…80 V
VN>2 Time Delay: 0.04…100 s

Limit Nb starts

Hot Start status:
- Disabled/Enabled

Hot start Nb: 1…5

Cold Start status:
- Disabled/Enabled

Cold start Nb: 1…5

Supervising Time: 10…120 min

T Betw St Status:
- Disabled/Enabled

Time betw start: 1…120 min

Inhib Start Time: 1…120 min

Loss of load

P<1 Status:
- Disabled/DT

P<1 Power Set: 1*In …120*In W
P<1 Time Delay: 0.04…100 s
P<2 Status:
- Disabled/DT

P<2 Power Set: 1*In …120*In W
P<2 Time Delay: 0.04…100 s
P< Drop-off Time: 0.05…300 s

Out of step (power factor)

PF< Status Lead:
- Disabled/DT

Power Fact lead: 0.1…0.9
PF< Lead TD: 0.05…100 s
PF< Status Lag: Disabled/DT

Power Fact Lag: 0.1…0.9
PF< Lag TD: 0.05…100 s
PF< Drop-off time: 0.05…300 s

Reverse power

Rev P< Power Set: 1*In …120*In W
Rev P< Time Delay: 0.04…100 s
Rev P< Drop-of Ti: 0.05…300 s

Anti-backspin

VRem Anti-backs: 1…120 V
Anti-backs Delay: 1…7200 s

Field failure

FFail Alm Status: Disabled/Enabled
FFail Alm Angle: 15°…75°
FFail Alm Delay: 0.00…100.0 s
FFail 1 Status: Disabled/Enabled
FFail 1 -Xa1: 0…40.0/InΩ
FFail 1 Xb1: 25…325.0/InΩ
FFail 1 Time Delay: 0…100 s
FFail 1 DO Timer: 0…100 s
FFail 2 as FFail1

Volt protection

Undervoltage

V<1 Measurement Mode:
- Phase-Phase/Any Phase

V<1 Function:
- Disabled
- DT
- IDMT

V<1 Voltage Set: 15…120 V
V<1 Time Delay: 0.04…600 s
V<1 TMS: 0.05…100
V<2 Status: Disabled/DT
V<2 Voltage Set: 15…120 V
V<2 Time Delay: 0.04…600 s

Inhib During St: Disabled/DT

Overvoltage

V>1 Measurement Mode:
- Phase-Phase/Any Phase

V>1 Status: Disabled/DT
V>1 Voltage Set: 50…200 V
V>1 Time Delay: 0.04…600 s
V>2 Status: Disabled/DT
V>2 Voltage Set: 50…200 V
V>2 Time Delay: 0.04…600 s

NPS Overvoltage

V2>1 Status: Enabled/Disabled
V2>1 Voltage Set: 1 to 110 V
V2>1 Time Delay: 0.04 to 100 s
V2>2 Status: Enabled/Disabled
V2>2 Voltage Set: 1 to 110 V
V2>2 Time Delay: 0.04 to 100 s

Underfrequency

F<1 Status: Disabled/DT
F<1 Setting: 45…65 Hz
F<1 Time Delay: 0.1…100 s
F<2 Status: Disabled/DT
F<2 Setting: 45…65 Hz
F<2 Time Delay: 0.1…100 s

RTD protection

Select RTD:
- Bit 0 - Select RTD 1
- Bit 1 - Select RTD 2
- Bit 2 - Select RTD 3
- Bit 3 - Select RTD 4
MiCOM P40 Agile P241, P242, P243

Bit 4 - Select RTD 5
Bit 5 - Select RTD 6
Bit 6 - Select RTD 7
Bit 7 - Select RTD 8
Bit 8 - Select RTD 9
Bit 9 - Select RTD 10

Binary function link string, selecting which RTDs (1 - 10) are enabled.
RTD 1 Alarm Set: 0°C…200°C
RTD 1 Alarm Dly: 0s…100s
RTD 1 Trip Set: 0°C…200°C
RTD 1 Trip Dly: 0s…100s
RTD2/3/4/5/6/7/8/9/10 as RTD1
Ext. Temp. Influence: Disabled/DT
Ext. Temp. RTD: 1…10
Ext. RTD Back-up: 1…10
Type RTD:
 PT100
 Ni100
 Ni120
RTD Unit:
 Degree Celsius
 Fahrenheit

CB fail
CB Fail 1 Status: Disabled/Enabled
CB Fail 1 Timer: 0.00…10.00 s
CB Fail 2 Status: Disabled/Enabled
CB Fail 2 Timer: 0.00…10.00 s
CBF Non I Reset: l< Only, CB Open & I<, Prot
 Reset & I<
CBF Ext Reset: l< Only, CB Open & I<, Prot
 Reset & I<
l< Current Set: 0.02…3.200 I

Supervisory functions

Voltage transformer supervision
(fuse failure)

Accuracy
Fast block operation: <25 ms
Fast block reset: <30 ms
Time delay: Setting ±2% or 20 ms whichever is greater

Current transformer supervision

Accuracy
IN > Pick-up: Setting ±5%
VN < Pick-up: Setting ±5%
IN > Drop-off: 0.9 x Setting ±5%
VN < Drop-off: (1.05 x Setting) ±5% or 1 V
 whichever is greater
CTS block operation: < 1 cycle
CTS reset: < 35 ms

Input labels
Opto Input 1…16: Opto 1…Opto 16

User defined text string to describe the function of the particular opto input.

Output labels
Relay 1…16: Relay 1…Relay 16

User defined text string to describe the function of the particular relay output contact.

RTD labels
RTD 1-10: RTD1…RTD10

User defined text string to describe the function of the particular RTD.

CLIO labels
CLIO Input 1…16:
 Analog Input 1…Analog Input 16

User defined text string to describe the function of the particular analog input.

Analogue Input (current loop input)
CLIO Inputs
Range 1:
 Disabled
 0 - 1 mA
 0 - 10 mA
 0 - 20 mA
 4 - 20 mA
Unit 1: Unit Range
 None -32.5 k...50 k
 A 0...100 k
 V 0...20 k
 Hz 0...100
 W -1.41 G...1.41 G
 Var -1.41 G...1.41 G
 VA 0...1.41 G
 °C -40...400
 F -40...752
 % 0...150
 s 0...300
Minimum 1: As above for unit range
Maximum 1: As above for unit range
Function 1: Disabled/Enabled
Alarm Set 1: As above for unit range
Alarm Delay 1: 0…300 s
Trip Set 1: As above for unit range
Trip Delay 1: 0…300 s
Drop-off Time: 0.1…300
CLI2/3/4 as CLI1

Analogue output (current loop output)
CLIO Outputs
Range 1:
 0 - 1 mA
 0 - 10 mA
 0 - 20 mA
 4 - 20 mA
ANALOG OUTPUT 1: As shown below*
Minimum 1: Range, step size and unit corresponds to the selected parameter
Maximum 1: Same as Minimum 1
ANALOG OUTPUT2/3/4 as ANALOG OUTPUT1

ANALOG Output Parameters

Current Magnitude:
- IA Magnitude
- IB Magnitude
- IC Magnitude
- IN Measured Mag
 0.00…100 kA

Phase Currents:
- IA RMS
- IB RMS
- IC RMS
- In RMS
 0.00…100 kA

P-N Voltage Magnitude:
- VAN Magnitude
- VBN Magnitude
- VCN Magnitude
 0.0…20 kV

RMS Phase P-N Voltages:
- VAN RMS
- VBN RMS
- VCN RMS
 0.0…20 kV

P-P Voltage Magnitude:
- VAB Magnitude
- VBC Magnitude
- VCA Magnitude
 0.0…20 kV

RMS Phase P-P Voltages:
- VAB RMS
- VBC RMS
- VCA RMS
 0.0…20 kV

Frequency: 0.00…100.0 Hz
3 Phase Watts: 30MW…30MW
3 Phase Vars: 30MVar…30 MVar
3 Phase VA: 30MVA…30 MVA
3Ph Power Factor: -1…1
RTD 1-10: -40° C…400.0° C
Number of Hottest RTD: 1..10
Thermal State: 0-150
Time to Thermal Trip: 0…300 s
Time to Next Start: 0…300 s

Plant supervision

CB state monitoring control and condition monitoring

Accuracy
Timers: ±2% or 20 ms whichever is greater
Broken current accuracy: ±5%

Programmable scheme logic

Accuracy
Output conditioner timer: Setting ±2% or 50 ms whichever is greater
Dwell conditioner timer: Setting ±2% or 50 ms whichever is greater
Pulse conditioner timer: Setting ±2% or 50 ms whichever is greater

IEC 61850 Ethernet data

100 Base FX Interface

Transmitter optical characteristics
(TA = 0°C to 70°C, VCC = 4.75 V to 5.25 V)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Optical Power</td>
<td>PO</td>
<td>-19</td>
<td>-16.8</td>
<td>-14 dBm avg.</td>
</tr>
<tr>
<td>BOL</td>
<td>-20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EOL</td>
<td>-14</td>
<td></td>
<td></td>
<td>dBm avg.</td>
</tr>
<tr>
<td>VAN Magnitude</td>
<td>62.5</td>
<td>0.275</td>
<td>0.5</td>
<td>µm, Fiber EOL</td>
</tr>
<tr>
<td>PIN Min. at Window Edge</td>
<td></td>
<td>-33.5</td>
<td>-31</td>
<td>dBm avg.</td>
</tr>
<tr>
<td>VBN Magnitude</td>
<td>50/125 µm, NA = 0.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIN Min. at Eye Center</td>
<td></td>
<td>-34.5</td>
<td>-31.8</td>
<td>dBm avg.</td>
</tr>
<tr>
<td>VCN Magnitude</td>
<td></td>
<td>-22.5</td>
<td>-20.3</td>
<td></td>
</tr>
<tr>
<td>PIN Max. at Logic "0" State</td>
<td></td>
<td>-23.5</td>
<td>-20.3</td>
<td>dBm avg.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-45</td>
<td>dBm avg.</td>
</tr>
</tbody>
</table>

BOL - Beginning of life
EOL - End of life
Receiver optical characteristics
(TA = 0°C to 70°C, VCC = 4.75 V to 5.25 V)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Optical Power</td>
<td>PIN Min.</td>
<td>-33.5</td>
<td>-31</td>
<td>dBm avg.</td>
</tr>
<tr>
<td>Minimum at Window Edge</td>
<td>(W)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Optical Power</td>
<td>PIN Min.</td>
<td>-34.5</td>
<td>-31.8</td>
<td>dBm avg.</td>
</tr>
<tr>
<td>Minimum at Eye Center</td>
<td>(C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Optical Power</td>
<td>PIN Max.</td>
<td>-14</td>
<td>-11.8</td>
<td>dBm avg.</td>
</tr>
<tr>
<td>Maximum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The 10BaseFL connection will no longer be supported as IEC 61850 does not specify this interface
MiCOM P40 Agile P241, P242, P243

Measurements list

Measurements 1

I\(\phi\) Magnitude
I\(\phi\) Phase Angle
 - Per phase (\(\phi = A, B, C\)) current measurements
IN Derived Mag
IN Derived Angle
ISEF Magnitude
ISEF Angle
I1 magnitude
I2 magnitude
I0 Magnitude
I\(\phi\) RMS
 - Per phase (\(\phi = A, B, C\)) RMS current measurements
V\(\phi\)-\(\phi\) Magnitude
V\(\phi\)-\(\phi\) Phase Angle
V\(\phi\) Magnitude
V\(\phi\) Phase Angle
 - All phase-phase and phase-neutral voltages (\(\phi = A, B, C, N\)).
Vr Antibacks Mag
V1 Magnitude
V2 Magnitude
V\(\phi\) RMS
V\(\phi\)-\(\phi\) RMS
 - All phase-phase and phase-neutral voltages (\(\phi = A, B, C, AB, BC, CA\)).
Frequency
Ratio I2/I1
IA2 Magnitude
IA2 Angle
IB2 Magnitude
IB2 Angle
IC2 Magnitude
IC2 Angle
IA Differential
IB Differential
IC Differential
IA Bias
IB Bias
IC Bias

Measurements 2

3 Phase Watts
3 Phase VArs
3 Phase VA
Zero Seq Power
3Ph Power Factor
3Ph WHours Fwd
3Ph WHours Rev
3Ph VARhours Fwd
3Ph VARhours Rev
Reset Energies:
 - No/Yes
3Ph W Fix Demand
3Ph VArS Fix Dem
3Ph W Peak Dem
3Ph VAR Peak Dem
Reset Demand:
 - No/Yes
3Ph I Maximum

Measurements 3 (model specific)

3Ph V Maximum
Reset Maximum I/V:
 - No/Yes

Measurements 4 (model specific)

Nb Control trips
Nb Thermal Trip
Nb Trip I> 1
Nb Trip I> 2
Nb Trip I> 3
Nb Trip I> 4
Nb Trip V2>1
Nb Trip V2>2
Nb Trip V<1
Nb Trip V<2
Nb Trip F<1
Nb Trip F<2
Nb F.Fail1 Trip
Nb F.Fail2 Trip
Nb Trip P0>
Technical Data

(TD) 2-24

MiCOM P40 Agile P241, P242, P243

Nb Trip PF< Lag
Nb Trip Rev P
Nb Trip V> 1
Nb Trip V> 2
Nb Trip VN>1
Nb Trip VN>2
Nb Prolong St
Nb Lock Rot-sta
Nb Lock-Rot-run
Nb Trip RTD#1… Nb Trip RTD#10
Nb Trip Diff
Nb A Input 1Trip
Nb A Input 2Trip
Nb A Input 3Trip
Nb A Input 4Trip
Nb FF ail1 Trip
Nb FF ail2 Trip
Nb Trip I>3
Nb Trip I>4
Reset Trip Stat: No/Yes

CB condition
CB Operations
Total I< Broken

Cumulative breaker interruption duty on a per phase basis (φ = A, B, C).

CB Operate Time
Reset CB Data: No/Yes
GETTING STARTED
MiCOM P40 Agile P241, P242, P243
CONTENTS

1 GETTING STARTED	7
1.1 User interfaces and menu structure | 7
1.2 Introduction to the relay | 7
1.2.1 Front panel | 7
1.2.1.1 LED indications | 9
1.2.2 Relay rear panel | 10
1.3 Relay connection and power-up | 11
1.4 Introduction to the user interfaces and settings options | 12
1.5 Menu structure | 12
1.5.1 Protection settings | 13
1.5.2 Disturbance recorder settings | 13
1.5.3 Control and support settings | 13
1.6 Password protection | 14
1.7 Relay configuration | 15
1.8 Front panel user interface (keypad and LCD) | 15
1.8.1 Default display and menu time-out | 16
1.8.2 Menu navigation and setting browsing | 16
1.8.3 Hotkey menu navigation | 16
1.8.3.1 Setting group selection | 17
1.8.3.2 Control inputs – user assignable functions | 17
1.8.3.3 CB control | 17
1.8.4 Password entry | 17
1.8.5 Reading and clearing of alarm messages and fault records | 18
1.8.6 Setting changes | 18
1.9 Front communication port user interface | 19
1.9.1 Front courier port | 20
1.10 MiCOM S1 Studio relay communications basics | 21
1.10.1 PC requirements | 21
1.10.2 Connecting to the relay using MiCOM S1 Studio | 21
1.10.3 Off-line use of MiCOM S1 Studio | 22
1.11 The User Programmable Curve Tool (UPCT) | 22
1.11.1 Supporting software versions | 22
1.11.2 Application advantages of user-programmable curves | 22
1.11.3 The main features and overview of the User Configurable Curve Tool: | 22

2 CONFIGURING THE ETHERNET INTERFACE	24
2.1 Configuring the Ethernet Interface for IEC 61850 | 24
2.2 Configuring the Ethernet Interface for DNP3.0 | 25

3 CONFIGURING THE REDUNDANT ETHERNET BOARD | 27
3.1 Configuring the IED IP address
3.2 Configuring the Board IP Address
3.3 RSTP Configuration

4 CONFIGURING THE DATA PROTOCOLS
4.1 Courier Configuration
4.2 DNP3.0 configuration
4.3 IEC 60870-5-103 Configuration
4.4 IEC 61850 Configuration
4.5 DNP3.0 Configuration Using MiCOM S1 Agile
4.6 IEC 61850 Configuration
4.6.1 IEC 61850 Configuration Banks
4.6.2 IEC 61850 Network Connectivity

5 PRP/HSR CONFIGURATOR
5.1 Connecting the IED to a PC
5.2 Installing the Configurator
5.3 Starting the Configurator
5.4 PRP/HSR device identification
5.5 Selecting the device mode
5.6 PRP/HSR IP Address Configuration
5.7 SNTP IP Address Configuration
5.8 Check for connected equipment
5.9 PRP Configuration
5.10 HSR Configuration
5.11 Filtering Database
5.12 End of session

FIGURES

Figure 1: Relay front view (P241)
Figure 2: Relay front view (P242/3)
Figure 3: Relay rear view
Figure 4: Menu structure
Figure 5: Front panel user interface
Figure 6: Hotkey menu navigation
Figure 7: Front port connection
Figure 8: PC - relay signal connection
Figure 9: IED and REB IP address configuration
Figure 10: REB address switches (SW2)
Figure 11: Connection using (a) an Ethernet switch and (b) a Media Cover
TABLES

Table 1: P241 default mappings for programmable LEDs
Table 2: P242/3 default mappings for programmable LEDs
Table 3: Auxiliary voltage options
Table 4: Information and controls accessed from available interfaces
Table 5: Access levels
Table 6: Front port pin designation
Table 7: DTE devices serial port pin designation
Table 8: Front port fixed communication settings
1 GETTING STARTED

1.1 User interfaces and menu structure

The settings and functions of the MiCOM protection relay are available from the front panel keypad and LCD, and through the front and rear communication ports.

1.2 Introduction to the relay

1.2.1 Front panel

Figure 1 shows the front panel of the relay; the hinged covers at the top and bottom of the front panel shown open. An optional transparent front cover physically protects the front panel. With the cover in place, access to the user interface is read-only. Removing the cover allows access to the relay settings and does not compromise the protection of the product from the environment.

When editing relay settings, full access to the relay keypad is needed. To remove the front panel:

1. Open the top and bottom covers, then unclip and remove the transparent cover. If the lower cover is secured with a wire seal, remove the seal.

2. Using the side flanges of the transparent cover, pull the bottom edge away from the relay front panel until it is clear of the seal tab.

3. Move the cover vertically down to release the two fixing lugs from their recesses in the front panel.

Figure 1: Relay front view (P241)
Figure 2: Relay front view (P242/3)

The front panel of the relay includes the following, as indicated in Figure 1 and Figure 2.

- A 16-character by 3-line alphanumeric liquid crystal display (LCD)
- A 19-key (P242/3), 9 key (P241) keypad comprising 4 arrow keys (↑, ↓, ←, and →), an enter key (Enter), a clear key (Clear), a read key (Read), 2 hot keys (Hot Keys) and 10 (1 - 0) programmable function keys (P242/3)
- Function key functionality (P242/3 only):
 - The relay front panel features control pushbutton switches with programmable LEDs that facilitate local control. Factory default settings associate specific relay functions with these 10 direct-action pushbuttons and LEDs e.g. Enable/Disable the auto-recloser function. Using programmable scheme logic, the user can readily change the default direct-action pushbutton functions and LED indications to fit specific control and operational needs.
- Hotkey functionality:
 - SCROLL
 - Starts scrolling through the various default displays.
 - STOP
 - Stops scrolling the default display.
 - For control of setting groups, control inputs and circuit breaker operation
- 22 LEDs (P242/3), 12 LEDs (P241); 4 fixed function LEDs, 8 tri-colour (P242/3), 8 red (P241) programmable function LEDs on the left hand side of the front panel and 10 tri-color programmable function LEDs on the right hand side associated with the function keys (P242/3)
- Under the top hinged cover:
 - The relay serial number, and the relay’s current and voltage rating information
- Under the bottom hinged cover:
 - Battery compartment to hold the 1/2 AA size battery which is used for memory back-up for the real time clock, event, fault and disturbance records
 - A 9-pin female D-type front port for communication with a PC locally to the relay (up to 15 m distance) via an EIA(RS)232 serial data connection
 - A 25-pin female D-type port providing internal signal monitoring and high speed local downloading of software and language text via a parallel data connection
1.2.1.1 LED indications

Fixed Function

The four fixed-function LEDs on the left-hand side of the front panel are used to indicate the following conditions:

- **Trip (Red)** indicates that the relay has issued a trip signal. It is reset when the associated fault record is cleared from the front display.

- **Alarm (Yellow)** flashes when the relay registers an alarm. This may be triggered by a fault, event or maintenance record. The LED flashes until the alarms have been accepted (read), then changes to constantly ON. When the alarms are cleared, the LED switches off.

- **Out of service (Yellow)** is ON when the relay’s protection is unavailable.

- **Healthy (Green)** is ON when the relay is in correct working order, and should be ON at all times. It goes OFF if the relay’s self-tests show there is an error in the relay’s hardware or software. The state of the healthy LED is reflected by the watchdog contact at the back of the relay.

To adjust the LCD contrast from the **CONFIGURATION** column, select **LCD Contrast**. This is only necessary in very hot or cold ambient temperatures.

Programmable LEDs

All the programmable LEDs are tri-color in the P242/3 and can be programmed to indicate RED, YELLOW or GREEN depending on the requirements. All the programmable LEDs are RED in the P241. The 8 programmable LEDs are suitable for programming alarm indications and the default indications and functions are indicated in the table below. The 10 programmable LEDs physically associated with the function keys (P242/3), are used to indicate the status of the associated pushbutton’s function and the default indications are shown below:

The default mappings for each of the programmable LEDs are as shown in the following table for the P241 which have red LEDs:

<table>
<thead>
<tr>
<th>LED number</th>
<th>LED input connection/text</th>
<th>Latched</th>
<th>P241 LED function indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LED 1 Red</td>
<td>No</td>
<td>Opto Input 1 (CB Closed, 52a)</td>
</tr>
<tr>
<td>2</td>
<td>LED 2 Red</td>
<td>No</td>
<td>Opto Input 2 (CB Open, 52b)</td>
</tr>
<tr>
<td>3</td>
<td>LED 3 Red</td>
<td>No</td>
<td>Opto Input 3 (Speed Switch)</td>
</tr>
<tr>
<td>4</td>
<td>LED 4 Red</td>
<td>No</td>
<td>Start in Progress</td>
</tr>
<tr>
<td>5</td>
<td>LED 5 Red</td>
<td>No</td>
<td>Re-acceleration in Progress</td>
</tr>
<tr>
<td>6</td>
<td>LED 6 Red</td>
<td>No</td>
<td>Start Successful</td>
</tr>
<tr>
<td>7</td>
<td>LED 7 Red</td>
<td>No</td>
<td>Re-acceleration Low Voltage Detected</td>
</tr>
<tr>
<td>8</td>
<td>LED 8 Red</td>
<td>No</td>
<td>Start Protection (Number of hot/cold starts, time between starts), Thermal Trip, 3Ph Volt Alarm</td>
</tr>
</tbody>
</table>

Table 1: P241 default mappings for programmable LEDs

The default mappings for each of the programmable LEDs are as shown in the following table for the P242/3 which has tri-color LEDS (red/yellow/green):

<table>
<thead>
<tr>
<th>LED number</th>
<th>LED input connection/text</th>
<th>Latched</th>
<th>P242/3 LED function indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LED 1 Green</td>
<td>No</td>
<td>Opto Input 1 (CB Closed, 52a)</td>
</tr>
<tr>
<td>1</td>
<td>LED 1 Red</td>
<td>No</td>
<td>Opto Input 2 (CB Open, 52b)</td>
</tr>
<tr>
<td>2</td>
<td>LED 2 Not Used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>LED 3 Yellow</td>
<td>No</td>
<td>Opto Input 3 (Speed Switch)</td>
</tr>
<tr>
<td>4</td>
<td>LED 4 Yellow</td>
<td>No</td>
<td>Start in Progress</td>
</tr>
<tr>
<td>LED number</td>
<td>LED input connection/text</td>
<td>Latched</td>
<td>P242/3 LED function indication</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------</td>
<td>---------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>5</td>
<td>LED 5 Yellow</td>
<td>No</td>
<td>Re-acceleration in Progress</td>
</tr>
<tr>
<td>6</td>
<td>LED 6 Green</td>
<td>No</td>
<td>Start Successful</td>
</tr>
<tr>
<td>7</td>
<td>LED 7 Yellow</td>
<td>No</td>
<td>Re-acceleration Low Voltage Detected</td>
</tr>
<tr>
<td>8</td>
<td>LED 8 Red</td>
<td>No</td>
<td>Start Protection (Number of hot/cold starts, time between starts), Thermal Trip, 3Ph Volt Alarm</td>
</tr>
<tr>
<td>9</td>
<td>FnKey LED1 (Yellow)</td>
<td>N/A</td>
<td>Emergency Restart</td>
</tr>
<tr>
<td>10</td>
<td>FnKey LED2 (Yellow)</td>
<td>N/A</td>
<td>Trip</td>
</tr>
<tr>
<td>11</td>
<td>FnKey LED3 (Yellow)</td>
<td>N/A</td>
<td>Close</td>
</tr>
<tr>
<td>12</td>
<td>FnKey LED4</td>
<td>N/A</td>
<td>Not Used</td>
</tr>
<tr>
<td>13</td>
<td>FnKey LED5 (Red)</td>
<td>N/A</td>
<td>Setting Group</td>
</tr>
<tr>
<td>14</td>
<td>FnKey LED6</td>
<td>N/A</td>
<td>Not Used</td>
</tr>
<tr>
<td>15</td>
<td>FnKey LED7</td>
<td>N/A</td>
<td>Not Used</td>
</tr>
<tr>
<td>16</td>
<td>FnKey LED8 (Yellow)</td>
<td>N/A</td>
<td>Reset Thermal</td>
</tr>
<tr>
<td>17</td>
<td>FnKey LED9 (Yellow)</td>
<td>N/A</td>
<td>Reset Latches</td>
</tr>
<tr>
<td>18</td>
<td>FnKey LED10 (Yellow)</td>
<td>N/A</td>
<td>Disturbance Recorder Trigger</td>
</tr>
</tbody>
</table>

Table 2: P242/3 default mappings for programmable LEDs

1.2.2 Relay rear panel

Figure 3 shows the rear panel of the relay. All current and voltage signals, digital logic input signals and output contacts are connected at the rear of the relay. Also connected at the rear is the twisted pair wiring for the rear EIA(RS)485 communication port, the IRIG-B time synchronizing input and the optical fiber rear communication port which are both optional.
1.3 Relay connection and power-up

Before powering up the relay, make sure the relay power supply voltage and nominal ac signal magnitudes are appropriate for your application. The relay serial number and its current, voltage and power rating are under the top hinged cover. The relay is available in the auxiliary voltage versions specified in Table 3:

<table>
<thead>
<tr>
<th>Nominal ranges</th>
<th>Operative dc range</th>
<th>Operative ac range</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 - 48 V dc</td>
<td>19 to 65 V</td>
<td>-</td>
</tr>
<tr>
<td>48 - 110 V dc</td>
<td>(40 - 100 V ac rms)**</td>
<td>37 to 150 V</td>
</tr>
<tr>
<td>110 - 250 V dc</td>
<td>(100 - 240 V ac rms)**</td>
<td>87 to 300 V</td>
</tr>
</tbody>
</table>

Table 3: Auxiliary voltage options

** rated for ac or dc operation

Note: The label does not specify the logic input ratings.

The P24x relay has universal opto isolated logic inputs. These can be programmed for the nominal battery voltage of the circuit where they are used. See Universal Opto input in the Firmware chapter for more information on logic input specifications.

Note: The opto inputs have a maximum input voltage rating of 300 V dc at any setting.

Once the ratings have been verified for the application, connect external power according to the power requirements specified on the label. See the external connection diagrams in the Installation chapter for complete installation details, ensuring the correct polarities are observed for the dc supply.
1.4 Introduction to the user interfaces and settings options

The relay has the following user interfaces:

- The front panel using the LCD and keypad
- The front port which supports Courier communication
- The rear port which supports one protocol of either Courier, MODBUS or IEC 60870-5-103. The protocol for the rear port must be specified when the relay is ordered
- A second rear port (option) which supports Courier communication

The measurement information and relay settings that can be accessed from the four interfaces are summarized in Table 4.

<table>
<thead>
<tr>
<th>Display & modification of all settings</th>
<th>Keypad/LCD</th>
<th>Courier</th>
<th>MODBUS</th>
<th>IEC 870-5-103</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital I/O signal status</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Display/extraction of measurements</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Display/extraction of fault records</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Extraction of disturbance records</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Programmable scheme logic settings</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Reset of fault & alarm records</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Clear event & fault records</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Time synchronization</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Control commands</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

Table 4: Information and controls accessed from available interfaces

1.5 Menu structure

The relay’s menu is arranged in a table. Each setting in the menu is known as a cell, and each cell in the menu may be accessed using a row and column address. The settings are arranged so that each column contains related settings, for example all the disturbance recorder settings are in the same column. As shown in Figure 4, the top row of each column contains the heading that describes the settings contained within that column. You can only move between the columns of the menu at the column heading level.
The settings in the menu are in three categories: protection settings, disturbance recorder settings, or control and support (C&S) settings.

New Control and support settings are stored and used by the relay immediately after they are entered. New Protection settings or disturbance recorder settings are stored in a temporary 'scratchpad'. Once the new settings have been confirmed, the relay activates all the new settings together. This provides extra security so that several setting changes, made in a group of protection, all take effect at the same time.

1.5.1 Protection settings
The protection settings include the following items:

- Protection element settings
- Scheme logic settings

There are two groups of protection settings, with each group containing the same setting cells. One group of protection settings is selected as the active group, and is used by the protection elements.

1.5.2 Disturbance recorder settings
The disturbance recorder settings include the record duration and trigger position, selection of analog and digital signals to record, and the signal sources that trigger the recording.

1.5.3 Control and support settings
The control and support settings include:

- Relay configuration settings
- Open/close circuit breaker (may vary according to relay type/model)
- CT & VT ratio settings
- Reset LEDs
- Active protection setting group
- Password & language settings
- Circuit breaker control & monitoring settings (may vary according to relay type/model)
- Communications settings
• Measurement settings
• Event & fault record settings
• User interface settings
• Commissioning settings

1.6 Password protection
The menu structure contains three levels of access. The level of access that is enabled determines which of the relay’s settings can be changed and is controlled by entry of two different passwords. The levels of access are summarized in Table 5.

<table>
<thead>
<tr>
<th>Set the "Password Control" cell to</th>
<th>The "Access Level" cell displays</th>
<th>Operations</th>
<th>Type of password required</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Read</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Access to all settings, alarms, event records and fault records</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Execute</td>
<td>Level 1 Password</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control Commands, e.g. circuit breaker open/close. Reset of fault and alarm conditions. Reset LEDs. Clearing of event and fault records</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edit</td>
<td>Level 2 Password</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All other settings</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Read</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Access to all settings, alarms, event records and fault records</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Execute</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control Commands, e.g. circuit breaker open/close. Reset of fault and alarm conditions. Reset LEDs. Clearing of event and fault records</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edit</td>
<td>Level 2 Password</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All other settings</td>
<td></td>
</tr>
<tr>
<td>2 (Default)</td>
<td>2 (Default)</td>
<td>Read</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Access to all settings, alarms, event records and fault records</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Execute</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control Commands, e.g. circuit breaker open/close. Reset of fault and alarm conditions. Reset LEDs. Clearing of event and fault records</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edit</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All other settings</td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Access levels
Each of the two passwords are 4 characters of upper case text. The factory default for both passwords is AAAA. Each password is user-changeable once it has been correctly entered. To enter a password, either use the prompt when a setting change is attempted, or from the menu select System data > Password. The access level is independently enabled for each interface, therefore if level 2 access is enabled for the rear communication port, the front panel access will remain at level 0 unless the relevant password is entered at the front panel.

The access level, enabled by the password, times out independently for each interface after a period of inactivity and revert to the default level. If the passwords are contact General Electric with the relay’s serial number and an emergency password can be supplied. To find the current level of access enabled for an interface, select System data > Access level. The access level for the front panel User Interface (UI) is one of the default display options.
The relay is supplied with a default access level of 2, so no password is needed to change any of the relay settings. It is also possible to set the default menu access level to either level 0 or level 1, preventing write access to the relay settings without the correct password. The default menu access level is set in System data > Password control.

Note: This setting can only be changed when level 2 access is enabled.

1.7 Relay configuration

The relay is a multi-function device that supports many different protection, control and communication features. To simplify the setting of the relay, there is a configuration settings column which can be used to enable or disable many of the functions of the relay. The settings associated with any function that is disabled are not shown in the menu. To disable a function, change the relevant cell in the Configuration column from Enabled to Disabled.

The configuration column controls which of the four protection settings groups is selected as active through the Active settings cell. A protection setting group can also be disabled in the configuration column, provided it is not the present active group. Similarly, a disabled setting group cannot be set as the active group.

1.8 Front panel user interface (keypad and LCD)

When the keypad is exposed it provides full access to the menu options of the relay, with the information displayed on the LCD.

The $\mathbb{2}$, $\mathbb{4}$, $\mathbb{6}$ and $\mathbb{8}$ keys are used for menu navigation and setting value changes. These keys have an auto-repeat function if any of them are held continually. This can speed up both setting value changes and menu navigation; the longer the key is held pressed, the faster the rate of change or movement.

Figure 5: Front panel user interface
1.8.1 Default display and menu time-out

The front panel menu has a default display. To change it, select **Measure’t. setup > default display** and the following items can be selected:

- Date and time
- Relay description (user defined)
- Plant reference (user defined)
- System frequency
- 3 phase voltage
- 3 phase and neutral current
- Power
- Thermal State

From the default display you can view the other default display options using the ‹ and › keys. If there is no keypad activity for 15 minutes, the default display reverts to the previous setting and the LCD backlight switches off. Any setting changes that have not been confirmed are lost and the original setting values are maintained.

Whenever there is an uncleared alarm (such as fault record, protection alarm, control alarm etc.) the default display will be replaced by the following display:

![Alarms/Faults Present](image)

Enter the menu structure of the relay from the default display, even if the display shows **Alarms/Faults present** message.

1.8.2 Menu navigation and setting browsing

Use the four arrow keys to browse the menu, following the structure shown in Figure 4. Starting at the default display, press the ‹ key to show the first column heading.

1. Use the ‹ and › keys to select the required column heading.
2. Use the ‹ and › keys to view the setting data in the column
3. To return to the column header, either hold the ‹ key down or press the clear key ‹ once. It is only possible to move across columns at the column heading level.
4. To return to the default display, press the ‹ key or the ‹ key ‹ from any of the column headings. If you use the auto-repeat function of the ‹ key, you cannot go straight to the default display from one of the column cells because the auto-repeat stops at the column heading.
5. Press the ‹ key to go to the default display.

1.8.3 Hotkey menu navigation

1. To access the hotkey menu from the default display, press the key directly below the **HOTKEY** text on the LCD.
2. Once in the hotkey menu, use the ‹ and › keys to scroll between the available options, then use the hotkeys to control the function currently displayed.
3. If neither the ‹ and › keys are pressed within 20 seconds of entering a hotkey sub menu, the relay will revert to the default display.
4. Press the clear key ‹ to return to the default menu from any page of the hotkey menu.
5. The layout of a typical page of the hotkey menu is described below:
 - The top line shows the contents of the previous and next cells for easy menu navigation
 - The center line shows the function
 - The bottom line shows the options assigned to the direct access keys
The functions available in the hotkey menu are listed below:

1.8.3.1 Setting group selection
To select the setting group, scroll through the available setting groups using NXT GRP, or press SELECT to select the setting group that is currently displayed.

When you press SELECT, the current setting group appears for 2 seconds, then the NXT GRP or SELECT options appear again.

To exit the sub menu, use the left and right arrow keys. For more information see Changing setting groups section in the Operation chapter (P24x/EN OP).

1.8.3.2 Control inputs – user assignable functions
The control inputs are user-assignable functions or USR ASS
Use the CTRL I/P CONFIG column to configure the number of USR ASS shown in the hotkey menu. To SET/RESET the chosen inputs, use the HOTKEY menu.

For more information refer to the Control Inputs section in the Operation chapter (P24x/EN OP).

1.8.3.3 CB control
The CB control functionality varies from one Px40 relay to another (e.g. CB control via the hotkey menu is not included in the P241/2/3).

Figure 6: Hotkey menu navigation

1.8.4 Password entry
When entry of a password is required the following prompt will appear:

Enter password
**** Level 1

Note: The password required to edit the setting is the prompt as shown above.
A flashing cursor will indicate which character field of the password may be changed. Press the \(\text{ } \) and \(\text{ } \) keys to vary each character between A and Z. To move between the character fields of the password, use the \(\text{ } \) and \(\text{ } \) keys. The password is confirmed by pressing the enter key \(\text{ } \). The display will revert to 'Enter Password' if an incorrect password is entered. At this point a message will be displayed indicating whether a correct password has been entered and if so what level of access has been unlocked. If this level is sufficient to edit the selected setting then the display will return to the setting page to allow the edit to continue. If the correct level of password has not been entered then the password prompt page will be returned to. To escape from this prompt press the clear key \(\text{ } \). Alternatively, the password can be entered using the 'Password' cell of the 'System data' column.

For the front panel user interface the password protected access will revert to the default access level after a keypad inactivity time-out of 15 minutes. It is possible to manually reset the password protection to the default level by moving to the Password menu cell in the System data column and pressing the clear key \(\text{ } \) instead of entering a password.

1.8.5 Reading and clearing of alarm messages and fault records

The presence of one or more alarm messages will be indicated by the default display and by the yellow alarm LED flashing. The alarm messages can either be self-resetting or latched, in which case they must be cleared manually. To view the alarm messages press the read key \(\text{ } \). When all alarms have been viewed, but not cleared, the alarm LED will change from flashing to constant illumination and the latest fault record will be displayed (if there is one). To scroll through the pages of this use the \(\text{ } \) key. When all pages of the fault record have been viewed, the following prompt will appear:

```
Press clear to
reset alarms
```

To clear all alarm messages press \(\text{ } \) to return to the alarms/faults present display and leave the alarms uncleared, press \(\text{ } \). Depending on the password configuration settings, it may be necessary to enter a password before the alarm messages can be cleared (see section on password entry). When the alarms have been cleared the yellow alarm LED will extinguish, as will the red trip LED if it was illuminated following a trip.

Alternatively it is possible to accelerate the procedure, once the alarm viewer has been entered using the \(\text{ } \) key, the \(\text{ } \) key can be pressed, and this will move the display straight to the fault record. Pressing \(\text{ } \) again will move straight to the alarm reset prompt where pressing \(\text{ } \) once more will clear all alarms.

1.8.6 Setting changes

To change the value of a setting, first navigate the menu to display the relevant cell. To change the cell value press the enter key \(\text{ } \) which will bring up a flashing cursor on the LCD to indicate that the value can be changed. This will only happen if the appropriate password has been entered, otherwise the prompt to enter a password will appear. The setting value can then be changed by pressing the \(\text{ } \) or \(\text{ } \) keys. If the setting to be changed is a binary value or a text string, the required bit or character to be changed must first be selected using the \(\) and \(\) keys. When the desired new value has been reached it is confirmed as the new setting value by pressing \(\text{ } \). Alternatively, the new value will be discarded either if the clear button \(\text{ } \) is pressed or if the menu time-out occurs.

For protection group settings and disturbance recorder settings, the changes must be confirmed before they are used by the relay. To do this, when all required changes have been entered, return to the column heading level and press the \(\text{ } \) key. Prior to returning to the default display the following prompt will be given:

```
Update settings?
Enter or clear
```
Getting Started

Pressing \(\Box \) will result in the new settings being adopted, pressing \(\square \) will cause the relay to discard the newly entered values. It should be noted that, the setting values will also be discarded if the menu time out occurs before the setting changes have been confirmed. Control and support settings will be updated immediately after they are entered, without the ‘Update settings?’ prompt.

1.9 **Front communication port user interface**

The front communication port is provided by a 9-pin female D-type connector located under the bottom hinged cover. It provides EIA(RS)232 serial data communication and is intended for use with a PC locally to the relay (up to 15 m distance) as shown in Figure 7. This port supports the Courier communication protocol only. Courier is the communication language developed by General Electric to allow communication with its range of protection relays. The front port is particularly designed for use with the relay settings program MiCOM S1 Studio that is a Windows 98, Windows NT4.0, Windows 2000 or Windows XP based software package.

![Figure 7: Front port connection](image)

The relay is a Data Communication Equipment (DCE) device with the following pin connections on the 9-pin front port.

<table>
<thead>
<tr>
<th>Pin no.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Tx Transmit data</td>
</tr>
<tr>
<td>3</td>
<td>Rx Receive data</td>
</tr>
<tr>
<td>5</td>
<td>0V Zero volts common</td>
</tr>
</tbody>
</table>

Table 6: Front port pin designation

None of the other pins are connected in the relay. The relay should be connected to the serial port of a PC, usually called COM1 or COM2. PCs are normally Data Terminal Equipment (DTE) devices which have a serial port pin connection as below (if in doubt check your PC manual):

<table>
<thead>
<tr>
<th>Pin no.</th>
<th>25 way</th>
<th>9 way</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>Rx Receive data</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>Tx Transmit data</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>5</td>
<td>0V Zero volts common</td>
</tr>
</tbody>
</table>

Table 7: DTE devices serial port pin designation
For successful data communication, the Tx pin on the relay must be connected to the Rx pin on the PC, and the Rx pin on the relay must be connected to the Tx pin on the PC, as shown in Figure 7. Therefore, providing that the PC is a DTE with pin connections as given above, a ‘straight through’ serial connector is required, i.e. one that connects pin 2 to pin 2, pin 3 to pin 3, and pin 5 to pin 5.

Note: A common cause of difficulty with serial data communication is connecting Tx to Tx and Rx to Rx. This could happen if a ‘cross-over’ serial connector is used, i.e. one that connects pin 2 to pin 3, and pin 3 to pin 2, or if the PC has the same pin configuration as the relay.

![Diagram of PC and relay signal connection](image)

Figure 8: PC - relay signal connection

Once the physical connection from the relay to the PC is made, the PC’s communication settings must be set to match those of the relay. The relay’s communication settings for the front port are fixed as shown in the table below:

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Courier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baud rate</td>
<td>19,200 bits/s</td>
</tr>
<tr>
<td>Courier address</td>
<td>1</td>
</tr>
<tr>
<td>Message format</td>
<td>11 bit - 1 start bit, 8 data bits, 1 parity bit (even parity), 1 stop bit</td>
</tr>
</tbody>
</table>

Table 8: Front port fixed communication settings

If there is no communication using the front port for 15 minutes, any password access level that has been enabled will be cancelled.

1.9.1 Front courier port

The front EIA(RS)232 9 pin port supports the Courier protocol for one to one communication. It is designed for use during installation and commissioning or maintenance, and is not suitable for permanent connection. Since this interface is not used to link the relay to a substation communication system, the following features of Courier are not used.

- **Automatic Extraction of Event Records:**
 - Courier Status byte does not support the Event flag
 - Send Event/Accept Event commands are not implemented

- **Automatic Extraction of Disturbance Records:**
 - Courier Status byte does not support the Disturbance flag

- **Busy Response Layer:**
 - Courier Status byte does not support the Busy flag, the only response to a request will be the final data

Fixed Address:

1 This port is actually compliant to EIA(RS)574; the 9-pin version of EIA(RS)232, see www.tiaonline.org.
• The address of the front courier port is always 1, the Change Device address command is not supported.

Fixed Baud Rate:
• 19200 bps

Note: Although automatic extraction of event and disturbance records is not supported it is possible to manually access this data via the front port.

1.10 MiCOM S1 Studio relay communications basics
The EIA(RS)232 front communication port is intended for use with the relay settings program MiCOM S1 Studio. This program runs on WindowsTM 2000, XP or Vista, and is the universal MiCOM IED Support Software used for direct access to all stored data in any MiCOM IED.

MiCOM S1 Studio provides full access to:
• MiCOM Px40, Modulex series, K series, L series relays
• MiCOM Mx20 measurements units

1.10.1 PC requirements
To run MiCOM S1 Studio on a PC, the following requirements are advised.
• Minimum
 • 1 GHz processor
 • 256 MB RAM
 • WindowsTM 2000
 • Resolution 800 x 600 x 256 colors
 • 1 GB free hard disk space

Recommended
• 2 GHz processor
• 1 GB RAM
• WindowsTM XP
• Resolution 1024 x 768
• 5 GB free hard disk space

Microsoft WindowsTM Vista
• 2 GHz processor
• 1 GB RAM
• 5 GB free hard disk space
• MiCOM S1 Studio must be started with Administrator rights

1.10.2 Connecting to the relay using MiCOM S1 Studio
This section is intended as a quick start guide to using MiCOM S1 Studio and assumes you have a copy installed on your PC. See the MiCOM S1 Studio program online help for more detailed information.

1. Make sure the EIA(RS)232 serial cable is properly connected between the port on the front panel of the relay and the PC.
2. To start Micom S1 Studio, select Programs > MiCOM S1 Studio > MiCOM S1 Studio.
3. Click the Quick Connect tab and select Create a New System.
4. Check the Path to System file is correct, then enter the name of the system in the Name field. If you need to add a brief description of the system, use the Comment field.
5. Click OK.
Getting Started

MiCOM P40 Agile P241, P242, P243

6. Select the device type.
7. Select the communications port.
8. Once connected, select the language for the settings file, the device name, then click Finish. The configuration is updated.
9. In the Studio Explorer window, select Device > Supervise Device… to control the relay directly.

1.10.3 Off-line use of MiCOM S1 Studio
Micom S1 Studio can also be used as an off-line tool to prepare settings, without access to the relay.

1. If creating a new system, in the Studio Explorer, select create new system. Then right-click the new system and select New substation.
2. Right-click the new substation and select New voltage level.
3. Then right-click the new voltage level and select New bay.
4. Then right-click the new bay and select New device. You can add a device at any level, whether it is a system, substation, voltage or bay.
5. Select a device type from the list, then enter the relay type, such as P445. Click Next.
6. Enter the full model number and click Next.
7. Select the Language and Model, then click Next.
8. Enter a unique device name, then click Finish.
9. Right-click the Settings folder and select New File. A default file 000 is added.
10. Right-click file 000 and select click Open. You can then edit the settings. See the MiCOM S1 Studio program online help for more information.

1.11 The User Programmable Curve Tool (UPCT)
The User Programmable Curve Tool allows the creation of user-defined curves and flexible download and upload of these curves into/from the MiCOM Px4x range of relays. This tool can be used to create user-programmable overcurrent and thermal operating and reset curves. For example, its user-friendly graphical user interface (GUI) allows easy creation and visualization of curves either by inputting a formula or data points.

1.11.1 Supporting software versions
The UPCT is supported by software version 57 onwards for the P24x series of Motor Protection Relays.

1.11.2 Application advantages of user-programmable curves
- Provide specific protection characteristics of customer schemes.
- Match more closely to the withstand characteristics for electrical equipment than standard curves.
- Provide compatibility with older relays and different manufacturers relays for retrofit/refurbishment.
- Data can be exported for protection grading and testing purposes.

1.11.3 The main features and overview of the User Configurable Curve Tool:
- Allows the user to create new configuration curve files or edit existing curve files
- Allows the user to enter a defined number of curve points (up to 256 points) or a user-defined formula
- Allows the user to create and save multiple formulae
- Allows the user-defined curve to be associated with a predefined curve Px4x template
- Allows interpolation between curve points
- Allows the user to save curve formulae in XML format and configured curve points in CSV format, enabling easy data exchange
- Allows the user to save template configured curve data in CRV format, suitable for download into the relay
- Enables easy upload of the curve data from a relay
- Allows the user to input formula constants with user-defined values
- Allows the user to easily set a definite minimum time (DMT) in the formula defined curves
- Graphically displays curves with zoom, pan, and point-on-curve facilities
- Color coding of multiple curves enables effective comparison
- Allows the user to print curves or save curves in a range of standard image formats

Please refer to the User Programmable Curve Tool Guide (*Px4x/EN UPCT*) for more information.
2 CONFIGURING THE ETHERNET INTERFACE

The way in which you configure the Ethernet interface depends on the particular type of interface you have. If you have a DNP3.0 interface, use the DNP setting file to configure the Ethernet interface. Otherwise you should use the IED configurator tool in MiCOM S1 Agile.

Note: Further information is available in the Communications chapter

2.1 Configuring the Ethernet Interface for IEC 61850

1. Open MiCOM S1 Agile:
2. Select Tools > IEC61850 IED Configurator
3. Select Device > Manage IED
4. Select Px40
5. Enter the address of the IED you want to manage (this will always be ‘1’ if you are connected via the front port)
6. Click Next. The following screen appears

7. Select Extract Configuration, Active Bank
8. Select the model. The IP address data is then revealed:

![Image of IP address configuration screen]

9. To change the address values, select View > Enter Manual Editing Mode

10. Enter the required IP configuration and select the green download button:

![Image of IP configuration screen]

2.2 Configuring the Ethernet Interface for DNP3.0

1. Open MiCOM S1 Agile:

2. Select the device DNP3.0 file (which has been created by the DNP3.0 configurator)
3. Set the values, save them and then send the DNP3.0 file to the device.
3 CONFIGURING THE REDUNDANT ETHERNET BOARD

An IP address is a logical address assigned to devices in a computer network that uses the Internet Protocol (IP) for communication between nodes. IP addresses are stored as binary numbers but they are represented using Decimal Dot Notation, whereby four sets of decimal numbers are delimited by dots as follows:

XXX.XXX.XXX.XXX

For example: 10.86.254.85

An IP address within a network is usually associated with a subnet mask that defines which network the device resides. A subnet mask takes the same form as an IP address.

For example: 255.255.255.0

A full explanation of IP addressing and subnet masking is beyond the scope of this guide. Further information is available on application.

Both the IED and the REB (Redundant Ethernet Board) each have their own IP address. Figure 9 shows the IED as IP1 and the REB as IP2.

Note: IP1 and IP2 are different but use the same subnet mask.

The switch IP address must be configured through the network.

<table>
<thead>
<tr>
<th>IED (IP1)</th>
<th>IED Configurator</th>
</tr>
</thead>
<tbody>
<tr>
<td>REB (IP2)</td>
<td>XXX.YYY.254.ZZZ</td>
</tr>
</tbody>
</table>

Switch Manager (SHP or DHP) Fixed
RSTP Configurator (RSTP)

Figure 9: IED amd REB IP address configuration

3.1 Configuring the IED IP address

The IP address of the IED is configured using the IED Configurator software in S1 Agile.

For IEC 61850, the IED IP address is set using the IED Configurator.

For DNP3 over Ethernet, the IED IP address is managed directly through the DNP3 file.

There are 254 addresses available, which are configurable in the last octet. These are within the range 01 to 254 decimal, which is equivalent 01 to FE hexadecimal, or 00000001 to 11111110 binary.

As with all IP networks, the first and last addresses (00 and FF) should not be used as these are reserved for the network address and broadcast address respectively.

Note: In the IED Configurator, ensure that the port type is set to "Copper" (even if redundant fibres are being used)

3.2 Configuring the Board IP Address

The IP address of the REB is configured in both software and hardware, as shown in Figure 9. Therefore this must be configured before connecting the IED to the network to avoid an IP address conflict.

Configuring the First Two Octets of the Board IP Address

If using SHP or DHP, the first two octets are configured using Switch Manager or an SNMP MIB browser. An H35 (SHP) or H36 (DHP) network device is needed in the network to configure the Px40 redundant Ethernet board IP address using SNMP.
If using Rapid Spanning Tree Protocol (RSTP), the first two octets are configured using the RSTP Configurator software tool or using an SNMP MIB browser.

Configuring the Third Octet of the Board IP Address
The third octet is fixed at 254 (FE hex, 11111110 binary, regardless of the protocol.

Configuring the Last Octet of the Board IP Address
The last octet is configured using the 8-way board address DIP switch SW2 on the REB.

![Figure 10: REB address switches (SW2)](image)

Details of how to access the switches on the REB are provided in the Installation chapter.

Caution: This hardware configuration should ideally take place before the unit is installed. If this is not possible, this must be carried out by authorized installation engineers.

3.3 RSTP Configuration

If you are using RSTP, you will need the RSTP configurator software. This is available from General Electric on request.

The RSTP Configurator software is used to identify a device, configure the IP address, configure the SNTP IP address and configure RSTP settings.

Installing RSTP Configurator

1. Double click **WinPcap_4.0.exe** to install WinPcap.
2. Double click **ALSTOM Grid-RSTP Configurator.msi** to install the RSTP Configurator.
3. The setup wizard appears. Click **Next** and follow the on-screen instructions to run the installation.
Starting the RSTP Configurator

1. To start the RSTP Configurator, select Programs > RSTP Configurator > RSTP Configurator.

2. The Login screen appears. For user mode login, enter the Login name as User and click OK with no password.

3. If the login screen does not appear, check all network connections.

4. The main window of the RSTP Configurator appears. The Network Board drop-down list shows the Network Board, IP Address and MAC Address of the PC in which the RSTP Configurator is running.

Device Identification

1. To configure the REB, go to the main window and click Identify Device.

2. The REB connected to the PC is identified and its details are listed as shown below:
 - Device address
 - MAC address
 - Version number of the firmware
 - SNTP IP address
 - Date & time of the real-time clock, from the board.

Note: Due to the time needed to establish the RSTP protocol, it is necessary to wait 25 seconds between connecting the PC to the IED and clicking the Identify Device button.

IP Address Configuration

1. To change the network address component of the IP address, go to the main window and click the IP Config button. The Device setup screen appears. The first three octets of the board IP address can be configured.

Note: The last octet is set using the DIP switches (SW2) next to the ribbon connector.

2. Enter the required board IP address and click OK. The board network address is updated and displayed in the main window.
SNTP IP Address Configuration
1. To Configure SNTP server IP address, go to the main window and click the SNTP Config button. The Device setup screen appears.
2. Enter the required SNTP MAC and server IP address, then click OK. The updated SNTP server IP address appears in the main screen.

Equipment
1. To view the MAC addresses learned by the switch, go to the main window and click the Identify Device button. The selected device MAC address then appears highlighted.
2. Click the Equipment button. The list of MAC addresses learned by the switch and the corresponding port number are displayed.

RSTP Parameters
1. To view or configure the RSTP Bridge Parameters, go to the main window and click the device address to select the device. The selected device MAC address appears highlighted.
2. Click the RSTP Config button. The RSTP Config screen appears.
3. To view the available parameters in the board that is connected, click the **Get RSTP Parameters** button.

4. To set the configurable parameters such as **Bridge Max Age**, **Bridge Hello Time**, **Bridge Forward Delay**, and **Bridge Priority**, modify the parameter values and click **Set RSTP Parameters** as below:

<table>
<thead>
<tr>
<th>S.No</th>
<th>Parameter</th>
<th>Default Value (seconds)</th>
<th>Minimum Value (seconds)</th>
<th>Maximum Value (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bridge Max Age</td>
<td>20</td>
<td>6</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>Bridge Hello Time</td>
<td>2</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Bridge Forward Delay</td>
<td>15</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>Bridge Priority</td>
<td>32768</td>
<td>0</td>
<td>61440</td>
</tr>
</tbody>
</table>

Bridge Parameters

1. To read the RSTP bridge parameters from the board, go to the main window and click the device address to select the device. The **RSTP Config** window appears and the default tab is **Bridge Parameters**.

2. Click the **Get RSTP Parameters** button. This displays all the RSTP bridge parameters from the Ethernet board.
3. To modify the RSTP parameters, enter the values and click Set RSTP Parameters.
4. To restore the default values, click Restore Default and click Set RSTP Parameters.
5. The grayed parameters are read-only and cannot be modified.

Port Parameters

This function is useful if you need to view the parameters of each port.

1. From the main window, click the device address to select the device and the RSTP Config window appears.
2. Select the Port Parameters tab, then click Get Parameters to read the port parameters.
3. Alternatively, select the port numbers to read the parameters.
Port States
This is used to see which ports of the board are enabled or disabled.

1. From the main window, click the device address to select the device. The RSTP Config window appears.

2. Select the Port States tab then click the Get Port States button. This lists the ports of the Ethernet board. A tick shows they are enabled.
4 CONFIGURING THE DATA PROTOCOLS

Depending on the model, various protocols can be used with the serial rear ports. However, only one protocol can be configured at any one time on any one IED. The range of available communication settings depend on which protocol has been chosen.

4.1 Courier Configuration

To use the rear port with Courier, you can configure the settings using the HMI panel. Courier can be used with either a copper connection or a fibre connection.

1. Select the CONFIGURATION column and check that the Comms settings cell is set to Visible.
2. Select the COMMUNICATIONS column.
3. Move to the first cell down (RP1 protocol). This is a non settable cell, which shows the chosen communication protocol – in this case Courier.

<table>
<thead>
<tr>
<th>COMMUNICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP1 Protocol</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Courier</td>
</tr>
</tbody>
</table>

4. Move down to the next cell (RP1 Address). This cell controls the address of the IED. Up to 32 IEDs can be connected to one spur. It is therefore necessary for each IED to have a unique address so that messages from the master control station are accepted by one IED only. Courier uses an integer number between 0 and 254 for the IED address. It is important that no two IEDs have the same address.

<table>
<thead>
<tr>
<th>COMMUNICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP1 Address</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>255</td>
</tr>
</tbody>
</table>

5. Move down to the next cell (RP1 InactivTimer). This cell controls the inactivity timer. The inactivity timer controls how long the IED waits without receiving any messages on the rear port before it reverts to its default state, including revoking any password access that was enabled. For the rear port this can be set between 1 and 30 minutes.

<table>
<thead>
<tr>
<th>COMMUNICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP1 Inactivtimer</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>10.00 mins.</td>
</tr>
</tbody>
</table>

6. If the optional fibre optic connectors are fitted, the RP1 PhysicalLink cell is visible. This cell controls the physical media used for the communication (Copper or Fibre optic).

<table>
<thead>
<tr>
<th>COMMUNICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP1 Physical Link</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Copper</td>
</tr>
</tbody>
</table>

7. Move down to the next cell (RP1 Card Status). This cell is not settable. It just displays the status of the chosen physical layer protocol for RP1.

<table>
<thead>
<tr>
<th>COMMUNICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP1 Card Status</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>K-Bus 0K</td>
</tr>
</tbody>
</table>

8. Move down to the next cell (RP1 Port Config). This cell controls the type of serial connection. Select between K-Bus or RS485.
9. If using EIA(RS)485, the next cell selects the communication mode. The choice is either **IEC 60870 FT1.2** for normal operation with 11-bit modems, or **10-bit no parity**. If using K-Bus this cell will not appear.

10. If using EIA(RS)485, the next cell down controls the baud rate. Three baud rates are supported; **9600**, **19200** and **38400**. If using K-Bus this cell will not appear as the baud rate is fixed at 64kbps.

Note: If you modify protection and disturbance recorder settings using an on-line editor such as PAS&T, you must confirm them. To do this, from the Configuration column select the Save changes cell. Off-line editors such as MiCOM S1 Agile do not need this action for the setting changes to take effect.

4.2 DNP3.0 configuration

To use the rear port with DNP3.0, you can configure the settings using the HMI panel. DNP3.0 can be used with either a copper connection or a fibre connection.

1. Select the **CONFIGURATION** column and check that the **Comms settings** cell is set to Visible.
2. Select the **COMMUNICATIONS** column.
3. Move to the first cell down (**RP1 protocol**). This is a non settable cell, which shows the chosen communication protocol – in this case **DNP3.0**.
4. Move down to the next cell (**RP1 Address**). This cell controls the DNP3.0 address of the IED. Up to 32 IEDs can be connected to one spur, therefore it is necessary for each IED to have a unique address so that messages from the master control station are accepted by only one IED. DNP3.0 uses a decimal number between 1 and 65519 for the IED address. It is important that no two IEDs have the same address.
5. Move down to the next cell (**RP1 Baud Rate**). This cell controls the baud rate to be used. Six baud rates are supported by the IED **1200bits/s**, **2400bits/s**, **4800bits/s**, **9600bits/s**, **19200bits/s** and **38400bits/s**. Make sure that the baud rate selected on the IED is the same as that set on the master station.
6. Move down to the next cell (RP1 Parity). This cell controls the parity format used in the data frames. The parity can be set to be one of None, Odd or Even. Make sure that the parity format selected on the IED is the same as that set on the master station.

```
COMMUNICATIONS
RP1 Parity
None
```

7. If the optional fibre optic connectors are fitted, the RP1 PhysicalLink cell is visible. This cell controls the physical media used for the communication (Copper or Fibre optic).

```
COMMUNICATIONS
RP1 Physical Link
Copper
```

8. Move down to the next cell (RP1 Time Sync). This cell sets the time synchronization request from the master by the IED. It can be set to Enabled or Disabled. If enabled it allows the DNP3.0 master to synchronize the time.

```
COMMUNICATIONS
RP1 Time sync
Enabled
```

4.3 IEC 60870-5-103 Configuration

To use the rear port with IEC 60870-5-103, you can configure the settings using the HMI panel. IEC 60870-5-103 can be used with either a copper connection or a fibre connection.

The device operates as a slave in the system, responding to commands from a master station.

1. Select the CONFIGURATION column and check that the Comms settings cell is set to Visible.

2. Select the COMMUNICATIONS column.

3. Move to the first cell down (RP1 protocol). This is a non settable cell, which shows the chosen communication protocol – in this case IEC 60870-5-103.
4. Move down to the next cell (RP1 Address). This cell controls the IEC 60870-5-103 address of the IED. Up to 32 IEDs can be connected to one spur. It is therefore necessary for each IED to have a unique address so that messages from the master control station are accepted by one IED only. IEC 60870-5-103 uses an integer number between 0 and 254 for the IED address. It is important that no two IEDs have the same IEC 60870 5 103 address. The IEC 60870-5-103 address is then used by the master station to communicate with the IED.

5. Move down to the next cell (RP1 Baud Rate). This cell controls the baud rate to be used. Two baud rates are supported by the IED, '9600 bits/s' and '19200 bits/s'. Make sure that the baud rate selected on the IED is the same as that set on the master station.

6. Move down to the next cell (RP1 Meas. period). The next cell down controls the period between IEC 60870-5-103 measurements. The IEC 60870-5-103 protocol allows the IED to supply measurements at regular intervals. The interval between measurements is controlled by this cell, and can be set between 1 and 60 seconds.

7. If the optional fibre optic connectors are fitted, the RP1 PhysicalLink cell is visible. This cell controls the physical media used for the communication (Copper or Fibre optic).

8. The next cell down can be used for monitor or command blocking.

9. There are three settings associated with this cell; these are:
Monitor Blocking
When the monitor blocking DDB Signal is active high, either by energizing an opto input or control input, reading of the status information and disturbance records is not permitted. When in this mode the device returns a “Termination of general interrogation” message to the master station.

Command Blocking
When the command blocking DDB signal is active high, either by energizing an opto input or control input, all remote commands will be ignored (i.e. CB Trip/Close, change setting group etc.). When in this mode the device returns a “negative acknowledgement of command” message to the master station.

IEC 61850 Configuration
The only IEC 61850 configuration changes you can make with the HMI panel is to turn GOOSE on or off.

DNP3.0 Configuration Using MiCOM S1 Agile
A PC support package for DNP3.0 is available as part of MiCOM S1 Agile to allow configuration of the device's DNP3.0 response. The configuration data is uploaded from the device to the PC in a block of compressed format data and downloaded in a similar manner after modification. The new DNP3.0 configuration takes effect after the download is complete. To restore the default configuration at any time, from the CONFIGURATION column, select the Restore Defaults cell then select 'All Settings'.

In MiCOM S1 Agile, the DNP3.0 data is shown in three main folders, one folder each for the point configuration, integer scaling and default variation (data format). The point configuration also includes screens for binary inputs, binary outputs, counters and analogue input configuration.

IEC 61850 Configuration
You cannot configure the device for IEC 61850 using the HMI panel on the product. For this you must use the IED Configurator.

IEC 61850 allows IEDs to be directly configured from a configuration file. The IED’s system configuration capabilities are determined from an IED Capability Description file (ICD), supplied with the product. By using ICD files from the products to be installed, you can design, configure and even test (using simulation tools), a substation’s entire protection scheme before the products are even installed into the substation.

To help with this process, MiCOM S1 Agile provides an IED Configurator tool, which allows the pre-configured IEC 61850 configuration file to be imported and transferred to the IED. As well as this, you can manually create configuration files for MiCOM IEDs, based on their original IED capability description (ICD file).

Other features include:
- The extraction of configuration data for viewing and editing.
- A sophisticated error checking sequence to validate the configuration data before sending to the IED.

Note: To help the user, some configuration data is available in the IED CONFIGURATOR column, allowing read-only access to basic configuration data.

IEC 61850 Configuration Banks
To help version management and minimize down-time during system upgrades and maintenance, the MiCOM IEDs have incorporated a mechanism consisting of multiple configuration banks. These configuration banks fall into two categories:

- **Active Configuration Bank**
- **Inactive Configuration Bank**
Any new configuration sent to the IED is automatically stored in the inactive configuration bank, therefore not immediately affecting the current configuration.

When the upgrade or maintenance stage is complete, the IED Configurator tool can be used to transmit a command, which authorizes activation of the new configuration contained in the inactive configuration bank. This is done by switching the active and inactive configuration banks. The capability of switching the configuration banks is also available using the IED CONFIGURATOR column of the HMI.

The SCL Name and Revision attributes of both configuration banks are also available in the IED CONFIGURATOR column of the HMI.

4.6.2 IEC 61850 Network Connectivity

Configuration of the IP parameters and SNTP time synchronization parameters is performed by the IED Configurator tool. If these parameters are not available using an SCL file, they must be configured manually.

As the IP addressing will be completely detached and independent from any public network, it is up to the company's system administrator to establish the IP addressing strategy. Every IP address on the network must be unique. This applies to all devices on the network. Duplicate IP addresses will result in conflict and must be avoided. The IED will check for a conflict on every IP configuration change and at power up. An alarm will be raised if an IP conflict is detected.

The IED can be configured to accept data from other networks using the Gateway setting. If multiple networks are used, the IP addresses must be unique across networks.
5 PRP/HSR CONFIGURATOR

The PRP/HSR Configurator tool is intended for MiCOM Px4x IEDs with redundant Ethernet using PRP (Parallel Redundancy Protocol), or HSR (High-availability Seamless Redundancy). This tool is used to identify IEDs, switch between PRP and HSR or configure their parameters, configure the redundancy IP address, or configure the SNTP IP address.

5.1 Connecting the IED to a PC

Connect the IED to the PC on which the Configurator tool is used. This connection is done through an Ethernet switch or through a media converter.

![Connection Diagram](image)

Figure 11: Connection using (a) an Ethernet switch and (b) a Media Converter

5.2 Installing the Configurator

To install the configurator:

1. Double click the WinPcap installer.
2. Double click the Configurator installer.
3. Click Next and follow the on-screen instructions.

5.3 Starting the Configurator

To start the configurator:

1. Select the Configurator from the Windows Programs menu.
2. The Login screen appears. For user mode login, enter the Login name as User and click OK with no password.
3. If the login screen does not appear, check all network connections.
4. The main window appears. In the bottom right-hand corner of the main window, click the Language button to select the language.
5. The Network Board drop-down list shows the Network Board, IP Address and MAC Address of the
6. PC in which the Configurator is running.

5.4 PRP/HSR device identification

To configure the redundant Ethernet board, go to the main window and click the Identify Device button. A list of devices are shown with the following details:

1. Device address
2. MAC address
3. Version number of the firmware
4. SNTP IP address
5. Date & time of the real-time clock, from the board.

Select the device you wish to configure. The MAC address of the selected device is highlighted.

5.5 Selecting the device mode

You must now select the device mode that you wish to use. This will be either PRP or HSR. To do this, select the appropriate radio button then click the Update button. You will be asked to confirm a device reboot. Click OK to confirm.

5.6 PRP/HSR IP Address Configuration

To change the network address component of the IP address:

1. From the main window click the IP Config button. The Device setup screen appears.
2. Enter the required board IP address and click OK. This is the redundancy network address, not the IEC 61850 IP address.
3. The board network address is updated and displayed in the main window.

5.7 SNTP IP Address Configuration

To Configure the SNTP server IP address:

1. From the main window click the SNTP Config button. The Device setup screen appears.
2. Enter the required MAC SNTP address and server IP SNTP Address. Click OK.
3. The updated MAC and IP SNTP addresses appear in the main screen.

5.8 Check for connected equipment

To check what devices are connected to the device being monitored:

1. From the main window, select the device.
2. Click the Equipment button.
3. At the bottom of the main window, a box shows the ports where devices are connected and their MAC addresses.

5.9 PRP Configuration

To view or configure the PRP Parameters:

1. Ensure that you have set the device mode to PRP.
2. Click the PRP/HSR Config button. The PRP Config screen appears.
3. To view the available parameters, click the Get PRP Parameters button.
4. To change the parameters, click the Set Parameters button and modify their values.
If you need to restore the default values of the parameters, click the Restore Defaults button.

The configurable parameters are as follows:

- **Multicast Address**: Use this field to configure the multicast destination address. All DANPs in the network must be configured to operate with the same multicast address for the purpose of network supervision.
- **Node Forget Time**: This is the time after which a node entry is cleared in the nodes table.
- **Life Check Interval**: This defines how often a node sends a PRP_Supervision frame. All DANPs shall be configured with the same Life Check Interval.

5.10 HSR Configuration

To view or configure the HSR Parameters:

1. Click the PRP/HSR Config button. The HSR Config screen appears.
2. To view the available parameters in the board that is connected, click the Retrieve HSR Parameters from IED button.
3. To change the parameters, click the Set Parameters button and modify their values.

If you need to restore the default values of the parameters, click the Restore Defaults button.

The configurable parameters are as follows:

- **Multicast Address**: Use this field to configure the multicast destination address. All DANPs in the network must be configured to operate with the same multicast address for the purpose of network supervision.
- **Node Forget Time**: This is the time after which a node entry is cleared in the nodes table.
- **Life Check Interval**: This defines how often a node sends a PRP_Supervision frame. All DANPs must be configured with the same Life Check Interval.
- **Proxy Node Table Forget Time**: This is the time after which a node entry is cleared in the ProxyTable.
- **Proxy Node Table Max Entries**: This is the maximum number of entries in the ProxyTable.
- **Entry Forget Time**: This is the time after which an entry is removed from the duplicates.
- **Node Reboot Interval**: This is the minimum time during which a node that reboots remains silent.

5.11 Filtering Database

The Filtering Database is used to determine how frames are forwarded or filtered across the on-board Ethernet switch. Filtering information specifies the set of ports to which frames received from a specific port are forwarded. The Ethernet switch examines each received frame to see if the frame’s destination address matches a source address listed in the Filtering Database. If there is a match, the device uses the filtering/forwarding information for that source address to determine how to forward or filter the frame. Otherwise the frame is forwarded to all the ports in the Ethernet switch (broadcast).

General tab

The Filtering Database contains two types of entry; static and dynamic. The Static Entries are the source addresses entered by an administrator. The Dynamic Entries are the source addresses learnt by the switch process. The Dynamic Entries are removed from the Filtering Database after the Ageing Time. The Database holds a maximum of 1024 entries.
1. To access the forwarding database functions, if required, click the Filtering Database button in the main window.

2. To view the Forwarding Database Size, Number of Static Entries and Number of Dynamic Entries, click Read Database Info.

3. To set the Aging Time, enter the number of seconds in the text box and click the Set button.

Filtering Entries tab
The Filtering Database configuration pages are used to view, add or delete entries from the Filtering Database. This feature is available only for the administrator. This Filtering Database is mainly used during the testing to verify the PRP/HSR functionality. To add an entry in the forwarding database, click the Filtering Entries tab. Configure as follows:

1. Select the Port Number and MAC Address
2. Set the Entry type (Dynamic or Static)
3. Set the cast type (Unicast or Multicast)
4. Set the MGMT and Rate Limit
5. Click the Create button. The new entry appears in the forwarding database.

To delete an entry from the forwarding database, select the entry and click the Delete Entry button.

Goose Filtering tab
This page configures the source MACs from which GOOSE messages will be allowed or blocked. The filtering can be configured by either the MAC address range boxes or by selecting or unselecting the individual MAC addresses in the MAC table. After you have defined the addresses to be allowed or blocked you need to update the table and apply the filter:

- **Update Table**: This updates the MAC table according to the filtering range entered in the MAC address range boxes.
- **Apply Filter**: This applies the filtering configuration in the MAC table to the HSR/PRP board.

5.12 End of session
To finish the session:

1. In the main window, click the Quit button, a new screen appears.
2. If a database backup is required, click Yes, a new screen appears.
3. Click the ... button to browse the path. Enter the name in the text box.
SETTINGS
(ST) 4-2

MiCOM P40 Agile P241, P242, P243
CONTENTS

<table>
<thead>
<tr>
<th>1</th>
<th>SETTINGS</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Relay settings configuration</td>
<td>7</td>
</tr>
<tr>
<td>1.2</td>
<td>Protection settings</td>
<td>10</td>
</tr>
<tr>
<td>1.2.1</td>
<td>System config</td>
<td>10</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Thermal overload protection</td>
<td>10</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Short circuit protection</td>
<td>11</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Sensitive earth fault protection</td>
<td>12</td>
</tr>
<tr>
<td>1.2.5</td>
<td>Negative sequence overcurrent</td>
<td>14</td>
</tr>
<tr>
<td>1.2.6</td>
<td>Three phase voltage check</td>
<td>14</td>
</tr>
<tr>
<td>1.2.7</td>
<td>Derived earth fault</td>
<td>15</td>
</tr>
<tr>
<td>1.2.8</td>
<td>Negative sequence overvoltage</td>
<td>16</td>
</tr>
<tr>
<td>1.2.9</td>
<td>Stall detection</td>
<td>17</td>
</tr>
<tr>
<td>1.2.10</td>
<td>Motor differential protection (P243 only)</td>
<td>18</td>
</tr>
<tr>
<td>1.2.11</td>
<td>Residual overvoltage (neutral voltage displacement)</td>
<td>18</td>
</tr>
<tr>
<td>1.2.12</td>
<td>Limit number of starts protection</td>
<td>19</td>
</tr>
<tr>
<td>1.2.13</td>
<td>Loss of load (under power)</td>
<td>19</td>
</tr>
<tr>
<td>1.2.14</td>
<td>Out of step protection (under power factor)</td>
<td>20</td>
</tr>
<tr>
<td>1.2.15</td>
<td>Reverse power</td>
<td>20</td>
</tr>
<tr>
<td>1.2.16</td>
<td>Anti-Backspin protection</td>
<td>21</td>
</tr>
<tr>
<td>1.2.17</td>
<td>Field failure protection</td>
<td>21</td>
</tr>
<tr>
<td>1.2.18</td>
<td>Voltage protection</td>
<td>22</td>
</tr>
<tr>
<td>1.2.19</td>
<td>Underfrequency protection</td>
<td>23</td>
</tr>
<tr>
<td>1.2.20</td>
<td>Resistor temperature device (RTD)</td>
<td>23</td>
</tr>
<tr>
<td>1.2.21</td>
<td>Circuit breaker fail</td>
<td>24</td>
</tr>
<tr>
<td>1.2.22</td>
<td>Supervision (VTS and CTS)</td>
<td>25</td>
</tr>
<tr>
<td>1.2.23</td>
<td>Current loop inputs and outputs (CLIO)</td>
<td>27</td>
</tr>
<tr>
<td>1.2.24</td>
<td>Input labels</td>
<td>29</td>
</tr>
<tr>
<td>1.2.25</td>
<td>Output labels</td>
<td>30</td>
</tr>
<tr>
<td>1.2.26</td>
<td>RTD labels</td>
<td>30</td>
</tr>
<tr>
<td>1.2.27</td>
<td>Analog Input labels</td>
<td>30</td>
</tr>
<tr>
<td>1.3</td>
<td>Control and support settings</td>
<td>30</td>
</tr>
<tr>
<td>1.3.1</td>
<td>System data</td>
<td>31</td>
</tr>
<tr>
<td>1.3.2</td>
<td>View records</td>
<td>32</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Measurements 1</td>
<td>34</td>
</tr>
<tr>
<td>1.3.4</td>
<td>Measurements 2</td>
<td>35</td>
</tr>
<tr>
<td>1.3.5</td>
<td>Measurements 3 (product specific measurements)</td>
<td>36</td>
</tr>
<tr>
<td>1.3.6</td>
<td>Measurements 4 (product specific measurements)</td>
<td>37</td>
</tr>
<tr>
<td>1.3.7</td>
<td>Circuit breaker condition</td>
<td>38</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>1.3.8</td>
<td>Circuit breaker control</td>
<td>38</td>
</tr>
<tr>
<td>1.3.9</td>
<td>Date and time</td>
<td>39</td>
</tr>
<tr>
<td>1.3.10</td>
<td>CT and VT ratios</td>
<td>39</td>
</tr>
<tr>
<td>1.3.11</td>
<td>Record control</td>
<td>39</td>
</tr>
<tr>
<td>1.3.12</td>
<td>Disturbance recorder settings</td>
<td>40</td>
</tr>
<tr>
<td>1.3.13</td>
<td>Measurement setup</td>
<td>41</td>
</tr>
<tr>
<td>1.3.14</td>
<td>Communications</td>
<td>42</td>
</tr>
<tr>
<td>1.3.14.1</td>
<td>Communications settings for courier protocol</td>
<td>42</td>
</tr>
<tr>
<td>1.3.14.2</td>
<td>Communications settings for MODBUS protocol</td>
<td>43</td>
</tr>
<tr>
<td>1.3.14.3</td>
<td>Communications settings for IEC 60870-5-103 protocol</td>
<td>43</td>
</tr>
<tr>
<td>1.3.14.4</td>
<td>Communications settings for Ethernet port – IEC 61850</td>
<td>44</td>
</tr>
<tr>
<td>1.3.14.5</td>
<td>IED configurator (for IEC 61850 configuration)</td>
<td>44</td>
</tr>
<tr>
<td>1.3.14.6</td>
<td>Rear port 2 connection settings</td>
<td>46</td>
</tr>
<tr>
<td>1.3.15</td>
<td>Commissioning tests</td>
<td>46</td>
</tr>
<tr>
<td>1.3.16</td>
<td>Circuit breaker condition monitor setup</td>
<td>47</td>
</tr>
<tr>
<td>1.3.17</td>
<td>Opto configuration</td>
<td>48</td>
</tr>
<tr>
<td>1.3.18</td>
<td>Control inputs</td>
<td>49</td>
</tr>
<tr>
<td>1.3.19</td>
<td>Control input configuration</td>
<td>49</td>
</tr>
<tr>
<td>1.3.20</td>
<td>Function keys</td>
<td>49</td>
</tr>
<tr>
<td>1.3.21</td>
<td>Control input labels</td>
<td>50</td>
</tr>
<tr>
<td>1.3.22</td>
<td>PSL DATA column</td>
<td>50</td>
</tr>
</tbody>
</table>
TABLES

Table 1: General configuration settings
Table 2: System configuration settings
Table 3: Thermal over load protection settings
Table 4: Short circuit protection settings
Table 5: Sensitive earth fault protection settings
Table 6: Negative sequence overcurrent protection settings
Table 7: Three phase voltage check setting
Table 8: Derived earth fault protection settings
Table 9: Negative sequence overvoltage protection settings
Table 10: Stall protection settings
Table 11: Differential protection settings
Table 12: Residual overvoltage protection settings
Table 13: Limit number of start protection settings
Table 14: Loss of load protection settings
Table 15: Out of step protection settings
Table 16: Reverse power protection settings
Table 17: Anti-Backspinn protection settings
Table 18: Field failure protection settings
Table 19: Under/Overvoltage protection settings
Table 20: Underfrequency protection settings
Table 21: RTD protection settings
Table 22: CBF protection settings
Table 23: VTS and CTS protection settings
Table 24: Current loop inputs and outputs settings
Table 25: Current loop inputs units and setting ranges
Table 26: Current loop outputs units and setting range
Table 27: Input labels settings
Table 28: Output labels settings
Table 29: RTD labels settings
Table 30: Current loop analog input label settings
Table 31: System data
Table 32: View records settings
Table 33: Measurement 1 menu
Table 34: Measurement 2 menu
Table 35: Measurement 3 menu
Table 36: Measurement 4 menu
Table 37: Circuit breaker condition menu
Table 38: Circuit breaker control settings
Table 39: Date and time menu
Table 40: CT and VT ratio settings 39
Table 41: Record control menu 40
Table 42: Disturbance record settings 41
Table 43: Measurement setup settings 42
Table 44: Communication settings for courier protocol 43
Table 45: Communication settings for MODBUS protocol 43
Table 46: Communication settings for IEC-103 protocol 44
Table 47: Communication settings for IEC-61850 protocol 44
Table 48: IEC-61850 IED configurator 45
Table 49: Rear port connection settings 46
Table 50: Commissioning tests menu cells 47
Table 51: Circuit breaker condition monitoring menu 48
Table 52: Opto inputs configuration settings 48
Table 53: Control inputs settings 49
Table 54: Control inputs configuration settings 49
Table 55: Function keys configuration settings 50
Table 56: Control input label settings 50
Table 57: PSL data menu 51
1 SETTINGS

The P241/2/3 must be configured to the system and application using appropriate settings. In this chapter the settings are described in the sequence: protection settings, control and configuration settings and the disturbance recorder settings. The relay is supplied with a factory-set configuration of default settings.

1.1 Relay settings configuration

The relay is a multi-function device that supports many different protection, control and communication features. To simplify the setting of the relay, there is a configuration settings column, used to enable or disable many of the relay functions. The settings associated with any disabled function are not shown in the menu. To disable a function, change the relevant cell in the Configuration column from Enabled to Disabled.

The configuration column controls which of the two protection settings groups is selected as active through the Active settings cell. A protection setting group can also be disabled in the configuration column, provided it is not the present active group. Similarly, a disabled setting group cannot be set as the active group.

The configuration column also allows all of the setting values in one group of protection settings to be copied to another group.

To do this first set the Copy from cell to the protection setting group to be copied, then set the copy to cell to the protection group where the copy is to be placed. The copied settings are initially placed in a temporary scratchpad and will only be used by the relay following confirmation.

To restore the default values to the settings in any protection settings group, set the restore defaults cell to the relevant group number. It is possible to set the restore defaults cell to all settings to restore the default values to all of the relay’s settings, not just the protection groups’ settings. The default settings are initially placed in the scratchpad and are only used by the relay after they have been confirmed.

Note: If you restore defaults to all settings, it includes the rear communication port settings. If the new (default) settings do not match those of the master station, rear port communication may be disrupted.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Available settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restore Defaults</td>
<td>No Operation</td>
<td>No Operation, All Settings, Setting Group 1, Setting Group 2</td>
</tr>
</tbody>
</table>

Setting to restore a setting group to factory default settings.

<table>
<thead>
<tr>
<th>Setting Group</th>
<th>Select via Menu</th>
<th>Select via Menu, Select via Optos</th>
</tr>
</thead>
</table>

Allows setting group changes to be initiated via opto inputs via Setting Group DDB signal in the programmable scheme logic or via the Menu settings.

<table>
<thead>
<tr>
<th>Active Settings</th>
<th>Group 1</th>
<th>Group 1, Group 2</th>
</tr>
</thead>
</table>

Selects the active setting group.

<table>
<thead>
<tr>
<th>Save Changes</th>
<th>No Operation</th>
<th>No Operation, Save, Abort</th>
</tr>
</thead>
</table>

Saves all relay settings.

<table>
<thead>
<tr>
<th>Copy from</th>
<th>Group 1</th>
<th>Group 1, 2</th>
</tr>
</thead>
</table>

Allows displayed settings to be copied from a selected setting group.

<table>
<thead>
<tr>
<th>System Config</th>
<th>Visible</th>
<th>Invisible or Visible</th>
</tr>
</thead>
</table>

Sets the System Config menu visible further on in the relay settings menu.

<table>
<thead>
<tr>
<th>Copy to</th>
<th>No Operation</th>
<th>No Operation, Group 1, 2</th>
</tr>
</thead>
</table>

Allows displayed settings to be copied to a selected setting group. (ready to paste).
<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Available settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting Group 1</td>
<td>Enabled</td>
<td>Enabled or Disabled</td>
</tr>
<tr>
<td>Setting Group 2 (as above)</td>
<td>Disabled</td>
<td>Enabled or Disabled</td>
</tr>
<tr>
<td>Thermal Overload</td>
<td>Enabled</td>
<td>Enabled or Disabled</td>
</tr>
</tbody>
</table>

Enables (activates) or disables (turns off) the Thermal Overload protection function. ANSI 49.

| Short Circuit | Enabled | Enabled or Disabled|

Enables (activates) or disables (turns off) the Short Circuit Protection function. ANSI 50/51.

| Sensitive E/F | Enabled | Enabled or Disabled|
| | | |

Enables (activates) or disables (turns off) the Sensitive Earth Fault protection function and Wattmetric earth fault element. ANSI 50N/51N/67N/32N/64N.

| Neg. Seq. O/C | Enabled | Enabled or Disabled|
| | | |

Enables (activates) or disables (turns off) the Negative Sequence Overcurrent protection function. ANSI 46.

| 3PH Volt Check | Disabled | Enabled or Disabled|
| | | |

Enables (activates) or disables (turns off) the Reverse phase sequence (V2>V1) and undervoltage detection function. ANSI 47.

| Derived E/F | Disabled | Enabled or Disabled|
| | | |

Enables (activates) or disables (turns off) the Derived Earth Fault Protection function. ANSI 50N/51N.

| Neg. Seq. O/V | Disabled | Enabled or Disabled|
| | | |

Enables (activates) or disables (turns off) the Negative Sequence Overvoltage Protection function. ANSI 47.

| Stall Detection | Enabled | Enabled or Disabled|
| | | |

Enables (activates) or disables (turns off) the Stalling Protection function. ANSI 50S.

| Differential | Disabled | Enabled or Disabled|
| | | |

Enables (activates) or disables (turns off) the Motor Differential protection function. ANSI 87.

| Residual O/V NVD | Disabled | Enabled or Disabled|
| | | |

Enables (activates) or disables (turns off) the Residual Overvoltage (Neutral Voltage Displacement) Protection function. ANSI 59N.

| Limit Nb Starts | Enabled | Enabled or Disabled|
| | | |

Enables (activates) or disables (turns off) the Limit Number of Starts Protection function. ANSI 48/51LR/66.

| Loss of Load | Disabled | Enabled or Disabled|
| | | |

Enables (activates) or disables (turns off) the Loss of Load Protection function. ANSI 37.

| Out of Step | Disabled | Enabled or Disabled|
| | | |

Enables (activates) or disables (turns off) the Out of Step (Underpower Factor) Protection function. ANSI 55.

| Reverse Power | Disabled | Enabled or Disabled|
| | | |

Enables (activates) or disables (turns off) the Reverse Power Protection function. ANSI 32R.

| Anti-Backspin | Disabled | Enabled or Disabled|
| | | |

Enables (activates) or disables (turns off) the Anti-Backspin Protection function. ANSI 27 (Remanent voltage).
<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Available settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Failure</td>
<td>Disabled</td>
<td>Enabled Disabled</td>
</tr>
<tr>
<td>Enables (activates or disables (turns off) the Field Failure protection function. ANSI 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volt Protection</td>
<td>Enabled</td>
<td>Enabled or Disabled</td>
</tr>
<tr>
<td>Enables (activates or disables (turns off) the Volt Protection (Under/Overvoltage) function. ANSI 27/59.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Under Frequency</td>
<td>Disabled</td>
<td>Enabled or Disabled</td>
</tr>
<tr>
<td>Enables (activates or disables (turns off) the Under Frequency protection function. ANSI 81U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD Inputs</td>
<td>Disabled</td>
<td>Enabled or Disabled</td>
</tr>
<tr>
<td>Enables (activates or disables (turns off) the RTD (Resistance Temperature Device) Inputs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB Fail</td>
<td>Disabled</td>
<td>Enabled or Disabled</td>
</tr>
<tr>
<td>Enables (activates or disables (turns off) the Circuit Breaker Fail Protection function. ANSI 50BF.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Labels</td>
<td>Visible</td>
<td>Invisible or Visible</td>
</tr>
<tr>
<td>Sets the Input Labels menu visible in the relay settings menu.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Labels</td>
<td>Visible</td>
<td>Invisible or Visible</td>
</tr>
<tr>
<td>Sets the Output Labels menu visible in the relay settings menu.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD Labels</td>
<td>Visible</td>
<td>Invisible or Visible</td>
</tr>
<tr>
<td>Sets the RTD Labels menu visible in the relay settings menu.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT & VT Ratios</td>
<td>Visible</td>
<td>Invisible or Visible</td>
</tr>
<tr>
<td>Sets the Current & Voltage Transformer Ratios menu visible in the relay settings menu.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Record Control</td>
<td>Visible</td>
<td>Invisible or Visible</td>
</tr>
<tr>
<td>Sets the Record Control menu visible in the relay settings menu.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disturb. Recorder</td>
<td>Visible</td>
<td>Invisible or Visible</td>
</tr>
<tr>
<td>Sets the Disturbance Recorder menu visible in the relay settings menu.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measure'. Set-up</td>
<td>Visible</td>
<td>Invisible or Visible</td>
</tr>
<tr>
<td>Sets the Measurement Setup menu visible in the relay settings menu.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comms. Settings</td>
<td>Visible</td>
<td>Invisible or Visible</td>
</tr>
<tr>
<td>Sets the Communications Settings menu visible in the relay settings menu. These are the settings associated with the first and second rear communications ports.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commission Tests</td>
<td>Visible</td>
<td>Invisible or Visible</td>
</tr>
<tr>
<td>Sets the Commissioning Tests menu visible in the relay settings menu.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setting Values</td>
<td>Primary</td>
<td>Primary or Secondary</td>
</tr>
<tr>
<td>This affects all protection settings that are dependent on CT and VT ratio's.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Inputs</td>
<td>Visible</td>
<td>Invisible or Visible</td>
</tr>
<tr>
<td>Sets the Control Inputs menu visible in the relay setting menu.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLIO Inputs</td>
<td>Enabled</td>
<td>Enabled or Disabled</td>
</tr>
<tr>
<td>Enables (activates or disables (turns off) the CLIO (Current Loop Input Output) Inputs function.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLIO Outputs</td>
<td>Enabled</td>
<td>Enabled or Disabled</td>
</tr>
<tr>
<td>Enables (activates or disables (turns off) the CLIO (Current Loop Input Output) Outputs function.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLIO Labels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enables (activates or disables (turns off) the CLIO (Current Loop Input Output) Labels.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ctrl I/P Config.</td>
<td>Invisible</td>
<td>Invisible or Visible</td>
</tr>
<tr>
<td>Sets the Control Input Configuration menu visible in the relay setting menu.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ctrl I/P Labels</td>
<td>Invisible</td>
<td>Invisible or Visible</td>
</tr>
<tr>
<td>Sets the Control Input Labels menu visible in the relay setting menu.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Settings

Table 1: General configuration settings

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Available settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Access</td>
<td>Disabled</td>
<td>Enabled/Disabled/Hotkey</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function Key</td>
<td>Visible</td>
<td>Invisible or Visible</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCD Contrast</td>
<td>11</td>
<td>0...31</td>
</tr>
</tbody>
</table>

- Defines what controls are available via the direct access keys - Enabled (Hotkey and CB Control functions) / Hotkey Only (Control Inputs and Setting group selection) / CB Cntrl Only (CB open/close).
- Sets the Function Key menu visible in the relay setting menu.
- Sets the LCD contrast. To confirm acceptance of the contrast setting the relay prompts the user to press the right and left arrow keys together instead of the enter key as an added precaution to someone accidentally selecting a contrast which leaves the display black or blank.

Note: The LCD contrast can be set using the front port communications port with the S1 setting software if the contrast is set incorrectly such that the display is black or blank.

1.2 Protection settings

The protection settings include all the following items that become active once enabled in the configuration column of the relay menu database:

- Protection element settings.
- Scheme logic settings.

There are two groups of protection settings, with each group containing the same setting cells. One group of protection settings is selected as the active group, and is used by the protection elements. The settings for group 1 only are shown below. The settings are discussed in the same order in which they are displayed in the menu.

1.2.1 System config

A facility is provided in the P241/2/3 to maintain correct operation of all the protection functions even when the motor is running in a reverse phase sequence. This is achieved through user configurable settings available for the two setting groups.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
</tbody>
</table>

GROUP 1:

SYSTEM CONFIG

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Standard ABC</td>
<td>Standard ABC, Reverse ACB</td>
</tr>
</tbody>
</table>

The Phase Sequence setting applies to a power system that has a permanent phase sequence of either ABC or ACB.

Table 2: System configuration settings

1.2.2 Thermal overload protection

The thermal overload function within the P241/2/3 relay uses a multiple time constant thermal replica. This replica takes into account the overheating generated by the negative phase sequence current in the motor.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
</tbody>
</table>

GROUP 1:

THERMAL OVERLOAD

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>lth Current Set</td>
<td>1 In</td>
<td>0.2 In</td>
<td>1.5 In</td>
</tr>
<tr>
<td>Thermal overload current setting.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>K Coefficient</td>
<td>3</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

Negative sequence current heating factor.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Const T1</td>
<td>20 min</td>
<td>1 min</td>
<td>180 min</td>
</tr>
</tbody>
</table>

Overload time constant.
<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>GROUP 1: THERMAL OVERLOAD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Const T2</td>
<td>20 min</td>
<td>1 min</td>
<td>360 min</td>
</tr>
<tr>
<td>Start-up time constant.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling Const Tr</td>
<td>20 min</td>
<td>1 min</td>
<td>999 min</td>
</tr>
<tr>
<td>Cooling time constant.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Trip</td>
<td>Enabled</td>
<td>Enabled/Disabled</td>
<td></td>
</tr>
<tr>
<td>Enables or disables tripping of the relay if the thermal setting is exceeded.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Alarm</td>
<td>Enabled</td>
<td>Enabled/Disabled</td>
<td></td>
</tr>
<tr>
<td>Enables or disables the setting of an alarm threshold for the thermal state.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alarm Threshold</td>
<td>90%</td>
<td>0.2%</td>
<td>100%</td>
</tr>
<tr>
<td>Thermal alarm threshold (in percentage).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Lockout</td>
<td>Enabled</td>
<td>Enabled/Disabled</td>
<td></td>
</tr>
<tr>
<td>Enables or disables the lockout of a restart if the thermal state exceeds a threshold.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lockout Thresh</td>
<td>20%</td>
<td>0.2%</td>
<td>100%</td>
</tr>
<tr>
<td>Thermal state setting for the thermal lockout protection (in percentage).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inh Trip Dur St</td>
<td>Disabled</td>
<td>Enabled, Disabled</td>
<td></td>
</tr>
<tr>
<td>Inhibits a trip during the start sequence of the motor until Thermal State < Lockout Threshold.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Overload</td>
<td>Thermal Model</td>
<td>Thermal Model, User Curve</td>
<td></td>
</tr>
<tr>
<td>Choice of default Thermal Model or a user pre-programmed operate thermal curve which has been downloaded to the relay using the programmable curve tool. There are 4 Curve Characteristics that can be sent to the relay from the Programmable Curve Tool - Curve 1, Curve 2, Curve 3 and Curve 4. Curve 3 is defined as the thermal operate curve.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset</td>
<td>Thermal Model</td>
<td>Thermal Model, User Curve</td>
<td></td>
</tr>
<tr>
<td>Choice of default Thermal Model or a user pre-programmed reset thermal curve which has been downloaded to the relay using the programmable curve tool. There are 4 Curve Characteristics that can be sent to the relay from the Programmable Curve Tool - Curve 1, Curve 2, Curve 3 and Curve 4. Curve 4 is defined as the thermal reset curve.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Thermal over load protection settings

1.2.3 Short circuit protection

The short circuit protection included in the P241/2/3 relay provides four stage non-directional three-phase overcurrent protection with independent time delay characteristics. All overcurrent settings apply to all three phases but are independent for each of the four stages.

The first two stages of overcurrent protection have time-delayed characteristics which are selectable between inverse definite minimum time (IDMT), definite time (DT) and User Curve. The third and fourth stages have definite time characteristics only.
Table 4: Short circuit protection settings

1.2.4 Sensitive earth fault protection

The Sensitive Earth Fault protection included in the P241/2/3 relay two stages of directional/non-directional, sensitive earth fault protection. The SEF element can also be configured as a wattmetric earth fault element.
<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
</tbody>
</table>

Group 1: SENSITIVE E/F

ISEF>1 Function

- **IEC Standard Inverse**

Selection of the first stage sensitive earth fault element. There are 4 User Curve Characteristics that can be sent to the relay from the Programmable Curve Tool - Curve 1, Curve 2, Curve 3 and Curve 4. Curve 1 is defined as the Short Circuit or Sensitive E/F or Derived Earth Fault operate curve. Curve 2 is defined as the Short Circuit or Sensitive E/F or Derived Earth Fault reset curve. When the User Curve 1 is chosen as operate curve, its corresponding reset curve is automatically chosen as the one assigned in the User Programmable Curve Tool.

<table>
<thead>
<tr>
<th>ISEF>1 Direction</th>
<th>Non-Directional</th>
<th>Non-directional Fwd</th>
<th>Directional Fwd</th>
</tr>
</thead>
</table>

ISEF>1 Current

- 0.2 In
- 0.005 In
- 1 In
- 0.001 In

Current setting for the first stage sensitive earth fault element.

ISEF>1 T Delay

- 1 sec
- 0.04 sec
- 200 sec
- 0.01 sec

Definite Time setting for first stage sensitive earth fault element if ISEF>1 Function is selected as DT.

ISEF>1 TMS

- 1
- 0.025
- 1.2
- 0.025

Time Multiplier setting for first stage sensitive earth fault element if ISEF>1 Function has an Inverse Definite Minimum Time (IDMT) setting.

ISEF>1 Time Dial

- 7
- 0.5
- 15
- 0.1

Time Dial setting for first stage sensitive earth fault element if ISEF>1 Function is set as a US inverse time curve.

ISEF>1 tReset

- 0 sec
- 0 sec
- 100 sec
- 0.01 sec

Reset time setting for first stage sensitive earth fault element if ISEF>1 Function is set as Inverse Definite Minimum Time (IDMT).

ISEF>2 Function

- Disabled
- Disabled, DT

Enables or disables the second stage sensitive overcurrent element.

<table>
<thead>
<tr>
<th>ISEF>2 Direction</th>
<th>Non-directional</th>
<th>Non-directional Fwd</th>
<th>Directional Fwd</th>
</tr>
</thead>
</table>

Selection of the directional second stage sensitive earth fault element.

<table>
<thead>
<tr>
<th>ISEF>2 Current</th>
<th>0.2 In</th>
<th>0.005 In</th>
<th>1 In</th>
<th>0.001 In</th>
</tr>
</thead>
</table>

Current setting for the second stage sensitive earth fault element.

<table>
<thead>
<tr>
<th>ISEF> T Delay</th>
<th>1 sec</th>
<th>0.04 sec</th>
<th>200 sec</th>
<th>0.01 sec</th>
</tr>
</thead>
</table>

Definite Time (DT) setting for the second stage sensitive earth fault element.

<table>
<thead>
<tr>
<th>ISEF> Direction</th>
<th>Menu Sub-heading</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ISEF> Char Angle</th>
<th>-45°</th>
<th>-180°</th>
<th>+180°</th>
<th>1°</th>
</tr>
</thead>
</table>

Characteristic angle for the sensitive earth fault directional element.

<table>
<thead>
<tr>
<th>ISEF> VN Pol Set</th>
<th>5 V</th>
<th>0.5 V</th>
<th>25 V</th>
<th>0.5 V</th>
</tr>
</thead>
</table>

Minimum voltage reference setting for the sensitive earth fault directional element.

<table>
<thead>
<tr>
<th>Wattmetric SEF</th>
<th>Menu Sub-heading</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>PO> Function</th>
<th>Disabled</th>
<th>Disabled, Enabled</th>
</tr>
</thead>
</table>

Enables or Disables the Wattmetric sensitive directional earth fault element.
Table 5: Sensitive earth fault protection settings

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1:</td>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>SENSITIVE E/F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO> Current Set</td>
<td>0.2 In</td>
<td>0.005 In</td>
<td>1 In</td>
</tr>
<tr>
<td>Current setting for the Wattmetric sensitive directional earth fault element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO Voltage Set</td>
<td>5 V</td>
<td>0.5 V</td>
<td>80 V</td>
</tr>
<tr>
<td>Voltage setting for the Wattmetric sensitive directional earth fault element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO> Coef K Set</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Power Threshold setting for the Wattmetric sensitive directional earth fault element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO> Char Angle</td>
<td>0°</td>
<td>-180°</td>
<td>+180°</td>
</tr>
<tr>
<td>Characteristic angle setting for the Wattmetric sensitive directional earth fault element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO> Time Delay</td>
<td>0.2 sec</td>
<td>0.04 sec</td>
<td>100 sec</td>
</tr>
<tr>
<td>Time Delay setting for the Wattmetric sensitive directional earth fault element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISEF> VTS Blocking</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Setting that determines whether VT supervision logic signals blocks the sensitive earth fault stage. When the relevant bit is set to 1, operation of VTS will block the stage if directionalized, when set to 0 the function will be settled to Non-directional.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.2.5 Negative sequence overcurrent

The Negative sequence overcurrent protection included in the P241/2/3 relay provides 2 stages of NPS. The first stage can be selected as Definite Time (DT) only and the second stage can be selected as Inverse Definite Minimum Time (IDMT) only.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1:</td>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>NEG SEQ O/C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I2>1 Status</td>
<td>DT</td>
<td>Disabled, DT</td>
<td></td>
</tr>
<tr>
<td>Enables or Disables the first stage negative sequence overcurrent (NPS) element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I2>1 Current Set</td>
<td>0.3 In</td>
<td>0.05 In</td>
<td>4 In</td>
</tr>
<tr>
<td>Current setting for the first stage negative sequence overcurrent (NPS) element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I2>1 Time Delay</td>
<td>0.2 sec</td>
<td>0.04 sec</td>
<td>200 sec</td>
</tr>
<tr>
<td>Definite Time (DT) setting for the first stage negative sequence overcurrent (NPS) element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I2>2 Status</td>
<td>Disabled</td>
<td>Disabled, IDMT</td>
<td></td>
</tr>
<tr>
<td>Enables or Disables the second stage negative sequence overcurrent (NPS) element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I2>2 Current Set</td>
<td>0.5 In</td>
<td>0.05 In</td>
<td>4 In</td>
</tr>
<tr>
<td>Current setting for the second stage negative sequence overcurrent (NPS) element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I2>2 TMS</td>
<td>1</td>
<td>0.7</td>
<td>2</td>
</tr>
<tr>
<td>Time Multiplier Setting (TMS) for the second stage negative sequence overcurrent (NPS) element.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.2.6 Three phase voltage check

The three phase voltage check function included in the P241/2/3 relay provides a single low voltage threshold setting, which ensures both correct phase rotation (V1 > V2) and sufficient supply voltage prior to permitting motor starting.
<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP 1:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3PH VOLT CHECK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start Low V Set</td>
<td>100 V</td>
<td>10 V</td>
<td>120 V</td>
</tr>
<tr>
<td>Phase-Neutral Low Voltage threshold setting.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V< Measur’t Mode</td>
<td>Phase-Neutral</td>
<td>Phase-Neutral/Phase-Phase</td>
<td></td>
</tr>
<tr>
<td>Phase-Neutral Low Voltage threshold setting.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7: Three phase voltage check setting

1.2.7 Derived earth fault

The Derived Earth Fault function within the P241/2/3 relay provides 2 stages of derived directional earth fault protection. Stage 1 can be set Definite Time (DT) or Inverse Definite Minimum Time (IDMT) or User Curve and stage 2 can be set Definite Time (DT) only.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP 1:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DERIVED EARTH FAULT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selection of the first stage derived earth fault element. There are 4 User Curve Characteristics that can be sent to the relay - Curve 1, Curve 2, Curve 3 and Curve 4. Curve 1 is defined as the Short Circuit or Sensitive E/F or Derived Earth Fault operate curve. Curve 2 is defined as the Short Circuit or Sensitive E/F or Derived Earth Fault reset curve. When the User Curve1 is chosen as operate curve, its corresponding reset curve is automatically chosen as the one assigned in the User Programmable Curve Tool.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN>1 Direction</td>
<td>Non-Directional</td>
<td>Non-directional, Directional Fwd</td>
<td></td>
</tr>
<tr>
<td>Selection of the directional first stage derived earth fault element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN>1 Current</td>
<td>0.2 In</td>
<td>0.08 In</td>
<td>32 In</td>
</tr>
<tr>
<td>Current setting for the first stage derived earth fault element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN>1 T Delay</td>
<td>1</td>
<td>0.04 sec</td>
<td>100 sec</td>
</tr>
<tr>
<td>Definite Time setting for first stage derived earth fault element if IN>1 Function is selected as DT.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN>1 TMS</td>
<td>1</td>
<td>0.025</td>
<td>1.2</td>
</tr>
<tr>
<td>Time Multiplier setting for first stage sensitive earth fault element if IN>1 Function has an Inverse Definite Minimum Time (IDMT) setting.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN>1 Time Dial</td>
<td>7</td>
<td>0.5</td>
<td>15</td>
</tr>
<tr>
<td>Time Dial setting for first stage derived earth fault element if IN>1 Function is set as a US inverse time curve.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN>1 Reset Chr</td>
<td>DT</td>
<td>DT, Inverse, User Curve</td>
<td></td>
</tr>
<tr>
<td>Time reset characteristic for first stage derived earth fault element if IN>1 Function is set as a US inverse time curve. There are 4 User Curve Characteristics that can be sent to the relay from the Programmable Curve Tool - Curve 1, Curve 2, Curve 3 and Curve 4. Curve 2 is defined as the Short Circuit or Sensitive E/F or Derived Earth Fault reset curve. When the User Curve1 is chosen as operate curve, its corresponding reset curve is automatically chosen as the one assigned in the User Programmable Curve Tool.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN>1 tReset</td>
<td>0</td>
<td>0 sec</td>
<td>100 sec</td>
</tr>
<tr>
<td>Reset time setting for first stage derived earth fault element if IN>1 Function is set as Inverse Definite Minimum Time (IDMT).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN>2 Function</td>
<td>Disabled</td>
<td>Disabled, DT</td>
<td></td>
</tr>
<tr>
<td>Enables or Disables the second stage derived earth fault element.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 8: Derived earth fault protection settings

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN>2 Direction</td>
<td>Non-Directional</td>
<td>Non-directional</td>
<td>Directional Fwd</td>
</tr>
<tr>
<td>Selection of the directional second stage derived earth fault element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN>2 Current</td>
<td>0.2 In</td>
<td>0.08 In</td>
<td>32 In</td>
</tr>
<tr>
<td>Current setting for the second stage derived earth fault element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN>2 T Delay</td>
<td>1</td>
<td>0.04</td>
<td>100 sec</td>
</tr>
<tr>
<td>Definite Time (DT) setting for the second stage derived earth fault element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN> Directional</td>
<td>Menu Sub-heading</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN> Char Angle</td>
<td>-45°</td>
<td>-180°</td>
<td>+180°</td>
</tr>
<tr>
<td>Characteristic angle for the derived earth fault directional element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN> Pol Type</td>
<td>Zero Sequence</td>
<td>Zero sequence, Neg sequence</td>
<td></td>
</tr>
<tr>
<td>Selection of polarization type depending on VT connection used.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN> VN Pol Set</td>
<td>5 V</td>
<td>0.5 V</td>
<td>25 V</td>
</tr>
<tr>
<td>Minimum voltage reference setting for the derived earth fault directional element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN> V2pol Set</td>
<td>5 V</td>
<td>0.5 V</td>
<td>25 V</td>
</tr>
<tr>
<td>Minimum Negative sequence Voltage reference setting for the derived earth fault directional element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN2> I2pol Set</td>
<td>0.08 In</td>
<td>0.002 In</td>
<td>0.8 In</td>
</tr>
<tr>
<td>Minimum Negative sequence current reference setting for the derived earth fault directional element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN> VTS Blocking</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Setting that determines whether VT supervision logic signals blocks the derived earth fault stage. When the relevant bit is set to 1, operation of VTS will block the stage if directionalized, when set to 0 the function will be settled to Non-directional.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.2.8 Negative sequence overvoltage

The Negative sequence overvoltage function within the P241/2/3 relay provides 2 stages of negative sequence overvoltage protection. Each stage can be selected as Definite Time (DT).

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP 1:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEG SEQ O/V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V2>1 Status</td>
<td>DT</td>
<td>Disabled, DT</td>
<td></td>
</tr>
<tr>
<td>Enables or Disables the first stage negative sequence overvoltage element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V2>1 Volt Set</td>
<td>5 V</td>
<td>1 V</td>
<td>110 V</td>
</tr>
<tr>
<td>Voltage setting for the first stage negative sequence overvoltage element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V2>1 Time Delay</td>
<td>5 sec</td>
<td>0.04 sec</td>
<td>100 sec</td>
</tr>
<tr>
<td>Definite Time (DT) setting for the first stage negative sequence overvoltage element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V2>2 Status</td>
<td>DT</td>
<td>Disabled, DT</td>
<td></td>
</tr>
<tr>
<td>Enables or Disables the second stage negative sequence overvoltage element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V2>2 Volt Set</td>
<td>5 V</td>
<td>1 V</td>
<td>110 V</td>
</tr>
<tr>
<td>Voltage setting for the second stage negative sequence overvoltage element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V2>2 Time Delay</td>
<td>5 sec</td>
<td>0.04 sec</td>
<td>100 sec</td>
</tr>
<tr>
<td>Definite Time (DT) setting for the second stage negative sequence overvoltage element.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 9: Negative sequence overvoltage protection settings
1.2.9 Stall detection

The Stall detection in the P241/2/3 relay is available for protection of the motor during the starting sequence.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>GROUP 1:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STALL DETECTION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prolonged Start</td>
<td>Enabled</td>
<td>Disabled, Enabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start Criteria</td>
<td>52a</td>
<td>52a</td>
<td>52a + 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stall Rotor-Strt</td>
<td>Disabled</td>
<td>Disabled, Enabled</td>
<td></td>
</tr>
<tr>
<td>Stall Detection</td>
<td>Enabled</td>
<td>Disabled, Enabled</td>
<td></td>
</tr>
<tr>
<td>Stall Setting</td>
<td>2 In</td>
<td>1 In</td>
<td>3 In</td>
</tr>
<tr>
<td>Stall Time Delay</td>
<td>2 sec</td>
<td>0.1 sec</td>
<td>60 sec</td>
</tr>
<tr>
<td>Reacceleration</td>
<td>Disabled</td>
<td>Disabled, Enabled</td>
<td></td>
</tr>
<tr>
<td>Reacc Low V Set</td>
<td>100 V</td>
<td>50 V</td>
<td>120 V</td>
</tr>
<tr>
<td>Reacc High V Set</td>
<td>100 V</td>
<td>50 V</td>
<td>120 V</td>
</tr>
<tr>
<td>Reacc Time</td>
<td>6 sec</td>
<td>40 ms</td>
<td>60 sec</td>
</tr>
<tr>
<td>Reacc Time</td>
<td>6 sec</td>
<td>40 ms</td>
<td>60 sec</td>
</tr>
<tr>
<td>Auto Re-Start</td>
<td>Disabled</td>
<td>Disabled, Enabled</td>
<td></td>
</tr>
<tr>
<td>Reacc Long Time</td>
<td>20 sec</td>
<td>0 sec</td>
<td>60 sec</td>
</tr>
<tr>
<td>Reacc Shed Time</td>
<td>0 sec</td>
<td>0 sec</td>
<td>5940 sec</td>
</tr>
</tbody>
</table>

Table 10: Stall protection settings
1.2.10 Motor differential protection (P243 only)

The differential protection included in the P243 relay may be configured to operate as either a high impedance or biased differential element.

```
<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP 1:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIFFERENTIAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diff Function</td>
<td>Percentage Bias</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percentage Bias</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>High Impedance</td>
<td></td>
</tr>
</tbody>
</table>

Setting to select the function of the differential protection element.

| Diff Is1        | 0.1 In          | 0.05 In           | 0.5 In    | 0.01 In |
|-----------------|-----------------|-------------------|-----------|

Minimum differential operating current of the low impedance biased characteristic. Also, the pick-up setting of the high impedance differential protection.

| Diff K1         | 0%              | 0 %               | 20%       | 5%      |
|-----------------|-----------------|-------------------|-----------|

Slope angle setting for the first slope of the low impedance biased characteristic.

| Diff Is2        | 1.2 In          | 1 In              | 5 In      | 0.1 In  |
|-----------------|-----------------|-------------------|-----------|

The bias current operating threshold for the second slope, low impedance characteristic.

| Diff K2         | 150%            | 20%               | 150%      | 10%     |
|-----------------|-----------------|-------------------|-----------|

Slope angle setting for the second slope of the low impedance biased characteristic.

Table 11: Differential protection settings

1.2.11 Residual overvoltage (neutral voltage displacement)

The neutral voltage displacement (NVD) element within the P241/2/3 relay is of two-stage design, each stage having separate voltage and time delay settings. Stage 1 may be set to operate on either an IDMT or DT characteristic, while stage 2 may be set to DT only.

```
<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP 1:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESIDUAL O/V NVD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VN>1 Function</td>
<td>Disabled</td>
<td>Disabled IDMT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DT</td>
<td></td>
</tr>
</tbody>
</table>

Selection of the first stage residual overvoltage (NVD) element.

| VN>1 Voltage Set| 5 V | 0.5 V | 80 V | 0.5 V |
|-----------------|-----------------|-------------------|-----------|

Voltage setting for the first stage residual overvoltage (NVD) element.

| VN>1 Time Delay | 5 sec | 0.04 sec | 100 sec | 0.01 sec|
|-----------------|-----------------|-------------------|-----------|

Definite Time (DT) setting for the first stage residual overvoltage (NVD) element if VN>1 Function is set as DT.

| VN>1 TMS | 1 | 0.05 | 100 | 0.05 |
|-----------------|-----------------|-------------------|-----------|

Time Multiplier setting for the first stage residual overvoltage (NVD) element if VN>1 Function is set as IDMT.

<table>
<thead>
<tr>
<th>VN>2 Status</th>
<th>Disabled</th>
<th>Disabled DT</th>
<th></th>
</tr>
</thead>
</table>

Enables or disables the second stage residual overvoltage (NVD).

| VN>2 Voltage Set| 10 V | 0.5 V | 80 V | 0.5 V |
|-----------------|-----------------|-------------------|-----------|

Voltage setting for the second stage residual overvoltage (NVD) element.

| VN>2 Time Delay | 10 sec | 0.04 sec | 100 sec | 0.01 sec|
|-----------------|-----------------|-------------------|-----------|

Definite Time (DT) setting for the second stage residual overvoltage (NVD) element.

Table 12: Residual overvoltage protection settings
1.2.12 Limit number of starts protection

The start protection within the P241/2/3 relay supervises the maximum allowable number of starts, hot or cold, that the motor is permitted for. The relay distinguishes between a hot start or a cold start by using the data held in the motor thermal replica. Starting is blocked if the permitted number of starts is exceeded by the use of a time between starts timer.

The start protection within the P241/2/3 relay supervises the maximum allowable number of starts, hot or cold, that the motor is permitted for. The relay distinguishes between a hot start or a cold start by using the data held in the motor thermal replica. Starting is blocked if the permitted number of starts is exceeded by the use of a time between starts timer.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP 1:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIMIT NB STARTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hot Start status</td>
<td>Disabled</td>
<td>Disabled, Enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enables or disables the setting of a maximum number of hot starts before a relay issues an alarm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hot start Nb</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Maximum number of hot starts allowed before starting of the motor is inhibited.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold Start Stat</td>
<td>Disabled</td>
<td>Disabled, Enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enables or disables the setting of a maximum number of cold starts before a relay issues an alarm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold start Nb</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Maximum number of cold starts allowed before starting of the motor is inhibited.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supervising Time</td>
<td>10 min</td>
<td>10 min, 120 min</td>
<td>1 min</td>
<td></td>
</tr>
<tr>
<td>Supervising period for the number of hot and cold starts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T Betw St Status</td>
<td>Disabled</td>
<td>Disabled, Enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enables or disables the setting of a minimum time between motor starts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time betw start</td>
<td>2 min</td>
<td>1 min, 120 min</td>
<td>1 min</td>
<td></td>
</tr>
<tr>
<td>Minimum time period setting allowable between each motor start.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhib Start Time</td>
<td>10 min</td>
<td>1 min, 120 min</td>
<td>1 min</td>
<td></td>
</tr>
<tr>
<td>Inhibition time setting. If the maximum number of starts (hot or cold) is reached, this time delay will start and inhibit a new start before it ends.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 13: Limit number of start protection settings

1.2.13 Loss of load (under power)

The Loss of Load protection within the P241/2/3 relay uses 2 underpower elements to detect a loss of load due to a shaft failure or a pump running unprimed. Both stages are selectable to Definite Time (DT). This feature is only enabled when the circuit breaker is closed, therefore it requires a 52a CB auxiliary contact mapped to an opto input to monitor the breaker status.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP 1:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOSS OF LOAD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P<1 Status</td>
<td>DT</td>
<td>Disabled, DT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enables or disables the first stage underpower element.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P<1 Power Set</td>
<td>1 In W</td>
<td>1 In W, 120 In W</td>
<td>1 In W</td>
<td></td>
</tr>
<tr>
<td>First stage underpower threshold.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P<1 Time Delay</td>
<td>0.2 sec</td>
<td>0.04 sec, 100 sec</td>
<td>0.01 sec</td>
<td></td>
</tr>
<tr>
<td>Definite Time (DT) setting for first stage underpower element.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P<2 Status</td>
<td>Disabled</td>
<td>Disabled, DT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enables or disables the second stage underpower element.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P<2 Power Set</td>
<td>1 In W</td>
<td>1 In W, 120 In W</td>
<td>1 In W</td>
<td></td>
</tr>
<tr>
<td>Second stage underpower threshold.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P<2 Time Delay</td>
<td>0.2 sec</td>
<td>0.04 sec, 100 sec</td>
<td>0.01 sec</td>
<td></td>
</tr>
<tr>
<td>Definite Time (DT) setting for second stage underpower element.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.2.14 Out of step protection (under power factor)

The P241/2/3 relays provide power factor protection on synchronous machines by monitoring the 3 phase power factor. Both Lead and Lag elements are settable to Definite Time (DT). This feature is only enabled when the circuit breaker is closed, therefore it requires a 52 a CB auxiliary contact mapped to an opto input to monitor the breaker status.

Table 15: Out of step protection settings

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP 1:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PF< Status Lead</td>
<td>DT</td>
<td>Disabled, DT</td>
<td></td>
</tr>
<tr>
<td>Enables or disables the lead level element of the under power factor protection.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Fact Lead</td>
<td>0.9</td>
<td>0.1</td>
<td>0.9</td>
</tr>
<tr>
<td>Power Factor setting for the lead level element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PF< Lead TD</td>
<td>0.05 sec</td>
<td>0.05 sec</td>
<td>100 sec</td>
</tr>
<tr>
<td>Time delay setting associated with the lead level element of the under power factor protection.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PF< Status Lag</td>
<td>Disabled</td>
<td>Disabled, DT</td>
<td></td>
</tr>
<tr>
<td>Enables or disables the lag level element of the under power factor protection.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Fact Lag</td>
<td>0.9</td>
<td>0.1</td>
<td>0.9</td>
</tr>
<tr>
<td>Power Factor setting for the lag level element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PF< Lag TD</td>
<td>0.05 sec</td>
<td>0.05 sec</td>
<td>100 sec</td>
</tr>
<tr>
<td>Time delay setting associated with the lag level element of the under power factor protection.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PF< Drop-of Time</td>
<td>7 sec</td>
<td>0.05 sec</td>
<td>300 sec</td>
</tr>
<tr>
<td>Time delay on drop-off to ensure inhibition during motor starting.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.2.15 Reverse power

The P241/2/3 relays provides reverse power protection which is used to detect the reverse flow of power due to a synchronous motor feeding a fault. This feature is only enabled when the circuit breaker is closed, therefore it requires a 52 a CB auxiliary contact mapped to an opto input to monitor the breaker status.

Table 16: Reverse power protection settings

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP 1:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rev P< Power Set</td>
<td>1 In W</td>
<td>1 In W</td>
<td>120 In W</td>
</tr>
<tr>
<td>Setting for the reverse power stage.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rev P< Time Delay</td>
<td>0.2 sec</td>
<td>0.04 sec</td>
<td>100 sec</td>
</tr>
<tr>
<td>Time delay associated with the reverse power stage.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rev P< Drop-of Ti</td>
<td>5 sec</td>
<td>0.05 sec</td>
<td>300 sec</td>
</tr>
<tr>
<td>Time delay on drop-off to ensure inhibition during motor starting.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.2.16 Anti-Backspin protection

The P241/2/3 relays provide anti-backspin protection.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP 1:</td>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>ANTI-BACKSPIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VRem Antibacks</td>
<td>10 Vn</td>
<td>1 Vn</td>
<td>120 Vn</td>
</tr>
<tr>
<td>Setting of the remanent phase-phase voltage element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibacks Delay</td>
<td>3000 secs</td>
<td>1 secs</td>
<td>7200 secs</td>
</tr>
<tr>
<td>Time delay setting associated with the remanent voltage anti-backspin protection.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 17: Anti-Backspin protection settings

1.2.17 Field failure protection

The field failure protection included in the P241/2/3 relay provides two impedance based stages of protection and a leading power factor alarm element.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP 1:</td>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>FIELD FAILURE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFail Alm Status</td>
<td>Disabled</td>
<td>Disabled, Enabled</td>
<td></td>
</tr>
<tr>
<td>Enables or disables the Field Failure Alarm function.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFail Alm Angle</td>
<td>-15°</td>
<td>-75°</td>
<td>75°</td>
</tr>
<tr>
<td>Pick-up setting for field failure alarm angle (leading power factor angle).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFail Alm Delay</td>
<td>5 sec</td>
<td>0 sec</td>
<td>100 sec</td>
</tr>
<tr>
<td>Operating time-delay setting of the field failure alarm.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFail1 Status</td>
<td>Enabled</td>
<td>Disabled, Enabled</td>
<td></td>
</tr>
<tr>
<td>Enables or disables the first stage field failure protection function.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFail1 Xa1</td>
<td>-20 / In Ω</td>
<td>-40/ In Ω</td>
<td>365/ In Ω</td>
</tr>
<tr>
<td>Negative reactance offset setting of first stage field failure impedance protection.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFail1 Xb1</td>
<td>220/ In Ω</td>
<td>25/ In Ω</td>
<td>325/ In Ω</td>
</tr>
<tr>
<td>Diameter setting of circular impedance characteristic of first stage field failure protection.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFail1 TimeDelay</td>
<td>5 sec</td>
<td>0 sec</td>
<td>100 sec</td>
</tr>
<tr>
<td>Operating time-delay setting of the field failure first stage protection.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFail1 DO Timer</td>
<td>0 s</td>
<td>0 s</td>
<td>10 s</td>
</tr>
<tr>
<td>Drop-off time-delay setting of the first stage field failure protection.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFail2 Status</td>
<td>Enabled</td>
<td>Disabled, Enabled</td>
<td></td>
</tr>
<tr>
<td>Enables or disables the second stage field failure protection function.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFail2 Xa2</td>
<td>-20/ In Ω</td>
<td>-40/ In Ω</td>
<td>365/ In Ω</td>
</tr>
<tr>
<td>Negative reactance offset setting of second stage field failure impedance protection.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFail2 Xb2</td>
<td>110/ In Ω</td>
<td>25/ In Ω</td>
<td>325/ In Ω</td>
</tr>
<tr>
<td>Diameter setting of circular impedance characteristic of second stage field failure protection.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFail2 TimeDelay</td>
<td>0 s</td>
<td>0 s</td>
<td>100 s</td>
</tr>
<tr>
<td>Operating time-delay setting of the field failure second stage protection.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFail2 DO Timer</td>
<td>0 s</td>
<td>0 s</td>
<td>10 s</td>
</tr>
<tr>
<td>Drop-off time-delay setting of the second stage field failure protection.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 18: Field failure protection settings
1.2.18 Voltage protection

The undervoltage and overvoltage protection included within the P241/2/3 relay both consist of two independent stages. The Undervoltage protection stage 1 can be set to Inverse Definite Minimum Time (IDMT) and the second stage can be set to Definite Time (DT). This feature is only enabled when the circuit breaker is closed, therefore it requires a 52a CB auxiliary contact mapped to an opto input to monitor the breaker status.

The overvoltage protection stage 1 and stage 2 can be set to Definite Time (DT) only.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP 1:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOLT PROTECTION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOLTAGE</td>
<td>Menu Sub-heading</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNDERVOLTAGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V< Measur't Mode</td>
<td>Phase-Phase</td>
<td>Phase-Neutral, Phase-Phase</td>
<td></td>
</tr>
<tr>
<td>Sets the measured input voltage used for the undervoltage elements.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V< Operate Mode</td>
<td>Any Phase</td>
<td>Any Phase, Three Phase</td>
<td></td>
</tr>
<tr>
<td>Determines whether any phase or all three phases must satisfy the undervoltage criteria before a decision is made.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<1 Function</td>
<td>Disabled</td>
<td>Disabled</td>
<td>DT, IDMT</td>
</tr>
<tr>
<td>Selection of first stage undervoltage element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<1 Voltage Set</td>
<td>93 V</td>
<td>15 V</td>
<td>120 V</td>
</tr>
<tr>
<td>Setting of the first stage undervoltage element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<1 Time Delay</td>
<td>0.5 sec</td>
<td>0.04 sec</td>
<td>7200 sec</td>
</tr>
<tr>
<td>Definite Time (DT) setting for the first stage undervoltage element if V<1 Function is set as DT.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<1 TMS</td>
<td>1</td>
<td>0.5</td>
<td>100</td>
</tr>
<tr>
<td>Time Multiplier Setting of first stage undervoltage element if V<1 Function is set as IDMT.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<2 Status</td>
<td>Disabled</td>
<td>Disabled</td>
<td>DT</td>
</tr>
<tr>
<td>Selection of second stage undervoltage element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<2 Voltage Set</td>
<td>60 V</td>
<td>15 V</td>
<td>120 V</td>
</tr>
<tr>
<td>Setting of the second stage undervoltage element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<2 Time Delay</td>
<td>0.25 sec</td>
<td>0.04 sec</td>
<td>100 sec</td>
</tr>
<tr>
<td>Definite Time (DT) setting for the first stage undervoltage element if V<1 Function is set as DT.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhib During St</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>Setting to enable or disable the inhibit of undervoltage elements during motor starting.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GROUP 1:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOLT PROTECTION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OVERVOLTAGE</td>
<td>Menu Sub-Heading</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V> Measur't Mode</td>
<td>Phase-Phase</td>
<td>Phase-Neutral, Phase-Phase</td>
<td></td>
</tr>
<tr>
<td>Sets the measured input voltage used for the overvoltage elements.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V> Operate Mode</td>
<td>Any Phase</td>
<td>Any Phase, Three Phase</td>
<td></td>
</tr>
<tr>
<td>Determines whether any phase or all three phases must satisfy the overvoltage criteria before a decision is made.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V>1 Status</td>
<td>Disabled</td>
<td>Disabled</td>
<td>DT</td>
</tr>
<tr>
<td>Enable or disables the first stage overvoltage element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V>1 Voltage Set</td>
<td>165 V</td>
<td>50 V</td>
<td>200 V</td>
</tr>
<tr>
<td>Setting of the first stage overvoltage element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V>1 Time Delay</td>
<td>10 sec</td>
<td>0.04 sec</td>
<td>7200 sec</td>
</tr>
<tr>
<td>Definite Time (DT) setting for the first stage overvoltage element.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 19: Under/Overvoltage protection settings

GROUP 1:

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLT PROTECTION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V>2 Status</td>
<td>DT</td>
<td>Disabled, DT</td>
<td></td>
</tr>
<tr>
<td>Enable or disables the second stage overvoltage element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V>2 Voltage Set</td>
<td>140 V</td>
<td>50 V</td>
<td>200 V</td>
</tr>
<tr>
<td>Setting of the second stage overvoltage element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V>2 Time Delay</td>
<td>5 sec</td>
<td>0.04</td>
<td>7200 sec</td>
</tr>
<tr>
<td>Definite Time (DT) setting for the second stage overvoltage element.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.2.19 Underfrequency protection

The P241/2/3 relay includes 2 stages of underfrequency protection to protect synchronous machine against loss of AC supply. Each stage can be selected as Definite Time (DT). This feature is only enabled when the circuit breaker is closed, therefore it requires a 52a CB auxiliary contact mapped to an opto input to monitor the breaker status.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
</table>
| **GROUP 1:**
| **UNDERFREQUENCY** | | | |
| F<1 Status | Disabled | Disabled, DT | |
| Enables or disables the first stage underfrequency element. |
| F<1 Setting | 49 Hz | 45 Hz | 65 Hz | 0.01 Hz |
| Pick-up setting for the first stage underfrequency element. |
| F<1 Time Delay | 0.1 sec | 0.1 sec | 100 sec | 0.01 sec |
| Operating time-delay setting for the definite time first stage underfrequency element. |
| F<2 Status | Disabled | Disabled, DT | |
| Enables or disables the second stage underfrequency element. |
| F<2 Setting | 48 Hz | 45 Hz | 65 Hz | 0.01 Hz |
| Pick-up setting for the second stage underfrequency element. |
| F<2 Time Delay | 0.1 sec | 0.1 sec | 100 sec | 0.01 sec |
| Operating time-delay setting for the definite time second stage underfrequency element. |

1.2.20 Resistor temperature device (RTD)

The P241/2/3 relays provide temperature protection from 10 PT100/Ni100/Ni120 resistor temperature devices (RTD). Each RTD has a definite time trip and alarm stage.
Table 21: RTD protection settings

1.2.21 Circuit breaker fail

This function consists of a two-stage circuit breaker fail function that can be initiated by:

- Current based protection elements
- Non current based protection elements
- External protection elements

For current-based protection, the reset condition is based on undercurrent operation to determine that the CB has opened. For the non-current based protection, the reset criteria may be selected by means of a setting for determining a CB Failure condition.

It is common practice to use low set undercurrent elements in protection relays to indicate that circuit breaker poles have interrupted the fault or load current, as required.
### Menu text	Default setting	Setting range	Step size
GROUP 1:
CB FAIL | Sub-heading |
CB Fail 1 Status | Enabled | Enabled or Disabled |
Enables or disables the first stage of the circuit breaker function.
CB Fail 1 Timer | 0.2 s | 0 s | 10 s | 0.01 s |
Circuit breaker fail timer setting for stage 1 for which the initiating condition must be valid.
CB Fail 2 Status | Disabled | Enabled or Disabled |
Enables or disables the second stage of the circuit breaker function.
CB Fail 2 Timer | 0.4 s | 0 s | 10 s | 0.01 s |
Circuit breaker fail timer setting for stage 2 for which the initiating condition must be valid.
CBF Non I Reset | CB Open & I< | I< Only, CB Open & I<, Prot. Reset & I< | Setting which determines the elements that will reset the circuit breaker fail time for non current based protection functions (e.g. voltage, frequency) initiating circuit breaker fail conditions.
CBF Ext Reset | CB Open & I< | I< Only, CB Open & I<, Prot. Reset & I< | Setting which determines the elements that will reset the circuit breaker fail time for external protection functions initiating circuit breaker fail conditions.
UNDERCURRENT | Sub-heading |
I< Current Set | 0.1 In | 0.02 In | 3.2 In | 0.0 1In | Circuit breaker fail phase fault undercurrent setting. This undercurrent element is used to reset the CB failure function initiated from the internal or external protection (Any Trip and Ext Trip signals).

Table 22: CBF protection settings

1.2.22 Supervision (VTS and CTS)

The VTS feature in the relay operates on detection of negative phase sequence (NPS) voltage without the presence of negative phase sequence current. This gives operation for the loss of one or two-phase voltages. Stability of the VTS function is assured during system fault conditions, by the presence of NPS current. The use of negative sequence quantities ensures correct operation even where three-limb or V connected VT’s are used.

Under the loss of all three-phase voltages to the relay, there will be no negative phase sequence quantities present to operate the VTS function. However, under such circumstances, a collapse of the three-phase voltages will occur. If this is detected without a corresponding change in any of the phase current signals (which would be indicative of a fault), then a VTS condition will be raised. In practice, the relay detects the presence of superimposed current signals, which are changes in the current applied to the relay.

If a VT were inadvertently left isolated prior to line energization, incorrect operation of voltage dependent elements could result. The previous VTS element detected three-phase VT failure by absence of all three-phase voltages with no corresponding change in current. On line energization there will, however, be a change in current (as a result of load or line charging current for example). An alternative method of detecting three-phase VT failure is therefore required on line energization.

The absence of measured voltage on all three-phases on line energization can be as a result of 2 conditions. The first is a three-phase VT failure and the second is a close up three-phase fault. The first condition would require blocking of the voltage dependent function and the second would require tripping. To differentiate between these 2 conditions an overcurrent level detector (VTS I> Inhibit) is used which will prevent a VTS block from being issued if it operates. This element should be set in excess of any non-fault based currents on line energization (load, line charging current, transformer inrush current if applicable) but below the level of current produced by a close up three-phase fault. If the line is now closed where a three-phase VT failure is present the overcurrent detector will not operate and a VTS block will be applied. Closing onto a three-phase fault will result in operation of the overcurrent detector and prevent a VTS block being applied.
The CT supervision feature operates on detection of derived zero sequence current, in the absence of corresponding derived zero sequence voltage that would normally accompany it.

The CT supervision can be set to operate from the residual voltage measured at the VNEUTRAL input (VN1 input for P241/2/3) or the residual voltage derived from the three phase-neutral voltage inputs as selected by the ‘CTS Vn Input’ setting.

There are two stages of CT supervision CTS-1 and CTS-2. CTS-1 supervises the CT inputs to IA, IB, IC which are used by the biased differential protection and all the power, impedance and overcurrent based protection functions. CTS-2 supervises the CT inputs to IA-2, IB-2, IC-2 which are used by the biased or high impedance differential or interturn protection in the P243. The CTS-2 independent enabled/disabled setting is to prevent CTS-2 from giving unnecessary alarms when the Generator Differential is disabled. For interturn faults, some utilities may isolate the faulted winding section and return the generator to service, therefore producing unbalanced phase currents. Under these circumstances the CTS-2 may also need to be disabled or de-sensitized to prevent a false alarm and a false block.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERVISION GROUP 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT SUPERVISION</td>
<td>Sub-heading</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTS I2> Inhibit</td>
<td>0.05 In</td>
<td>0.05 In</td>
<td>0.5 In</td>
</tr>
<tr>
<td>This NPS overcurrent setting is used to inhibit the voltage transformer supervision in the event of a fault occurring on the system with negative sequence current above this setting.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTS Time Delay</td>
<td>5 s</td>
<td>1 s</td>
<td>10 s</td>
</tr>
<tr>
<td>Operating time-delay setting of the VTS element on detection of a voltage supervision condition.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detect 3P</td>
<td>Disabled</td>
<td>Enabled or Disabled</td>
<td>N/A</td>
</tr>
<tr>
<td>This overcurrent setting is used to inhibit the voltage transformer supervision in the event of a loss of all 3 phase voltages caused by a close up 3 phase fault occurring on the system following closure of the CB to energize the line.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold 3P</td>
<td>30 V</td>
<td>10 V</td>
<td>70 V</td>
</tr>
<tr>
<td>3 phase under voltage level setting. This setting is used to indicate a close up 3 phase fault or a 3 phase VT failure condition.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delta I ></td>
<td>0.1 In</td>
<td>0.1 In</td>
<td>5 In</td>
</tr>
<tr>
<td>Delta (superimposed) phase current setting. This setting is used to distinguish between a close up 3 phase fault and a 3 phase VT failure condition under load conditions. For a close up 3 phase fault there will be a loss of 3 phase voltage but there will be a delta change in the measured current. For a 3 phase VT failure where there will a loss of 3 phase voltage but no delta change in the measured current.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTS I2> Inhibit</td>
<td>10 In</td>
<td>0.1 In</td>
<td>32 In</td>
</tr>
<tr>
<td>This overcurrent setting is used to inhibit the voltage transformer supervision in the event of a loss of all 3 phase voltages caused by a close up 3 phase fault occurring on the system following closure of the CB to energize the line.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT SUPERVISION</td>
<td>Sub-heading</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTS1 Status</td>
<td>Disabled</td>
<td>Enabled or Disabled</td>
<td>N/A</td>
</tr>
<tr>
<td>Enables or disables the current transformer supervision 1 element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTS1 VN< Inhibit</td>
<td>0.05 Vn</td>
<td>0.01 Vn</td>
<td>0.2 Vn</td>
</tr>
<tr>
<td>Residual/neutral voltage setting to inhibit the CTS1 element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTS1 IN> Set</td>
<td>0.2 In</td>
<td>0.08 x In</td>
<td>4 x In</td>
</tr>
<tr>
<td>Residual/neutral current setting for a valid current transformer supervision condition for CTS1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTS1 Time Delay</td>
<td>5 s</td>
<td>0 s</td>
<td>10 s</td>
</tr>
<tr>
<td>Operating time-delay setting of CTS1.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 23: VTS and CTS protection settings

1.2.23 Current loop inputs and outputs (CLIO)

Four analog or current loop (analog) inputs are provided for transducers with ranges of 0 - 1 mA, 0 - 10 mA, 0 - 20 mA or 4 - 20 mA. The analog inputs can be used for various transducers such as vibration monitors, tachometers and pressure transducers. Associated with each input there are two protection stages, one for alarm and one for trip. Each stage can be individually enabled or disabled and each stage has a definite time delay setting. The Alarm and Trip stages operate when the input value rises above the Alarm/Trip threshold.

Four current loop (analog) outputs are provided with ranges of 0 - 1 mA, 0 - 10 mA, 0 - 20 mA or 4 - 20 mA which can alleviate the need for separate transducers. These may be used to feed standard moving coil ammeters for analog indication of certain measured quantities or into a SCADA using an existing analog RTU.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIO INPUTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range 1</td>
<td>Disabled</td>
<td>Disabled, 0 - 1 mA, 0 - 10 mA, 0 - 20 mA, 4 - 20 mA</td>
<td></td>
</tr>
<tr>
<td>Unit 1</td>
<td>None</td>
<td>None, A, V, Hz, W, Var, VA, °C, F, %, s</td>
<td></td>
</tr>
<tr>
<td>Minimum 1</td>
<td>0</td>
<td>A list of parameters are shown in the table below.</td>
<td></td>
</tr>
<tr>
<td>Maximum 1</td>
<td>0</td>
<td>A list of parameters are shown in the table below.</td>
<td></td>
</tr>
<tr>
<td>Function 1</td>
<td>Disabled</td>
<td>Disabled, Enabled</td>
<td></td>
</tr>
<tr>
<td>Alarm Set 1</td>
<td>0</td>
<td>A list of parameters are shown in the table below.</td>
<td></td>
</tr>
<tr>
<td>Alarm Delay 1</td>
<td>0</td>
<td>0, 300 s, 1 s</td>
<td></td>
</tr>
<tr>
<td>Trip Set 1</td>
<td>0</td>
<td>A list of parameters are shown in the table below.</td>
<td></td>
</tr>
<tr>
<td>Trip Delay 1</td>
<td>0</td>
<td>0, 300 s, 1 s</td>
<td></td>
</tr>
</tbody>
</table>

GROUP 1:

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIO OUTPUTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range 1</td>
<td>Disabled</td>
<td>Disabled, 0 - 1 mA, 0 - 10 mA, 0 - 20 mA, 4 - 20 mA</td>
<td></td>
</tr>
</tbody>
</table>
Table 24: Current loop inputs and outputs settings

<table>
<thead>
<tr>
<th>Analog input unit</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0 to 100 k</td>
<td>1</td>
</tr>
<tr>
<td>V</td>
<td>0 to 20 k</td>
<td>1</td>
</tr>
<tr>
<td>Hz</td>
<td>0 to 100</td>
<td>1</td>
</tr>
<tr>
<td>W</td>
<td>-1.41 G to 1.41 G</td>
<td>1</td>
</tr>
<tr>
<td>VAr</td>
<td>-1.41 G to 1.41 G</td>
<td>1</td>
</tr>
<tr>
<td>VA</td>
<td>0 to 1.41 G</td>
<td>1</td>
</tr>
<tr>
<td>°C</td>
<td>-40 to 400</td>
<td>1</td>
</tr>
<tr>
<td>°F</td>
<td>-40 to 752</td>
<td>1</td>
</tr>
<tr>
<td>%</td>
<td>0 to 150</td>
<td>0.1</td>
</tr>
<tr>
<td>s</td>
<td>0 to 300</td>
<td>0.1</td>
</tr>
<tr>
<td>None</td>
<td>-32.5 k to 50 k</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Table 25: Current loop inputs units and setting ranges

The CLIO output conversion task runs every 50 ms and the refresh interval for the output measurements is nominally 200 ms.

Current loop output parameters are shown in the following table:

<table>
<thead>
<tr>
<th>Current loop output parameter</th>
<th>Abbreviation</th>
<th>Units</th>
<th>Range</th>
<th>Step</th>
<th>Default min.</th>
<th>Default max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Magnitude</td>
<td>IA Magnitude</td>
<td>A</td>
<td>0 to 100 k</td>
<td>1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>IB Magnitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IC Magnitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IN Magnitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMS Phase Currents</td>
<td>IA RMS</td>
<td>A</td>
<td>0 to 100 k</td>
<td>1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>IB RMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IC RMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IN RMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-N voltage Magnitude</td>
<td>VAN Magnitude</td>
<td>V</td>
<td>0 to 20 k</td>
<td>1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>VBN Magnitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VCN Magnitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VN Magnitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMS Phase-N Voltages</td>
<td>VAN RMS</td>
<td>V</td>
<td>0 to 20 k</td>
<td>1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>VBN RMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VCN RMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Current loop output parameter

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Units</th>
<th>Range</th>
<th>Step</th>
<th>Default min.</th>
<th>Default max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-P Voltage Magnitude</td>
<td>V</td>
<td>0 to 20 k</td>
<td>1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>VBC Magnitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCA Magnitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMS Phase-Phase Voltages</td>
<td>V</td>
<td>0 to 20 k</td>
<td>1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>VAB RMS Magnitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBC RMS Magnitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCA RMS Magnitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>Hz</td>
<td>0 to 100</td>
<td>1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>3 Ph Active Power</td>
<td>W</td>
<td>-30 M to 30 M</td>
<td>1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>3 Ph Reactive Power</td>
<td>Var</td>
<td>-30 M to 30 M</td>
<td>1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>3 Ph Apparent Power</td>
<td>VA</td>
<td>-30 M to 30 M</td>
<td>1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>3 Ph Power Factor</td>
<td>-1 to 1</td>
<td>0.01</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>RTD Temperatures</td>
<td>°C</td>
<td>-40°C to 400°C</td>
<td>1°C</td>
<td>0°C</td>
<td>100°C</td>
</tr>
<tr>
<td>RTD 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of hottest RTD</td>
<td></td>
<td>1-10</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Thermal State</td>
<td>%</td>
<td>0-150</td>
<td>0.1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Time to Thermal Trip</td>
<td>Sec</td>
<td>0-300</td>
<td>0.1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Time to next start</td>
<td>Sec</td>
<td>0-300</td>
<td>0.1</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 26: Current loop outputs units and setting range

Note 1: The current loop (Analog) outputs are refreshed every 200 ms.

Note 2: The polarity of Watts, Vars and power factor is affected by the Measurements Mode setting.

Note 3: These settings are for nominal 1 A and 100/120 V versions only. For other nominal versions they need to be multiplied accordingly.

Note 4: All current loop (Analog) output measurements are in primary values.

Input labels

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP 1:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INPUT LABELS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opto Input 1</td>
<td>Opto 1</td>
<td>16 Character Text</td>
<td></td>
</tr>
<tr>
<td>Text label to describe each individual opto input. This text will be displayed in the programmable scheme logic and event record description of the opto input.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opto Input 2 to 16</td>
<td>Opto 2 to 16</td>
<td>16 Character Text</td>
<td></td>
</tr>
<tr>
<td>Text label to describe each individual opto input. This text will be displayed in the programmable scheme logic and event record description of the opto input.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 27: Input labels settings
1.2.25 Output labels

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP 1:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTPUT LABELS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relay 1</td>
<td>Relay 1</td>
<td>16 Character Text</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Text to describe each individual relay output contact. This text will be displayed in the programmable scheme logic and event record description of the relay output contact.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relay 2 to 16</td>
<td>Relay 2 to Relay 16</td>
<td>16 Character Text</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Text to describe each individual relay output contact. This text will be displayed in the programmable scheme logic and event record description of the relay output contact.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 28: Output labels settings

1.2.26 RTD labels

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP 1:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD LABELS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD 1</td>
<td>RTD 1</td>
<td>16 Character Text</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Text to describe each individual RTD. This text will be displayed in the Measurements 3 menu and fault records for the description of the RTDs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD 2 to 10</td>
<td>RTD 2 to RTD 10</td>
<td>16 Character Text</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Text to describe each individual RTD. This text will be displayed in the Measurements 3 menu and fault records for the description of the RTDs.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 29: RTD labels settings

1.2.27 Analog Input labels

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP 1:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLIO LABELS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLIO Input 1</td>
<td>Analog Input 1</td>
<td>16 Character Text</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Text to describe each individual current loop/analogue input. This text will be displayed in the Measurements 3 menu and fault records for the description of the current loop/analogue inputs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLIO Input 2 to 4</td>
<td>Analog Input 2 to 4</td>
<td>16 Character Text</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Text to describe each individual current loop/analogue input. This text will be displayed in the Measurements 3 menu and fault records for the description of the current loop/analogue inputs.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 30: Current loop analog input label settings

1.3 Control and support settings

The control and support settings are part of the main menu and are used to configure the relays global configuration. It includes submenu settings as below which are discussed in more detail below:

- Relay function configuration settings
- Open/close circuit breaker
- CT & VT ratio settings
- Reset LEDs
- Active protection setting group
- Password & language settings
- Circuit breaker control & monitoring settings
- Communications settings
- Measurement settings
- Event & fault record settings
- User interface settings
- Commissioning settings

1.3.1 System data

This menu provides information for the device and general status of the relay.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTEM DATA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
<td>English, Francais, Deutsch, Espanol, Chinese & Russian</td>
<td>N/A</td>
</tr>
<tr>
<td>The default language used by the device. Selectable as English, French, German, Spanish.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Password</td>
<td>****</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device password for level 1 or 2. If password level 1 is input then the access level is set as 1 and if password level 2 is input then the access level is set as 2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>MiCOM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 character relay description. Can be edited.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Reference</td>
<td>MiCOM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant description. Can be edited.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model Number</td>
<td>P241???????0600J P242???????0600K P243???????0600K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relay model number.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serial Number</td>
<td>149188B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relay serial number.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>50 Hz</td>
<td>50 Hz 60 Hz 10 Hz</td>
<td></td>
</tr>
<tr>
<td>Relay set frequency. Settable as 50 or 60 Hz.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comms. Level</td>
<td>Displays the conformance of the relay to the Courier Level 2 comms.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relay Address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sets the first rear port relay address.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Status</td>
<td>0000000000000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Displays the circuit breaker plant status for up to 8 circuit breakers. The P24x relay supports only a single circuit breaker configuration.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Status</td>
<td>0000000000000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not used.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Group</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Displays the active settings group.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB Trip/Close</td>
<td>No Operation</td>
<td>No Operation, Trip, Close</td>
<td></td>
</tr>
<tr>
<td>Manually trips/closes the relay.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software Ref. 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Displays the relay software version including protocol and relay model. Software Ref.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opto I/P Status</td>
<td>0000000000000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This menu cell displays the status of the relay’s opto-isolated inputs as a binary string, a 1 indicating an energized opto-isolated input and a 0 a de-energized one.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relay O/P Status</td>
<td>0000001000000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This menu cell displays the status of the relay’s output contacts as a binary string, a 1 indicating an operated state and 0 a non-operated state.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alarm Status 1</td>
<td>0000000000000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This menu cell displays the status of the first 32 alarms as a binary string, a 1 indicating an ON state and 0 an OFF state. Includes fixed and user settable alarms. See Data Type G96 in the Relay Menu Database for more details.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Alarm Status 2
This menu cell displays the status of the second 32 alarms as a binary string, a 1 indicating an ON state and 0 an OFF state. See Data Type G111 in the Relay Menu Database for more details.

Alarm Status 3
This menu cell displays the status of the third 32 alarms as a binary string, a 1 indicating an ON state and 0 an OFF state. Assigned specifically for platform alarms. See Data Type G303 in the Relay Menu Database for more details.

Access Level
Access Level. Read only. The table below describes the password control.

<table>
<thead>
<tr>
<th>Set the "Password Control" cell to</th>
<th>The "Access Level" cell displays</th>
<th>Operations</th>
<th>Type of Password required</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Read access to all settings, alarms, event records and fault records</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Execute Control Commands, e.g. circuit breaker open/close. Reset of fault and alarm conditions. Reset LEDs. Clearing of event and fault records.</td>
<td>Level 1 Password</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edit all other settings</td>
<td>Level 2 Password</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Read access to all settings, alarms, event records and fault records</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Execute Control Commands, e.g. circuit breaker open/close. Reset of fault and alarm conditions. Reset LEDs. Clearing of event and fault records.</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edit all other settings</td>
<td>Level 2 Password</td>
</tr>
<tr>
<td>2 (Default)</td>
<td>2 (Default)</td>
<td>Read access to all settings, alarms, event records and fault records</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Execute Control Commands, e.g. circuit breaker open/close. Reset of fault and alarm conditions. Reset LEDs. Clearing of event and fault records.</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edit all other settings</td>
<td>None</td>
</tr>
</tbody>
</table>

Password Control
Sets the menu access level for the relay. This setting can only be changed when level 2 access is enabled.

Password Level 1
Password level 1 setting (4 characters).

Password Level 2
Password level 2 setting (4 characters).

Table 31: System data

1.3.2 View records
This menu provides information on fault and maintenance records. The relay will record the last 5 fault records and the last 10 maintenance records.
VIEW RECORDS

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
</tbody>
</table>

Select Event

Setting range from 0 to 249. This selects the required event record from the possible 250 that may be stored. A value of 0 corresponds to the latest event and so on.

Event Type

(From record) Latched alarm active, Latched alarm inactive, Self reset alarm active, Self reset alarm inactive, Relay contact event, Opto-isolated input event, Protection event, General event, Fault record event, Maintenance record event

Indicates the type of event.

Time and Date

Data

Time & Date Stamp for the event given by the internal Real Time Clock.

Event text

Data.

Up to 32 Character description of the Event. See event sheet in the Measurements and Recording chapter, P24x/EN/MR for details.

Event Value

Data.

32 bit binary string indicating ON or OFF (1 or 0) status of relay contact or opto input or alarm or protection event depending on event type. Unsigned integer is used for maintenance records. See event sheet in the Measurements and Recording chapter, P24x/EN/MR for details.

Select Fault

Setting range from 0 to 4. This selects the required fault record from the possible 5 that may be stored. A value of 0 corresponds to the latest fault and so on.

Start elements

00000000000000000000000000000000

32 bit binary string gives the status of the first 32 start signals. See Data Type G84 in the Relay Menu Database for more details.

Trip elements 1

00000000000000000000000000000000

32 bit binary string gives status of first 32 trip signals. See Data Type G85 in the Relay Menu Database for more details.

Trip elements 2

00000000000000000000000000000000

32 bit binary string gives status of second 32 trip signals. See Data Type G86 in the Relay Menu Database for more details.

Faulted Phase

00000000

Displays the faulted phase as a binary string, bits 0 – 8 = Start A/B/C/N Trip A/B/C/N.

Fault Alarms

00000000000000000000000000000000

This menu cell displays the status of the 32 fault alarms as a binary string, a 1 indicating an ON state and 0 an OFF state. See Data Type G87 in the Relay Menu Database for more details.

Active Group

Active setting group 1-2.

Fault Time

Data.

Fault Time and Date

Data.

System Frequency

Data

System frequency.

The following cells provide measurement information of the fault : IA, IB, IC, VAB, VBC, VCA, VAN, IN Derived, IN, Thermal State, I2, 3Ph Power Factor, IN>PO, VN, 3-Phase Active Power, RTD 1-10 Temperature, IA2, IB2, IC2, IA/IB/IC Differential, IA/IB/IC Bias, Analog Input 1-4.

Select Report

Setting range from 0 to 4. This selects the required maintenance report from the possible 5 that may be stored. A value of 0 corresponds to the latest report and so on.

Report Text

Data.

Up to 32 Character description of the occurrence. See the Measurements and Recording chapter, P24x/EN/MR for more details.

Maintenance Type

Data.
Table 32: View records settings

Maintenance record fault type
This will be a number defining the fault type.

Maintenance Data
Data.

Error code associated with the failure found by the self monitoring. The Maint Type and Data cells are numbers representative of the occurrence. They form a specific error code which should be quoted in any related correspondence to Report Data.

Reset Indication
No
- No/Yes
- N/A

Resets latched IEDs and latched relay contacts provided the relevant protection element has reset.

1.3.3 Measurements 1
This menu provides measurement information.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA Magnitude</td>
<td>Data.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IA Phase Angle</td>
<td>Data.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB Magnitude</td>
<td>Data.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB Phase Angle</td>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC Magnitude</td>
<td>Data.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC Phase Angle</td>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN Derived Mag</td>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN Derived Angle</td>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I SEF Magnitude</td>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I SEF Angle</td>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I1 Magnitude</td>
<td>Data. Positive sequence current.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I2 Magnitude</td>
<td>Data. Negative sequence current.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I0 Magnitude</td>
<td>Data. Zero sequence current.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IA RMS</td>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB RMS</td>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC RMS</td>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN RMS</td>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAB Magnitude</td>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAB Phase Angle</td>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBC Magnitude</td>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBC Phase Angle</td>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCA Magnitude</td>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCA Phase Angle</td>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAN Magnitude</td>
<td>Data. If Anti-backspin function is disabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAN Phase Angle</td>
<td>Data. If Anti-backspin function is disabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBN Magnitude</td>
<td>Data. If Anti-backspin function is disabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBN Phase Angle</td>
<td>Data. If Anti-backspin function is disabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCN Magnitude</td>
<td>Data. If Anti-backspin function is disabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCN Phase Angle</td>
<td>Data. If Anti-backspin function is disabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VN Magnitude</td>
<td>Data. If Anti-backspin function is disabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VN Phase Angle</td>
<td>Data. If Anti-backspin function is disabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vr Antibacks Mag</td>
<td>Data. If Anti-backspin function is enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V1 Magnitude</td>
<td>Data. Positive sequence voltage.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 33: Measurement 1 menu

1.3.4 Measurements 2

This menu provides measurement information.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>MEASUREMENTS 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Phase Watts</td>
<td>Data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Phase VARs</td>
<td>Data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Phase VA</td>
<td>Data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero Seq power</td>
<td>Data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3Ph Power Factor</td>
<td>Data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3Ph WHours Fwd</td>
<td>Data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3Ph WHours Rev</td>
<td>Data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3Ph VArHours Fwd</td>
<td>Data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3Ph VArHours Rev</td>
<td>Data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset Energies</td>
<td>No</td>
<td>Yes/No</td>
<td></td>
</tr>
<tr>
<td>3Ph W Fix Demand</td>
<td>Data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3Ph VAr Fix Demand</td>
<td>Data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3Ph W Peak Dem</td>
<td>Data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3Ph VAr Peak Dem</td>
<td>Data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset Demand</td>
<td>No</td>
<td>No, Yes</td>
<td></td>
</tr>
</tbody>
</table>

Reset demand measurements command. Can be used to reset the fixed and peak demand value measurements to 0.

3 Ph I Maximum | Data |
Table 34: Measurement 2 menu

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>3Ph V Maximum</td>
<td>Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset Max I/V</td>
<td>No</td>
<td>No, Yes</td>
<td></td>
</tr>
</tbody>
</table>

1.3.5 Measurements 3 (product specific measurements)

This menu provides measurement information.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEASUREMENTS 3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thermal Load
- Data: If Thermal Function is enabled
- Load as a ratio of full load \(\frac{I_{eq}}{I_n} \) where \(I_{eq} \) is the equivalent thermal load and \(I_n \) is the thermal setting.

Thermal State
- Data: If Thermal Function is enabled

Time to Th Trip
- Data: If Thermal Function is enabled

Reset Th State
- No

RTD#1 Temperature
- Data: If RTD#1 is enabled

RTD#2-#10 Temperature
- Data: If RTD#2-#10 is enabled

Nb Hot St. Allow
- Data

Nb Cold St Allow
- Data

Time to Next St
- Data

Emergency Rest
- Data

Last Start Time
- Data: If Function Prolonged Starts is enabled

Last St Current
- Data: If Function Prolonged Starts is enabled

Nb of starts
- Data: If Function Prolonged Starts is enabled

Reset Nb of St
- No

Nb Emergency Rst
- Data: If Function Prolonged Starts is enabled

Reset Nb Em Rst
- No

Nb Reaccelerat
- Data: If Function Reacceleration is enabled

Reset Nb Reacc
- No

Motor Run Time
- Data
 - This menu cell displays the accumulated motor run time. Motor run time is initiated each time the switching device is closed and remains closed. The run time unit is automatically adjusted (mhours, hours, Khours). Maximum value is \(2^{127} \) hours.

Reset Motor Run T
- No

RTD Open Cct
- 0000000000
 - This menu cell displays the status of the ten RTDs as a binary string, 0 = No Open Circuit, 1 = Open Circuit. The Open Cct alarms are latched.

RTD Short Cct
- 0000000000
 - This menu cell displays the status of the ten RTDs as a binary string, 0 = No Short Circuit, 1 = Short Circuit. The Short Cct alarms are latched.

RTD Data Error
- 0000000000
 - This menu cell displays the status of the ten RTDs as a binary string, 0 = No Data Error, 1 = Data Error. The Data Error alarms are latched.

Reset RTD flags
- No

Reset RTD alarms command
- Resets latched RTD Open Cct, Short Cct, Data Error alarms.
Table 35: Measurement 3 menu

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb Hottest RTD</td>
<td>Data.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hottest RTD Temp</td>
<td>Data.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset Max RTD Temp</td>
<td>No</td>
<td>No, Yes</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reset hottest RTD measurement command. Resets thermal state to 0.

Analog Input 1	Data. Analog (Current loop/transducer) input 1.				
Analog Input 2	Data. Analog (Current loop/transducer) input 2.				
Analog Input 3	Data. Analog (Current loop/transducer) input 3.				
Analog Input 4	Data. Analog (Current loop/transducer) input 4.				

1.3.6 Measurements 4 (product specific measurements)

This menu provides measurement information.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEASUREMENTS 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Control Trips</td>
<td>Data: - If CB control is enabled.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Thermal Trip</td>
<td>Data: - If Thermal Function is enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip I> 1</td>
<td>Data: - If Short Circuit Protection is Enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip I> 2</td>
<td>Data: - If Short Circuit Protection is Enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip ISEF>1</td>
<td>Data: - If Earth Fault Protection is Enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip ISEF>2</td>
<td>Data: - If Earth Fault Protection is Enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip IN>1</td>
<td>Data: - If Derived Earth Fault Protection is Enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip IN>2</td>
<td>Data: - If Derived Earth Fault Protection is Enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip I2>1</td>
<td>Data: - If NPS protection is enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip I2>2</td>
<td>Data: - If NPS protection is enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip PO></td>
<td>Data: - If Derived Earth Fault Wattmetric Protection is Enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip V<1</td>
<td>Data: - If Undervoltage Protection is enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip V<2</td>
<td>Data: - If Undervoltage Protection is enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip F<1</td>
<td>Data: - If underfrequency Protection is enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip F<2</td>
<td>Data: - If Underfrequency Protection is enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip P<1</td>
<td>Data: - If Loss of Load Protection is enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip P<2</td>
<td>Data: - If Loss of Load Protection is enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip PF< Lead</td>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip PF< Lag</td>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip Rev P</td>
<td>Data: - If Reverse Power Protection is enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip V>1</td>
<td>Data: - If overvoltage Protection is enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip V>2</td>
<td>Data: - If overvoltage protection is enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip NVD VN>1</td>
<td>Data: - If NVD Protection is enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip NVD VN>2</td>
<td>Data: - If NVD Protection is enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Prolong St</td>
<td>Data: - If Prolonged Start Status enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Lock Rot-sta</td>
<td>Data: - If Locked Rotor Start<Stall and prolonged start status enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Lock Rot-run</td>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip RTD#1</td>
<td>Data: - If RTD#1 is enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip RTD#2-10</td>
<td>Data: - If RTD#2 - #10 is enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip Diff</td>
<td>Data: - If Differential Protection is enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb A Input 1 Trip</td>
<td>Data: - If analogue input 1 enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Menu text | Default setting | Setting range | Step size
--- | --- | --- | ---
| Nb A Input 2 Trip | Data: If analogue input 2 enabled | Min. | Max.
| Nb A Input 3 Trip | Data: If analogue input 3 enabled | Min. | Max.
| Nb A Input 4 Trip | Data: If analogue input 4 enabled | Min. | Max.
| Nb FFail1 Trip | Data: If Field Failure 1 function enabled | Min. | Max.
| Nb FFail2 Trip | Data: If Field Failure 2 function enabled | Min. | Max.
| Nb Trip I> 3 | Data: If I>3 enabled | Min. | Max.
| Nb Trip I> 4 | Data: If I>4 enabled | Min. | Max.
| Nb Trip V2>1 | Data: If Negative Sequence O/V function enabled | Min. | Max.
| Nb Trip V2>2 | Data: If Negative Sequence O/V function enabled | Min. | Max.
| Nb Trip Vdip | Data: If LV Ride Thru function enabled | Min. | Max.
| Reset Trip Stat | No | No, Yes | N/A

Reset Trip counter statistics command. Resets all counters to 0.

Table 36: Measurement 4 menu

1.3.7 Circuit breaker condition

The P241/2/3 relays include measurements to monitor the CB condition.

Menu text	Default setting	Setting range	Step size
CB CONDITION	Data: Number of CB trip operations.	Min.	Max.
Total IA Broken	Data: Accumulated broken current for A phase protection trip.	Min.	Max.
Total IB Broken	Data: Accumulated broken current for B phase protection trip.	Min.	Max.
Total IC Broken	Data: Accumulated broken current for C phase protection trip.	Min.	Max.
CB Operate Time	Data: CB operating time = time from protection trip to undercurrent elements indicating the CB is open.	Min.	Max.
Reset CB Data	No	No, Yes	N/A

Reset CB Data command. Resets CB Operations and Total IA/IB/IC broken current counters to 0.

Table 37: Circuit breaker condition menu

1.3.8 Circuit breaker control

The P241/2/3 relays include settings to reset CB condition monitoring lockout alarms and set the type of CB auxiliary contacts that will be used to indicate the CB position.

Menu text	Default setting	Setting range	Step size	
CB CONTROL	Disabled, Local, Remote, Local+Remote, Opto, Opto+Local, Opto+Remote, Opto+Local+Remote	Min.	Max.	
Selects which method the CB can be controlled by.				
Close Pulse Time	0.5 sec	0.1 sec	5 sec	0.1 sec
Defines the duration of the close pulse.				
Trip Pulse Time	0.5 sec	0.1 sec	5 sec	0.1 sec
Defines the duration of the trip pulse.				
Man Close Delay	1 s	0 sec	60 sec	1 sec
This defines the delay time before the close pulse is executed.				

Table 38: Circuit breaker control settings
1.3.9 Date and time

Displays the date and time as well as the battery condition.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date/Time</td>
<td>Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Displays the relay's current date and time.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRIG-B Sync.</td>
<td>Disabled</td>
<td>Disabled or Enabled</td>
<td>N/A</td>
</tr>
<tr>
<td>Enables or disables the IRIG-B time synchronization.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRIG-B Status</td>
<td>Data</td>
<td>Card not fitted/Card failed/Signal healthy/No signal</td>
<td>N/A</td>
</tr>
<tr>
<td>Displays the status of IRIG-B.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battery Status</td>
<td>Dead or Healthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Displays whether the battery is healthy or not.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battery Alarm</td>
<td>Enabled</td>
<td>Disabled or Enabled</td>
<td>N/A</td>
</tr>
<tr>
<td>Enables or disables battery alarm. The battery alarm needs to be disabled when a battery is removed or not used.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 39: Date and time menu

1.3.10 CT and VT ratios

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT AND VT RATIOS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main VT Primary</td>
<td>110.0 V</td>
<td>100</td>
<td>1000 kV</td>
</tr>
<tr>
<td>Main voltage transformer input, primary voltage setting.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main VT Sec'y</td>
<td>110.0 V</td>
<td>80</td>
<td>140</td>
</tr>
<tr>
<td>Main transformer input, secondary voltage setting.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase CT Primary</td>
<td>1.000 A</td>
<td>1</td>
<td>30 k</td>
</tr>
<tr>
<td>Phase current transformer input, primary current rating setting.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase CT Sec'y</td>
<td>1.000 A</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Phase current transformer input, secondary current rating setting.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEF CT Primary</td>
<td>1.000 A</td>
<td>1</td>
<td>30 k</td>
</tr>
<tr>
<td>Sensitive current transformer input, primary current rating setting.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEF CT Secondary</td>
<td>1.000 A</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Sensitive current transformer input, secondary current rating setting.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT Connecting Mode</td>
<td>3 VT</td>
<td>3 VT</td>
<td>2 VT + Residual</td>
</tr>
<tr>
<td>VT connection setting cell</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NVD VT Primary</td>
<td>110 V</td>
<td>100 V</td>
<td>1000 kV</td>
</tr>
<tr>
<td>NVD voltage transformer input, primary voltage setting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NVD VT Secondary</td>
<td>110 V</td>
<td>80 V</td>
<td>140 V</td>
</tr>
<tr>
<td>NVD voltage transformer input, secondary voltage setting</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 40: CT and VT ratio settings

1.3.11 Record control

It is possible to disable the reporting of events from all interfaces that support setting changes. The settings that control the reporting of various types of events are in the Record Control column. The effect of setting each to disabled is as follows:
Record Control Menu

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Available settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear Events</td>
<td>No</td>
<td>No or Yes</td>
</tr>
<tr>
<td>Clear Faults</td>
<td>No</td>
<td>No or Yes</td>
</tr>
<tr>
<td>Clear Test Log</td>
<td>No</td>
<td>No or Yes</td>
</tr>
<tr>
<td>Alarm Event</td>
<td>No</td>
<td>No/Yes</td>
</tr>
<tr>
<td>Relay O/P Event</td>
<td>No</td>
<td>No/Yes</td>
</tr>
<tr>
<td>Opto Input Event</td>
<td>No</td>
<td>No/Yes</td>
</tr>
<tr>
<td>General Event</td>
<td>No</td>
<td>No/Yes</td>
</tr>
<tr>
<td>Fault Rec Event</td>
<td>No</td>
<td>No/Yes</td>
</tr>
<tr>
<td>Maint. Rec Event</td>
<td>No</td>
<td>No/Yes</td>
</tr>
<tr>
<td>Protection Event</td>
<td>No</td>
<td>No/Yes</td>
</tr>
<tr>
<td>DDB 31 - 0</td>
<td>11111111111111111111111111111111</td>
<td>32 bit setting to enable or disable the event recording for DDBs 0-31. For each bit 1 = event recording Enabled, 0 = event recording Disabled.</td>
</tr>
<tr>
<td>DDB 1022 - 992</td>
<td>11111111111111111111111111111111</td>
<td>32 bit setting to enable or disable the event recording for DDBs 1022 – 992. For each bit 1 = event recording Enabled, 0 = event recording Disabled. There are similar cells showing 32 bit binary strings for all DDBs from 0 – 1022. The first and last 32 bit binary strings only are shown here.</td>
</tr>
<tr>
<td>Clear Dist Recs</td>
<td>No</td>
<td>No/Yes</td>
</tr>
</tbody>
</table>

Disturbance Recorder Settings

The disturbance recorder settings include the record duration and trigger position, selection of analog and digital signals to record, and the signal sources that trigger the recording.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>DISTURB Recorder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td>1.5 s</td>
<td>0.1 s</td>
<td>10.5 s</td>
</tr>
<tr>
<td>Overall recording time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigger Position</td>
<td>30%</td>
<td>0</td>
<td>100%</td>
</tr>
</tbody>
</table>

Trigger point setting as a percentage of the duration. For example, the default settings show that the overall recording time is set to 1.5 s with the trigger point being at 33.3% of this, giving 0.5 s pre-fault and 1 s post fault recording times.
1.3.13 Measurement setup

| Table 42: Disturbance record settings |

Trigger Mode

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger Mode</td>
<td>Single</td>
<td>Single or Extended</td>
<td></td>
</tr>
</tbody>
</table>

If set to single mode, if a further trigger occurs whilst a recording is taking place, the recorder will ignore the trigger. However, if this has been set to "Extended", the post trigger timer will be reset to zero, thereby extending the recording time.

Analog. Channel 1

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog. Channel 1</td>
<td>VAN</td>
<td>VA, VB, VC, IA, IB, IC, IN, IA-2, IB-2, IC-2, VAB, VBC, VN, VRM</td>
<td></td>
</tr>
</tbody>
</table>

Selects any available analog input to be assigned to this channel.

Analog. Channel 2

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog. Channel 2</td>
<td>VBN</td>
<td>As above</td>
<td></td>
</tr>
</tbody>
</table>

Analog. Channel 3

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog. Channel 3</td>
<td>VCN</td>
<td>As above</td>
<td></td>
</tr>
</tbody>
</table>

Analog. Channel 4

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog. Channel 4</td>
<td>IA</td>
<td>As above</td>
<td></td>
</tr>
</tbody>
</table>

Analog. Channel 5

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog. Channel 5</td>
<td>IB</td>
<td>As above</td>
<td></td>
</tr>
</tbody>
</table>

Analog. Channel 6

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog. Channel 6</td>
<td>IC</td>
<td>As above</td>
<td></td>
</tr>
</tbody>
</table>

Analog. Channel 7

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog. Channel 7</td>
<td>IN</td>
<td>As above</td>
<td></td>
</tr>
</tbody>
</table>

Analog. Channel 8

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog. Channel 8</td>
<td>IN</td>
<td>As above</td>
<td></td>
</tr>
</tbody>
</table>

The digital channels may be mapped to any of the opto isolated inputs or output contacts, in addition to a number of internal relay digital signals, such as protection starts, LEDs etc.

Input 1 to 32 Trigger

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input 1 to 32 Trigger</td>
<td>No Trigger except Dedicated Trip Relay O/P’s which are set to Trigger Edge -/+</td>
<td>No Trigger, Trigger Edge +/-</td>
<td></td>
</tr>
</tbody>
</table>

Any of the digital channels may be selected to trigger the disturbance recorder on either a low to high (-/+) or a high to low (+/-) transition.

Table 42: Disturbance record settings

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default settings</th>
<th>Available settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEASURE’T SETUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default Display</td>
<td>Description</td>
<td>3Ph + N Current/3Ph Voltage/Power/Date and Time/Description/Plant Reference/Frequency/Thermal State</td>
</tr>
</tbody>
</table>

This setting can be used to select the default display from a range of options.

Note: It is also possible to view the other default displays whilst at the default level using the \(\square \) and \(\square \) keys. However once the 15 minute timeout elapses the default display will revert to that selected by this setting.

Local Values

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default settings</th>
<th>Available settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Values</td>
<td>Primary</td>
<td>Primary/Secondary</td>
</tr>
</tbody>
</table>

This setting controls whether measured values using the front panel user interface and the front courier port are displayed as primary or secondary quantities.

Remote Values

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default settings</th>
<th>Available settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Values</td>
<td>Primary</td>
<td>Primary/Secondary</td>
</tr>
</tbody>
</table>

This setting controls whether measured values using the rear communication port are displayed as primary or secondary quantities.

Measurement Ref.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default settings</th>
<th>Available settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement Ref.</td>
<td>VA</td>
<td>VA/VB/VC/IA/IB/IC</td>
</tr>
</tbody>
</table>

Using this setting the phase reference for all angular measurements by the relay can be selected.

Demand Interval

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default settings</th>
<th>Available settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand Interval</td>
<td>30 minutes</td>
<td>1 to 99 minutes step 1 minute</td>
</tr>
</tbody>
</table>

This setting defines the length of the fixed demand window.

Alarm Fix Dem

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default settings</th>
<th>Available settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm Fix Dem</td>
<td>Invisible</td>
<td>Invisible/Visible</td>
</tr>
</tbody>
</table>

Sets the Alarm Fix Demand Status menu visible in the relay settings.

3Ph W Thresh

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default settings</th>
<th>Available settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>3Ph W Thresh</td>
<td>50 In Wh</td>
<td>1 In Wh</td>
</tr>
</tbody>
</table>

3 phase watt alarm setting.
Table 43: Measurement setup settings

1.3.14 Communications

The communications settings apply to the rear communications ports only and will depend on the particular protocol being used. Further details are given in the SCADA Communications chapter (P24x/EN/SC).

1.3.14.1 Communications settings for courier protocol

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMUNICATIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP1 Protocol</td>
<td>Courier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indicates the communications protocol that will be used on the rear communications port.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP1 Address</td>
<td>255</td>
<td>0</td>
<td>255</td>
</tr>
<tr>
<td>This cell sets the unique address for the relay such that only one relay is accessed by master station software.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP1 Inactivity Timer</td>
<td>10 min</td>
<td>1 min</td>
<td>30 min</td>
</tr>
<tr>
<td>This cell controls how long the relay will wait without receiving any messages on the rear port before it reverts to its default state, including resetting any password access that was enabled.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP1 Physical Link</td>
<td>RS485</td>
<td>RS485 or Fiber Optic</td>
<td></td>
</tr>
<tr>
<td>This cell defines whether an electrical EIA(RS)485, fiber optic or KBus connection is being used for communication between the master station and relay. If 'Fiber Optic' is selected, the optional fiber optic communications board will be required.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP1 Card Status</td>
<td>KBus OK, EIA485 OK, Fiber Optic OK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First rear communication port 1 status</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.3.14.2 Communications settings for MODBUS protocol

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMUNICATIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP1 Protocol</td>
<td>MODBUS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP1 Address</td>
<td>1</td>
<td>1 - 254</td>
<td>1</td>
</tr>
<tr>
<td>RP1 Inactiv Timer</td>
<td>10 mins.</td>
<td>1 min. - 30 mins.</td>
<td>1 min.</td>
</tr>
<tr>
<td>RP1 Baud Rate</td>
<td>19200 bits/s</td>
<td>9600 bits/s - 38400 bits/s</td>
<td></td>
</tr>
<tr>
<td>RP1 Parity</td>
<td>None</td>
<td>Odd, Even, None</td>
<td></td>
</tr>
<tr>
<td>RP1 Physical Link</td>
<td>RS485</td>
<td>RS485 or Fiber Optic</td>
<td></td>
</tr>
</tbody>
</table>

This cell defines whether an electrical EIA(RS) 485 or fiber optic connection is being used for communication between the master station and relay. If **Fiber Optic** is selected, the optional fiber optic communications board will be required.

MODBUS IEC Time

When **Standard IEC** is selected the time format complies with IEC 60870-5-4 requirements such that byte 1 of the information is transmitted first, followed by bytes 2 through to 7. If **Reverse** is selected the transmission of information is reversed.

Table 45: Communication settings for MODBUS protocol

1.3.14.3 Communications settings for IEC 60870-5-103 protocol

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMUNICATIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP1 Protocol</td>
<td>IEC 60870-5-103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP1 Address</td>
<td>1</td>
<td>0 - 254</td>
<td>1</td>
</tr>
<tr>
<td>RP1 Inactiv Timer</td>
<td>15 mins.</td>
<td>1 min. - 30 mins.</td>
<td>1 min.</td>
</tr>
</tbody>
</table>

This cell defines whether an electrical EIA(RS) 485 or fiber optic connection is being used for communication between the master station and relay. If **Fiber Optic** is selected, the optional fiber optic communications board will be required.
Communication settings for IEC-103 protocol

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP1 Baud Rate</td>
<td>19200 bits/s</td>
<td>9600 bits/s or 19200 bits/s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP1 Measure Time Period</td>
<td>15 s</td>
<td>1 s to 60 s</td>
<td>1 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP1 Physical Link</td>
<td>RS485</td>
<td>RS485 or Fiber Optic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP1 CS103 Blocking</td>
<td>Disabled</td>
<td>Disabled, Monitor Blocking or Command Blocking</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are three settings associated with this cell:
- **Disabled**: No blocking selected.
- **Monitor Blocking**: When the monitor blocking DDB Signal is active high, either by energizing an opto input or control input, reading of the status information and disturbance records is not permitted. When in this mode the relay returns a “termination of general interrogation” message to the master station.
- **Command Blocking**: When the command blocking DDB signal is active high, either by energizing an opto input or control input, all remote commands will be ignored (i.e. CB Trip/Close, change setting group etc.). When in this mode the relay returns a **negative acknowledgement of command** message to the master station.

Communications settings for Ethernet port – IEC 61850

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Protocol</td>
<td>IEC 61850</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIC MAC Address</td>
<td>Ethernet MAC Address</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIC Tunnel Timeout</td>
<td>5 mins</td>
<td>1 min to 30 mins</td>
<td>1 min</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Duration of time waited before an inactive tunnel to MiCOM S1 Studio is reset.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC Link Report</td>
<td>Alarm</td>
<td>Alarm, Event, None</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configures how a failed/unfitted network link (copper or fiber) is reported:
- **Alarm**: An alarm is raised for a failed link
- **Event**: An event is logged for a failed link
- **None**: Nothing reported for a failed link

Communication settings for IEC-61850 protocol

IED configurator (for IEC 61850 configuration)

The contents of the IED CONFIGURATOR column are mostly data cells, displayed for information but not editable. To edit the configuration, it is necessary to use the IED Configurator tool within MiCOM S1 Studio.
<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
<td></td>
</tr>
<tr>
<td>Switch Conf.Bank</td>
<td>No Action</td>
<td>No Action, Switch Banks</td>
<td></td>
</tr>
<tr>
<td>Restore MCL</td>
<td>No Action</td>
<td>No Action, Restore</td>
<td></td>
</tr>
</tbody>
</table>

Switch Conf.Bank
Setting which allows the user to switch between the current configuration, held in the Active Memory Bank (and partly displayed below), to the configuration sent to and held in the Inactive Memory Bank.

Restore MCL
Setting which allows the user to restore MCL or no action.

Active Conf.Name
The name of the configuration in the Active Memory Bank, usually taken from the SCL file.

Active Conf.Rev
Configuration revision number of the Active Memory Bank, used for version management.

Inact.Conf.Name
The name of the configuration in the Inactive Memory Bank, usually taken from the SCL file.

Inact.Conf.Rev
Configuration revision number of the Inactive Memory Bank, used for version management.

IP PARAMETERS

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displays the unique network IP address that identifies the relay.

Subnet Mask
Displays the sub-network that the relay is connected to.

Gateway
Displays the IP address of the gateway (proxy) that the relay is connected to.

SNTP PARAMETERS

<table>
<thead>
<tr>
<th>SNTP Server 1</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displays the IP address of the primary SNTP server.

<table>
<thead>
<tr>
<th>SNTP Server 2</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displays the IP address of the secondary SNTP server.

IEC 61850 SCL

<table>
<thead>
<tr>
<th>IED Name</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8 character IED name, which is the unique name on the IEC 61850 network for the IED, usually taken from the SCL file.

IEC 61850 GOOSE

<table>
<thead>
<tr>
<th>GoEna</th>
<th>0x00000000</th>
<th>0x00000000</th>
<th>0x11111111</th>
</tr>
</thead>
</table>

Setting to enable GOOSE publisher settings.

<table>
<thead>
<tr>
<th>Test Mode</th>
<th>0x00000000</th>
<th>0x00000000</th>
<th>0x11111111</th>
</tr>
</thead>
</table>

The Test Mode cell allows the test pattern to be sent in the GOOSE message, for example for testing or commissioning.

Ignore Test Flag
When set to **Yes**, the test flag in the subscribed GOOSE message is ignored and the data treated as normal.

Table 48: IEC-61850 IED configurator
1.3.14.6 Rear port 2 connection settings

The settings shown are those configurable for the second rear port which is only available with the courier protocol.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMUNICATIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP2 Protocol</td>
<td>Courier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indicates the communications protocol that will be used on the second rear communications port.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP2 Card Status</td>
<td>Unsupported, Card Not fitted, EIA232 OK, EIA485 OK, K-BUS OK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second rear communication port 2 status.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP2 Port Config.</td>
<td>EIA232, EIA485 or KBus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This cell defines whether an electrical EIA(RS)232, EIA(RS)485 or KBus is being used for communication.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP2 Comms. Mode</td>
<td>IEC 60870 FT1.2 Frame, IEC 60870 FT1.2 Frame or 10-Bit No Parity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The choice is either IEC 60870 FT1.2 for normal operation with 11-bit modems, or 10-bit no parity.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP2 Address</td>
<td>255-0</td>
<td>0-255</td>
<td>1</td>
</tr>
<tr>
<td>This cell sets the unique address for the relay such that only one relay is accessed by master station software.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP2 Inactiv Timer</td>
<td>15 mins.</td>
<td>1 min.</td>
<td>30 mins.</td>
</tr>
<tr>
<td>This cell controls how long the relay will wait without receiving any messages on the rear port before it reverts to its default state, including resetting any password access that was enabled.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP2 Baud Rate</td>
<td>19200 bits/s</td>
<td>9600 bits/s, 19200 bits/s or 38400 bits/s</td>
<td></td>
</tr>
<tr>
<td>This cell controls the communication speed between relay and master station. It is important that both relay and master station are set at the same speed setting.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 49: Rear port connection settings

1.3.15 Commissioning tests

There are menu cells which allow the status of the opto-isolated inputs, output relay contacts, internal digital data bus (DDB) signals and user-programmable LEDs to be monitored. Additionally there are cells to test the operation of the output contacts and user-programmable LEDs.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Available settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMISSION TESTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opto I/P Status</td>
<td>0000000000000000000000000</td>
<td></td>
</tr>
<tr>
<td>This menu cell displays the status of the relay’s opto-isolated inputs as a binary string, a 1 indicating an energized opto-isolated input and a 0 a de-energized one.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relay O/P Status</td>
<td>0000000000000000000000000</td>
<td></td>
</tr>
<tr>
<td>This menu cell displays the status of the relay’s output contacts as a binary string, a 1 indicating an operated state and 0 a non-operated state.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>When the Test Mode cell is set to Enabled the Relay O/P Status cell does not show the current status of the output relays and so can not be used to confirm operation of the output relays. Therefore it will be necessary to monitor the state of each contact in turn.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Port Status</td>
<td>0000000000000000000000000</td>
<td></td>
</tr>
<tr>
<td>This menu cell displays the status of the eight digital data bus (DDB) signals that have been allocated in the Monitor Bit cells.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitor Bit 1</td>
<td>LED 1</td>
<td>0 to 1022</td>
</tr>
<tr>
<td>The eight Monitor Bit cells allow the user to select the status of which digital data bus signals can be observed in the Test Port Status cell or using the monitor/download port.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitor Bit 8</td>
<td>LED 8</td>
<td>0 to 1022</td>
</tr>
<tr>
<td>The eight Monitor Bit cells allow the user to select the status of which digital data bus signals can be observed in the Test Port Status cell or via the monitor/download port.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Test Mode menu cell is used to allow secondary injection testing to be performed on the relay without operation of the trip contacts. It also enables a facility to directly test the output contacts by applying menu controlled test signals. To select test mode the Test Mode menu cell should be set to **Test Mode**, which takes the relay out of service and blocks the maintenance, counters. It also causes an alarm condition to be recorded and the yellow Out of Service LED to illuminate and an alarm message Prot’n. Disabled is given. This also freezes any information stored in the CB Condition column and in IEC 60870-5-103 builds changes the Cause of Transmission, COT, to Test Mode. To enable testing of output contacts the Test Mode cell should be set to Contacts Blocked. This blocks the protection from operating the contacts and enables the test pattern and contact test functions which can be used to manually operate the output contacts. Once testing is complete the cell must be set back to Disabled to restore the relay back to service.

Test Pattern

00000000000000000000000000000000

This cell is used to select the output relay contacts that will be tested when the Contact Test cell is set to Apply Test.

Contact Test

No Operation

When the Apply Test command in this cell is issued the contacts set for operation (set to 1) in the Test Pattern cell change state. After the test has been applied the command text on the LCD will change to No Operation and the contacts will remain in the Test State until reset issuing the Remove Test command. The command text on the LCD will again revert to No Operation after the Remove Test command has been issued.

Red LED Status

00000000000000000000000000000000

This cell is an 18 bit binary string that indicates which of the user-programmable LEDs on the relay are illuminated with the Red LED input active when accessing the relay from a remote location, a 1 indicating a particular LED is lit and a 0 not lit. If both the Green and Red LED status bits for an LED are on then this indicates the LED is yellow. This is only applicable to the P242/3 which has programmable tri-color LEDs – red/yellow/green.

Green LED Status

00000000000000000000000000000000

This cell is an 18 bit binary string that indicates which of the user-programmable LEDs on the relay are illuminated with the Green LED input active when accessing the relay from a remote location, a 1 indicating a particular LED is lit and a 0 not lit. If both the Green and Red LED status bits for an LED are on then this indicates the led is yellow. This is only applicable to the P242/3 which has programmable tri-color LEDs – red/yellow/green.

DDB 31 - 0

00000000000000000000001000000000

Displays the status of DDB signals 0-31.

DDB 1022 - 922

00000000000000000000000000000000

Displays the status of DDB signals 1022 - 922. There are similar cells showing 32 bit binary strings for all DDBs from 0 - 1022. The first and last 32 bit words only are shown here.

Table 50: Commissioning tests menu cells

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Available settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Mode</td>
<td>Disabled</td>
<td>Disabled, Test Mode, Contacts Blocked</td>
</tr>
<tr>
<td>Test Pattern</td>
<td>00000000000000000000000000000000</td>
<td>0 = Not Operated 1 = Operated</td>
</tr>
<tr>
<td>Contact Test</td>
<td>No Operation</td>
<td>No Operation, Apply Test, Remove Test</td>
</tr>
<tr>
<td>Red LED Status</td>
<td>00000000000000000000000000000000</td>
<td></td>
</tr>
<tr>
<td>Green LED Status</td>
<td>00000000000000000000000000000000</td>
<td></td>
</tr>
<tr>
<td>DDB 31 - 0</td>
<td>00000000000000000000001000000000</td>
<td>Displays the status of DDB signals 0-31.</td>
</tr>
<tr>
<td>DDB 1022 - 922</td>
<td>00000000000000000000000000000000</td>
<td>Displays the status of DDB signals 1022 - 922.</td>
</tr>
</tbody>
</table>

1.3.16 Circuit breaker condition monitor setup

The Circuit Breaker condition monitoring includes features to monitor the CB condition such as the current broken, number of CB operations, number of CB operations in a set time and CB operating time. Alarms or a circuit breaker lockout can be raised for different threshold values.
CB MONITOR SETUP

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB MONITOR SETUP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broken I^h</td>
<td>2</td>
<td>1 - 2</td>
<td>0.1</td>
</tr>
<tr>
<td>This sets the factor to be used for the cumulative I^h counter calculation that monitors the cumulative severity of the duty placed on the interrupter. This factor is set according to the type of Circuit Breaker used.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I^h Maintenance</td>
<td>Alarm Disabled</td>
<td>Alarm Disabled, Alarm Enabled</td>
<td></td>
</tr>
<tr>
<td>Enables or disables the cumulative I^h maintenance alarm element.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I^h Maintenance</td>
<td>1000 In^h</td>
<td>1 In^h - 25000 In^h</td>
<td>1 In^h</td>
</tr>
<tr>
<td>Threshold setting for the cumulative I^h maintenance counter. This alarm indicates when preventative maintenance is due.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No CB Ops Maint</td>
<td>Alarm Disabled</td>
<td>Alarm Disabled, Alarm Enabled</td>
<td></td>
</tr>
<tr>
<td>Number of circuit breaker operations setting for the maintenance alarm.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No CB Ops Maint</td>
<td>10</td>
<td>1 - 10000</td>
<td>1</td>
</tr>
<tr>
<td>Threshold setting for number of circuit breaker operations for the maintenance alarm. This alarm indicates when preventative maintenance is due.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB Time Maint</td>
<td>Alarm Disabled</td>
<td>Alarm Disabled, Alarm Enabled</td>
<td></td>
</tr>
<tr>
<td>Enables or disables the circuit breaker operating time maintenance alarm.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No CB Ops Maint</td>
<td>0.1 s</td>
<td>0.005 s - 0.5 s</td>
<td>0.001 s</td>
</tr>
<tr>
<td>Circuit breaker operating time threshold setting. This alarm is set in relation to the specified interrupting time of the circuit breaker.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 51: Circuit breaker condition monitoring menu

1.3.17 Opto configuration

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTO CONFIG.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global Nominal V</td>
<td>24 - 27</td>
<td>24 - 27, 30 - 34, 48 - 54, 110 - 125,</td>
<td></td>
</tr>
<tr>
<td>Sets the nominal battery voltage for all opto inputs by selecting one of the five standard ratings in the Global Nominal V settings. If Custom is selected then each opto input can individually be set to a nominal voltage value.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opto Input 1</td>
<td>24 - 27</td>
<td>24 - 27, 30 - 34, 48 - 54, 110 - 125,</td>
<td></td>
</tr>
<tr>
<td>Each opto input can individually be set to a nominal voltage value if custom is selected for the global setting.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opto Input 2 - 16</td>
<td>24 - 27</td>
<td>24 - 27, 30 - 34, 48 - 54, 110 - 125,</td>
<td></td>
</tr>
<tr>
<td>Each opto input can individually be set to a nominal voltage value if custom is selected for the global setting.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opto Filter Cntl.</td>
<td>1111111111111111</td>
<td>0 = Disable Filtering 1 = Enable filtering</td>
<td></td>
</tr>
<tr>
<td>A binary string is used to represent the opto inputs available. A 1 or 0 is used to enable or disable for each input a pre-set filter of ½ cycle that renders the input immune to induced ac noise on the wiring.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Characteristics</td>
<td>Standard</td>
<td>Standard 60% - 80%, 50% - 70%</td>
<td></td>
</tr>
<tr>
<td>Selects the pick-up and drop-off characteristics of the optos. Selecting the standard setting means they nominally provide a Logic 1 or On value for Voltages ≥80% of the set lower nominal voltage and a Logic 0 or Off value for the voltages ≤60% of the set higher nominal voltage.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 52: Opto inputs configuration settings
1.3.18 Control inputs

The control inputs function as software switches that can be set or reset either locally or remotely. These inputs can be used to trigger any function that they are connected to as part of the PSL.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL INPUTS.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ctrl Status</td>
<td>1111111111111111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Input 1</td>
<td>No Operation</td>
<td>No Operation, Set, Reset</td>
<td></td>
</tr>
<tr>
<td>Command to Set or Reset Control Input 1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Input 2 to 32</td>
<td>No Operation</td>
<td>No Operation, Set, Reset</td>
<td></td>
</tr>
<tr>
<td>Commands to Set or Reset Control Inputs 2 to 32.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 53: Control inputs settings

1.3.19 Control input configuration

The control inputs function as software switches that can be set or reset either locally or remotely. These inputs can be used to trigger any function that they are connected to as part of the PSL.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL I/P CONFIG.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hotkey Enabled</td>
<td>1111111111111111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Input 1</td>
<td>Latched</td>
<td>Latched, Pulsed</td>
<td></td>
</tr>
<tr>
<td>Ctrl Command 1</td>
<td>Set/Reset</td>
<td>Set/Reset, In/Out, Enabled/Disabled, On/Off</td>
<td></td>
</tr>
<tr>
<td>Control Input 2 to 32</td>
<td>Latched</td>
<td>Latched, Pulsed</td>
<td></td>
</tr>
<tr>
<td>Ctrl Command 2 to 32</td>
<td>Set/Reset</td>
<td>Set/Reset, In/Out, Enabled/Disabled, On/Off</td>
<td></td>
</tr>
</tbody>
</table>

Table 54: Control inputs configuration settings

1.3.20 Function keys

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNCTION KEYS</td>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>Fn. Key Status</td>
<td>0000000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Displays the status of each function key.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fn. Key 1</td>
<td>Unlocked</td>
<td>Disabled, Locked, Unlock (Enabled)</td>
<td></td>
</tr>
<tr>
<td>Setting to activate the function key. The Locked setting allows a function key output that is set to toggle mode to be locked in its current active state.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 55: Function keys configuration settings

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fn. Key 1 Mode</td>
<td>Toggled</td>
<td>Toggled, Normal</td>
<td></td>
</tr>
</tbody>
</table>

Sets the function key in toggled or normal mode. In **Toggled** mode, the first keypress will latch the function key DDB output signal ON and the next keypress will reset the function key DDB output to OFF. This feature can be used to enable/disable relay functions. In the **Normal** mode the function key DDB signal output will remain ON/ **high** as long as the key is pressed.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fn. Key 1 Label</td>
<td>Function Key 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Allows the text of the function key to be changed to something more suitable for the application.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fn. Key 2 to 10 Status</td>
<td>Unlocked</td>
<td>Disabled, Locked, Unlocked (Enabled)</td>
<td></td>
</tr>
</tbody>
</table>

Setting to activate the function key. The **Locked** setting allows a function key output that is set to toggle mode to be locked in its current active position.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fn. Key 2 to 10 Mode</td>
<td>Toggled</td>
<td>Toggled, Normal</td>
<td></td>
</tr>
</tbody>
</table>

Sets the function key in toggled or normal mode. In **Toggled** mode, the first keypress will latch the function key DDB output signal ON and the next keypress will reset the function key DDB output to OFF. This feature can be used to enable/disable relay functions. In the Normal mode the function key DDB signal output will remain ON/ **high** as long as the key is pressed.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fn. Key 2 to 10 Label</td>
<td>Function Key 2 to 10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Allows the text of the function key to be changed to something more suitable for the application.

Control input labels

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL I/P LABELS</td>
<td>Control Input 1</td>
<td>16 Character Text</td>
<td></td>
</tr>
</tbody>
</table>

Text label to describe each individual control input. This text will be displayed when a control input is accessed by the hotkey menu and it is displayed in the programmable scheme logic description of the control input.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Input 2 to 32</td>
<td>Control Input 2 to 32</td>
<td>16 Character Text</td>
<td></td>
</tr>
</tbody>
</table>

Text label to describe each individual control input. This text will be displayed when a control input is accessed by the hotkey menu and it is displayed in the programmable scheme logic description of the control input.

PSL DATA column

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSL DATA</td>
<td>Model Number</td>
<td>32 Character Text</td>
<td></td>
</tr>
</tbody>
</table>

When downloading a PSL to the relay, the user will be prompted to enter which groups the PSL is for and a reference ID. The first 32 characters of the reference ID will be displayed in this cell. The keys can be used to scroll through 32 characters as only 16 can be displayed at any one time.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grp 1 PSL Ref – 2062813232</td>
<td>Data.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This is a unique number for the PSL that has been entered. Any change in the PSL will result in a different number being
When downloading a PSL to the relay, the user will be prompted to enter which groups the PSL is for and a reference ID. The first 32 characters of the reference ID will be displayed in this cell. The and keys can be used to scroll through 32 characters as only 16 can be displayed at any one time.

18 Nov 2002
08:59:32.047

This cell displays the date and time when the PSL was downloaded to the relay.

Grp 2 PSL ID – 2062813232

This is a unique number for the PSL that has been entered. Any change in the PSL will result in a different number being entered.

Table 57: PSL data menu
(ST) 4-52

MiCOM P40 Agile P241, P242, P243
OPERATION
Operation

(OP) 5-2

MiCOM P40 Agile P241, P242, P243
CONTENTS

1 OPERATION OF INDIVIDUAL PROTECTION FUNCTIONS 9
1.1 Motor starting and running (stall protection) (48/51LR/50S/14) 9
 1.1.1 Stall protection description 9
 1.1.1.1 Prolonged start 9
 1.1.1.2 Locked rotor during starting – (stall time < start time) 10
 1.1.1.3 Stall during running 10
 1.1.1.4 Momentary reduction in system voltage during running 11
 1.1.1.5 Reacceleration after a reduction in system voltage 11
 1.1.1.6 Low voltage ride through authorization 11
 1.1.1.7 Auto Re-start authorization: re-start/load restoration sequence 13
1.2 Number of starts limitation (66) 15
 1.2.1 Starts inhibition 15
 1.2.2 Time between starts 17
1.3 Anti-Backspin protection (27 remanent) 18
 1.3.1 Anti-Backspin description 18
 1.3.1.1 2 VT + Vrem is connected: 19
1.4 Thermal overload (49) 19
 1.4.1 Thermal replica 19
 1.4.2 Thermal trip 20
 1.4.2.1 Compensation for ambient temperature by RTD 20
 1.4.2.2 Motor thermal state 21
 1.4.2.3 Thermal lockout 22
 1.4.2.4 Emergency restart 22
 1.4.2.5 User programmable curve for thermal over load protection 23
1.5 Motor differential protection (87) 23
 1.5.1 Biased differential protection 24
 1.5.1.1 Differential and bias current calculation 25
 1.5.2 High impedance differential protection 27
 1.5.3 Self balance winding differential 29
1.6 Short circuit protection (50/51) 30
 1.6.1 RI curve 32
 1.6.2 Timer hold facility 32
 1.6.3 User programmable overcurrent protection 33
1.7 Negative sequence overcurrent protection (NPS) (46) 34
1.8 Voltage elements (27/59/59N) 34
 1.8.1 Undervoltage protection (27) 34
 1.8.2 Overvoltage protection (59) 35
 1.8.3 Negative Sequence Overvoltage (47) 36
1.8.4 3 Phase voltage checking (47/27) 36
1.8.5 Residual overvoltage / NVD protection (59N) 36
1.9 Underfrequency protection (81U) 39
1.10 Field failure protection function (40) 39
1.11 Power elements (32R/37/55) 41
1.11.1 Reverse power (32R) 41
1.11.2 Out of step protection (under power factor) (55) 42
1.11.2.1 Principle 42
1.11.2.2 Feature description 42
1.11.3 Loss of load (under power) (37) 42
1.12 Sensitive earth fault protection function (50N/51N/67N/32N/64N) 43
1.12.1 User programmable sensitive earth fault protection 46
1.13 Derived earth fault protection function (50N/51N) 46
1.13.1 User programmable derived earth fault protection 48
1.14 Resistive temperature device (RTD) thermal protection 48
1.14.1 Principle of the RTD connection 49
1.15 Circuit breaker failure protection (50BF) 50
1.16 Current loop inputs and outputs 51
1.16.1 Current loop inputs 51
1.16.2 Current loop output 53

2 OPERATION OF NON PROTECTION FUNCTIONS 57
2.1 VT supervision 57
2.1.1 Loss of all three-phase voltages under load conditions 57
2.1.2 Absence of three-phase voltages on line energization 57
2.1.2.1 Inputs 58
2.1.3 Operation 59
2.2 CT supervision 59
2.3 Circuit breaker state monitoring 60
2.4 Circuit breaker condition monitoring 62
2.4.1 Circuit breaker condition monitoring features 62
2.5 Circuit breaker control 62
2.6 Changing setting groups 63
2.7 Control inputs 64
2.8 Enhanced opto-input time stamping 65
2.9 PSL DATA column 65
2.10 Reset of programmable LEDs and output contacts 66
2.11 Real time clock synchronization using opto-inputs 66
2.12 Read only mode 67
2.12.1 Protocol / port Implementation: 67
2.12.1.1 IEC 60870-5-103 protocol on rear port 1: 67
2.12.1.2 Courier protocol on rear port 1/2 and Ethernet 67
2.12.1.3 IEC 61850 67
2.12.1.4 Courier database support 68
2.12.2 New DDB signals 68
2.13 Any trip 68
2.14 Function keys (P242/3) 69
2.15 Phase rotation 70
2.15.1 Description 70
2.15.2 Phase reversal switches affecting all CTs and VTs 70
2.15.2.1 System config settings 70

FIGURES

Figure 1: Start successful 9
Figure 2: Locked rotor detection 10
Figure 3: Reacceleration detection 11
Figure 4: Adjustable reacceleration authorization - Voltage restored within the set time. 12
Figure 5: Adjustable reacceleration authorization - Voltage restored after the set time 13
Figure 6: Automatic restart authorized- voltage restored within the set time 14
Figure 7: Automatic restart failed- voltage restored after the set time. 15
Figure 8: Start inhibition example 1 16
Figure 9: Start inhibition example 2 17
Figure 10: Time between starts 18
Figure 11: Anti-Backspin logic diagram 19
Figure 12: Ambient temperature compensation 21
Figure 13: Thermal overload protection logic diagram 22
Figure 14: Cooling time constant 22
Figure 15: Principle of circulating current differential protection 23
Figure 16: Motor differential logic diagram 24
Figure 17: Biased differential protection operating characteristic 25
Figure 18: Relay connections for biased differential protection 27
Figure 19: Principle of high impedance differential protection 28
Figure 20: Relay connections for high impedance differential protection 29
Figure 21: Self-balance winding differential protection 30
Figure 22: Definite time overcurrent element 30
Figure 23: Non-directional overcurrent logic diagram 33
Figure 24: Negative sequence overcurrent logic diagram 34
Figure 25: Undervoltage - single and three phase tripping mode (single stage) 35
Figure 26: Overvoltage - single and three phase tripping mode (single stage) 36
Figure 27: 3 VTS configuration 37
Figure 28: Alternative relay connections for residual overvoltage/NVD protection 38
Figure 29: Residual overvoltage logic (single stage) 38
Figure 30: Underfrequency logic 39
Figure 31: Field failure protection characteristics 40
Figure 32: Field failure logic diagram
Figure 33: Reverse power protection
Figure 34: Reverse power logic diagram
Figure 35: Out of step protection
Figure 36: Out of step logic diagram
Figure 37: Loss of load (underpower) protection
Figure 38: Loss of load logic diagram
Figure 39: Directional sensitive earth fault characteristic
Figure 40: Wattmetric directional characteristic
Figure 41: Directional SEF with VN polarization and wattmetric SEF
Figure 42: Derived earth fault characteristic
Figure 43: Derived directional earth fault logic diagram
Figure 44: Typical derived earth fault application
Figure 45: Connection for RTD thermal probes
Figure 46: RTD logic diagram
Figure 47: RTD connection
Figure 48: CB fail logic
Figure 49: Relationship between the transducer measuring quantity and the current input range
Figure 50: Analog (current loop) input logic diagram
Figure 51: Relationship between the current output and the relay measurement
Figure 52: VT supervision logic diagram
Figure 53: CT supervision diagram
Figure 54: CB state monitoring
Figure 55: Remote control of circuit breaker
Figure 56: Default PSL showing Any Trip mapping
Figure 57: Example of using Trip LED
Figure 58: Standard and reverse phase rotation

TABLES

Table 1: Standard IDMT curves and their corresponding coefficients
Table 2: IEEE and US reset curve “S” coefficient values
Table 3: CBF resetting options
Table 4: Impedance per kilometre values of typical cables
Table 5: Current loop output parameters
Table 6: VTS inputs level detector settings outputs
Table 7: VTS outputs
Table 8: Possible states of CB auxiliary contacts and the CTS element corresponding actions
Table 9: Circuit breaker condition monitoring features
Table 10: Control inputs setting columns and their descriptions
Table 11: Control inputs commands
Table 12: Control inputs labels
MiCOM P40 Agile P241, P242, P243

Table 13: Example of time sync by using opto-inputs 66
Table 14: Setting example to avoid event buffer overflow 66
Table 15: Phase rotation setting in SYSTEM CONFIG 71
Operation

MiCOM P40 Agile P241, P242, P243

(OP) 5-8
1 OPERATION OF INDIVIDUAL PROTECTION FUNCTIONS

The following sections detail the individual protection functions.

1.1 Motor starting and running (stall protection) (48/51LR/50S/14)

1.1.1 Stall protection description

Comprehensive features are available to protect the motor during the critical starting sequence. Measurements and diagnostics are also available to help the user in the maintenance of the electrical process. For example, last start time and last start current can be displayed on the HMI of the relay.

1.1.1.1 Prolonged start

The following criteria can be used to detect a motor start.

Single criteria: a change in the interrupting device position is detected. This is from open to closed or detection of a starting current of more than the starting current threshold. The start criteria is set to $52a$ or I in the STALL DETECTION menu settings.

Extended criteria: a change in the interrupting device position is detected, along with the detection of a starting current of more than the starting current threshold, $52A+I$. Both criteria have to be present within a 90 ms time period.

Once a start has been detected, using one of these methods, and the current fails to fall below the current threshold before the normal starting time threshold, a trip is initialized.

The following diagram shows detection of a successful start with the use of the extended criteria.

![Diagram showing successful start criteria](image)

Figure 1: Start successful

An alarm **Prolonged Start: DDB 299** is generated if the current fails to fall below the starting current threshold before the end of the starting timer.
1.1.1.2 Locked rotor during starting – (stall time < start time)

For certain applications, such as motors driving high inertia loads, the stall withstand time can be safely exceeded during starting. This can be done without an over temperature condition within the motor. The stall withstand time is less than the start time, therefore time alone cannot be used to distinguish between a start and a stall condition.

The P24x relay overcomes this problem by using a contact from a speed sensing device wired into a specified opto input (Speed Input: DDB 104). Change of state of this contact indicates successful acceleration of the motor. If the line current exceeds the value set in the Starting current and the speed of the motor is equal to zero, the relay trips following the programmed Stall Time (Stall Rotor-Strt: DDB 302).

Note: The breaker status must be mapped for this function and the breaker must be closed (52A input high) for the relay to operate if a locked rotor is detected.

Figure 2 shows the principle of this feature:
1.1.1.4 Momentary reduction in system voltage during running

To find Reacceleration, Low voltage Ride Through and Auto Restart protection functions, go to the relay menu Stall Detection.

1.1.1.5 Reacceleration after a reduction in system voltage

If there is a low voltage condition on the system for more than 100 ms and, once the voltage has recovered, the current exceeds the stalling current threshold within 5 seconds (Reac in Progress: DDB 300), the stall protection is disabled to allow for reacceleration. A settable undervoltage threshold Reac Low V Set makes it possible to detect a voltage drop.

Figure 3: Reacceleration detection

Highlighted in Figure 3 are the setting thresholds. If the current fails to fall below the stalling current threshold before the end of the Prol.Start Time (Scenario 2), the relay generates a tripping order.

If the current exceeds the stall setting threshold after the 5 s window used for reacceleration criteria, the stall protection is enabled and a trip occurs. The Stall Rotor Run trips if the current stays above the stall setting threshold when the Stall Time timer has timed out.

This function is disabled during the starting period. This period begins when DDB start in progress #297 is asserted and ends when DDB start successful #298 is asserted.

1.1.1.6 Low voltage ride through authorization

When LV Ride Thru is enabled, extra settings are available to define the restored voltage level and introduce an adjustable delay for reacceleration.

A settable overvoltage threshold Reac High V Set makes it possible to detect pre-defined restoration of the voltage.

Adjust the time delay Reac Time. This time delay corresponds to the maximum duration of voltage sag for which the motor reacceleration is authorized. On detection of a voltage drop, the relay initiates a time-delay Reac Time. The diagrams below show the relay behaviour under different conditions:
Due to trip in case of Scenario 2

At the time t_1, when the timer is timed out and scenario 2 is true, the relay trips on “Stall Prol. Start”. In case of scenario 1 there is no trip.

Reac. Time timer starts when low voltage condition is detected. During this period Stall function is disabled and DDB#300 (Reac. In Progress) is asserted.

5 sec

Due to trip in case of Scenario 2

Figure 4: Adjustable reacceleration authorization - Voltage restored within the set time.
1.1.1.7 Auto Re-start authorization: re-start/load restoration sequence

The Auto Re-start element controls the timing of controlled starts following interruptions. When Auto Re-start is enabled, two time delay settings (Reac Long Time and Reac Shed Time) become available. Automatic classical restart is carried out in a set time delay Reac Long Time or after an extended time delay Reac Shed Time when the voltage is restored. Reac Long Time threshold setting can be used for when it is appropriate to restart the motor without any staged startup sequence. Reac Shed Time threshold setting can be used to cover cases when restoration is from backup power, and there must be substantial intervals between starting different motors to maintain stability, and/or only critical motors can be started. The diagrams below show the relay behaviour under different conditions:
Figure 6: Automatic restart authorized- voltage restored within the set time

VT monitors the busbar voltage for automatic restart function to operate correctly. When restart is authorized, DDBs “Auto Re-Start #404” and “Auto Re-Start OK #403” are asserted.
1.2.1 Starts inhibition

Motors can be started a limited number of times in a defined period without exceeding the permitted winding temperatures. The settings in the Limit Nb Starts protection menu monitors these starts.

Two types of starts are supervised:

- Hot Starts are defined by an initial thermal state greater than 50%
- Cold Starts are defined by an initial thermal state lower than 50%

The maximum allowable number of starts per period is an auto-reset inhibit function. This function monitors the number of motor starts in the set period. At the end of the period the number of starts is decremented.

Starts are detected using the 52a status from the breaker. Once the number of starts equals the user-defined setting, the start inhibit is enabled for the set period (inhibit time).
Note: If User Curve is enabled in the Thermal Overload protection, the thermal state remains at 0% for as long as I_{eq} is less than I_{th}. Therefore the number of hot starts and cold starts protections should be disabled because they could give an unexpected result.

First diagram:
The maximum number of starts within the Supervising Time has been reached so the Inhib. Start Time is initiated. The remaining time Supervising Time - tn is greater than the Inhib. Start Time so the start inhibition remains for a duration equal to Supervising time – tn. Therefore, with the default settings and a tn of 8 mins for example, the inhibition time before a new start is 52 mins.

Second diagram:
The maximum number of starts within the Supervising Time has been reached so the Inhib. Start Time is initiated. The remaining time Supervising Time - tn is shorter than the Inhib. Start Time so the start inhibition remains for a duration equal to Inhib. Start Time. Therefore, with the default settings and a tn of 55 mins for example, the inhibition time before a new start is 10 mins.
Figure 9: Start inhibition example 2

The Start Lockout information (Hot Start Nb: DDB 181, Cold Start Nb: DDB 182) is present until the end of the Inhib. Start Time or as long as the counter of the number of starts is equal to the maximum allowed starts.

1.2.2 Time between starts

Immediately following a start there is a start inhibit as soon as the interrupting device is opened. This is for a period equal to the remaining time of the Time between start settings.

The Start Lockout information (Time Between Start: DDB180) is present until the end of the greater time delay between the Inhib. Start Time and the Time Between Start.
1.3 Anti-Backspin protection (27 remanent)

1.3.1 Anti-Backspin description

The anti-backspin function is mainly used for a motor with high inertia, or a synchronous motor in deceleration. This function is used to detect when the rotor has completely stopped, to allow restarting of the motor.

The operation of this function depends on the parameter VT connecting mode. If this is set to 2 VT + Vrem, the function uses an undervoltage with the connected Phase-Phase remanent voltage. If not the function uses only a time delay.

As soon as the CB is opened, the delay setting Anti-backs Delay is started and the DDB signal Antibkspin Alarm: DDB233 goes high.

Notes: When the 2 VT + Vrem input is used, it must be connected to V3 input on the relay using a third VT. Also the first VT must be connected to V1 (Vab) and the second VT connected to V2 (Vbc) inputs on the relay. See the connection diagram in the Installation chapter, P24x/EN IN.

Connection of remanent voltage to input V3 on the relay disables measurement of V_a, V_b, V_c, and V_0. Therefore all power and energy calculations (W, VA, VAr, Wh) are inhibited. Also the following quantities become invisible in the relevant measurement column:

- Peak and RMS quantities of phase to neutral voltages of all three phases
- V0
- Watts, VA, VAr and Wh

All of the following protection functions which require measured quantities of phase to neutral or V_0 become disabled or invisible:

- ‘Out of step’
• ‘Field failure’
• ‘Residual O/V’
• ‘Reverse power’
• ‘Loss of Load’
• ‘3 Phase Voltage Check’
• Directional elements of ‘Derived Earth Fault’ and ‘Sensitive Earth Fault’
• Also the disturbance recorder can not be configured for any of the phase-to-neutral voltages.

1.3.1.1 2 VT + Vremanent is connected:

During the Anti-backs Delay time the remanent phase-phase voltage must decrease below the VRem Anti-backs setting. As soon as this voltage is under the threshold, the DDB signal Antibkspin Alarm: DDB 233 is reset (along with the time delay) and a new start is authorized. If the threshold is not reached and the time delay expires, the signal Antibkspin Alarm is reset and a new start is authorized (see Figure 11).

2 VT + Vremanent is not connected:

When the 2 VT + Vremanent VT is not used, the anti-backspin protection function uses a time delay only Anti-backs Delay. While the timer is operating, a new start is not authorized. A new start is authorized only when the timer has timed out.

Figure 11: Anti-Backspin logic diagram

1.4 Thermal overload (49)

For the thermal overload protection function to operate correctly, the circuit breaker must be closed and its associated closing signal 52a recognized by the relay.

1.4.1 Thermal replica

Both the positive or RMS and negative sequence currents are analysed, to monitor the thermal state accounting for any phase unbalance present. This thermal model takes into account the overheating, generated by the negative phase sequence current in the rotor.

The equivalent motor heating current is calculated by:
\[I_{eq} = \sqrt{(I_1^2 + K I_2^2)} \]

Note: This equation is used in software version A4.x(09) and before

or

\[I_{eq} = \sqrt{(I_{rms}^2 + K I_2^2)} \]

Note: This equation is used in software version B1.0(20) or later

Where:

- \(I_1 \): Positive sequence current
- \(I_{rms} \): root mean square current
- \(I_2 \): negative sequence current
- \(K \) is a constant proportional to the thermal capacity of the motor

The equivalent motor heating current is calculated every 20 ms. The maximum value recorded is then used by the thermal algorithm.

1.4.2 Thermal trip

A multiple time constant thermal replica is used to account for different operating conditions of the motor overload, starting or cooling conditions.

The equation used to calculate the trip time at 100% of thermal state is:

\[t = \tau \ln\left(\frac{k^2 - A^2}{(k^2-1)}\right) \]

Where the value of \(\tau \) (thermal time constant) depends on the current value absorbed by the motor:

- Over load time constant \(\tau = T_1 \) if \(I_{th} < I_{eq} \leq 2I_{th} \)
- Start-up time constant \(\tau = T_2 \) if \(I_{eq} > 2I_{th} \)
- Cooling time constant \(\tau = T_r \) if interrupting device opened

\(I_{th} \) is thermal setting

\(A \) is initial state of the machine in percentage of the thermal state

The initial state of the machine is included in the time to trip calculation algorithm. This is so that the operating time for a thermal trip is decreased if there is a hot motor start.

Some motors have extreme starting conditions such as a very long start time or a very high start current value. During start-up of these motors, the thermal curve is inhibited to avoid false trips.

Note: When the thermal state of the motor reaches 90%, this value is retained at 90% during the remaining period of the Prol. Start Time.

Comprehensive measurements and diagnostics can be accessed through the HMI. For example, the estimated time to the next thermal trip is calculated (see 'MEASUREMENTS 3' menu).

1.4.2.1 Compensation for ambient temperature by RTD

To compensate for the ambient temperature variation, the thermal setting is corrected depending on the ambient temperature. The new value of the thermal capacity used becomes:

\[K' = \frac{I_{eq}}{(\text{coef} \times I_{th})} \]

Where the correction coefficient is calculated depending on the ambient temperature as shown below:
Coef = 1 for T < 40° C
Coef = 1.4 - (0.01T) for 40° C ≤ T ≤ 65° C
Coef = 0.75 for T > 65° C

Figure 12: Ambient temperature compensation

This compensation factor is taken into account when any one of the ten possible RTDs are selected to measure the external or ambient temperature (see menu RTD PROTECTION).

The P24x relay can accommodate ten PT100, Ni100 or Ni120 RTDs. These RTDs are used to monitor the temperature of the stator windings, bearings and ambient temperature. Each RTD software element has two time delayed outputs; one for alarm and one for trip.

RTDs are fragile and susceptible to over voltage, therefore they are usually used in pairs: one main and one back-up. Open circuit and short circuit detection of the RTDs is also provided.

Only one external RTD influences the thermal curve. The second RTD is for back-up.

1.4.2.2 Motor thermal state

The thermal state is stored in non-volatile memory and updated every second. When the power supply is resumed, the value of the thermal state is restored if it is less than 90%. However, if it is greater than 90% it is reset to 90%. This allows adequate protection and reduces the possibility of premature thermal overload tripping.

The thermal state of the motor is displayed in the measurements column MEASUREMENTS 3 of the relay menu. This can be reset by an opto input (Reset Thermal: DDB109), using the user interface or through the remote communications. The latter two methods are password protected.

Note: Resetting the thermal state, any associated inhibits also reset (for example start inhibit threshold).

The DDB signal Thermal Trip indicates tripping of the element (DDB 236). A further DDB signal Thermal Alarm is generated from the thermal alarm stage (DDB 178). The state of the DDB signal can be programmed to be viewed in the Monitor Bit x cells of the COMMISSION TESTS column in the relay.
1.4.2.3 Thermal lockout

This function compares the thermal capacity available with the lockout setting immediately after a trip, for example when the interrupting device is open. If the thermal capacity available is insufficient to allow restart, an output contact programmed for the lockout function (Thermal Lockout: DDB 179) is energized, which inhibits a restart. When the motor has cooled down, this function resets the lockout output contact.

The thermal lockout drops off at 97% of the thermal lockout threshold.

The estimated time to next start is the time to reach the thermal lockout threshold. This is in the MEASUREMENTS 3 menu and is given by the following formula:

\[T = T_r \times \ln \left(\frac{\theta_1}{\theta_2} \right) \]

Where:
- \(T_r \) = cooling time constant,
- \(\theta_1 \) = initial thermal state,
- \(\theta_2 \) = final thermal state = 97% of thermal lockout threshold.

1.4.2.4 Emergency restart

In an emergency, it may be necessary to restart a hot motor. An emergency restart can be enabled through an opto input (Emergency Rest: DDB108), using the user interface or the remote communications. This feature removes all start inhibits (Thermal lockout, No of Hot starts, No of cold starts, and the Time between starts).

This feature resets the thermal memory to 90% if it is greater than 90% or stays as it is if less than 90%.

In an emergency restart, the thermal curve during start-up is inhibited, even if this function is not used during a start-up in normal operation.
1.4.2.5 User programmable curve for thermal over load protection

For information on how to program a customized thermal over load curve and send and extract curves to and from the relay, refer to the document *Px4x/EN UPCT/B11*.

Note 1: If a user programmable curve is enabled in the Thermal Overload protection, the thermal state remains at 0% for as long as Ieq is less than Ith. Therefore the number of hot starts and cold starts should not be used.

Note 2: If Data Points rather than a Formula are used to configure a customized curve, data entered in the Time column can be in scientific format and the maximum time allowed by the tool is 1E+308.

1.5 Motor differential protection (87)

Circulating current differential protection operates on the principle that current entering and leaving a protection zone is equal. Any difference between these currents indicates a fault in the zone. If CTs are connected as shown in Figure 15, current flowing through the protection zone causes current to circulate around the secondary wiring. If the CTs are of the same ratio and have identical magnetizing characteristics, they produce identical secondary currents so zero current flows through the relay.

If there is a fault in the protection zone, there is a difference between the output from each CT. This difference flows through the relay causing it to operate.

![Figure 15: Principle of circulating current differential protection](image)

Heavy through current arising from an external fault condition can cause one CT to saturate more than the other. This results in a difference between the secondary current produced by each CT. It is essential to stabilize the protection for these conditions. Two methods are commonly used. The biasing technique is where the relay setting is raised as through current increases. The high impedance technique, where the relay impedance under maximum through fault conditions is high, so the current in the differential element is insufficient to operate the relay.

The motor differential protection function available in the P243 relay can be used in either biased differential or high impedance differential mode. Both modes of operation are equally valid although users may prefer one over the other. The operating principle of each is described in the following sections.

A DDB (Digital Data Bus) signal indicates the tripping of each phase of differential protection (Diff Trip A/B/C: DDB 315, DDB 316, DDB 317).
Also there is a three phase trip DDB signal (Trip Diff: DDB 318). These signals are used to operate the output relays and trigger the disturbance recorder as programmed into the programmable Scheme Logic (PSL). The state of the DDB signals can also be programmed to be viewed in the Monitor Bit x cells of the COMMISSION TESTS column in the relay.

The motor differential protection operation is shown in the following diagram:

![Motor differential logic diagram](P4071ENa)

Figure 16: Motor differential logic diagram

1.5.1 Biased differential protection

In a biased differential relay, the through current is used to increase the setting of the differential element. For heavy through faults, it is unlikely that the CT output at each zone end is identical. This is due to the effects of CT saturation. In this case a differential current can be produced. However, the biasing increases the relay setting so that the differential spill current is insufficient to operate the relay.

A dual slope percentage bias characteristic is used in the P24x. The lower slope provides sensitivity for internal faults. The higher slope provides stability under through fault conditions. During these there may be transient differential currents due to saturation effect of the motor CTs.

The through current is calculated as the average of the scalar sum of the current entering and leaving the protection zone. This calculated through-current is then used to apply a percentage bias to increase the differential setting. The percentage bias can be varied to give the operating characteristic shown in Figure 17.
The P243 relay has two bias settings. The initial bias slope, $\text{Diff } k_1$, is applied for through currents up to $\text{Diff } I_{s2}$. The second bias slope, $\text{Diff } k_2$, is applied for through currents above the $\text{Diff } I_{s2}$ setting.

The Biased differential protection function uses the two sets of three-phase current measurement inputs (I_A, I_B, I_C, I_{A2}, I_{B2}, I_{C2}), connected to measure the phase current at the neutral end and terminals of the machine, as shown in Figure 17. The bias and differential currents are calculated by the relay software. They provide a phase segregated differential protection function and may be viewed in the MEASUREMENTS 1 column in the relay menu.

1.5.1.1 Differential and bias current calculation

The calculation is performed on a per phase basis. The differential current is the vector sum of the phase currents measured at either end of the generator. The mean bias current (I_{bias}) is the scalar mean of the magnitude of these currents, that is,

\[
\begin{align*}
I_{a\text{-diff}} &= \frac{I_{a-1} + I_{a-2}}{2} \\
I_{b\text{-diff}} &= \frac{I_{b-1} + I_{b-2}}{2} \\
I_{c\text{-diff}} &= \frac{I_{c-1} + I_{c-2}}{2} \\
I_{a\text{-bias}} &= \frac{I_{a-1} + I_{a-2}}{2} \\
I_{b\text{-bias}} &= \frac{I_{b-1} + I_{b-2}}{2} \\
I_{c\text{-bias}} &= \frac{I_{c-1} + I_{c-2}}{2}
\end{align*}
\]

To provide further stability for external faults, a number of additional measures are taken on the bias calculations:

\begin{figure}
\centering
\includegraphics[width=\textwidth]{biased-differential protection operating characteristic}
\caption{Biased differential protection operating characteristic}
\end{figure}
The bias quantity used is the maximum of the bias quantities calculated in the last cycle. This maintains the bias level, providing stability while an external fault is cleared. This feature is implemented on a per phase basis. The algorithm is expressed as follows; the function is executed 4 times per cycle:

\[
\begin{align*}
I_a\text{-bias}(n) &= \text{Maximum} \left[I_a\text{-bias}(n), I_a\text{-bias}(n-1), ..., I_a\text{-bias}(n - 3) \right] \\
I_b\text{-bias}(n) &= \text{Maximum} \left[I_b\text{-bias}(n), I_b\text{-bias}(n-1), ..., I_b\text{-bias}(n - 3) \right] \\
I_c\text{-bias}(n) &= \text{Maximum} \left[I_c\text{-bias}(n), I_c\text{-bias}(n-1), ..., I_c\text{-bias}(n - 3) \right]
\end{align*}
\]

1.5.1.1.2 Transient bias

If there is a sudden increase in the mean-bias measurement, an additional bias quantity is introduced into the bias calculation on a per phase basis. This bias quantity decays exponentially afterwards. The transient bias is reset to zero once the relay has tripped or if the mean bias quantity is below the Is1 setting. The transient bias is used to make the protection stable for external faults. It also allows for the time delay in CT saturation caused by small external fault currents and high X/R ratios. For single-end or double-end fed faults, the differential current is dominant and the transient bias has no effect.

The transient bias is removed after the relay has tripped to avoid the possibility of chattering. It is also removed when Ibias is less than Is1 to avoid the possibility of residual values due to the numerical effects.

1.5.1.1.3 Maximum bias

The bias quantity used per phase for the percentage bias characteristic is the maximum bias current calculated from all three phases,

\[I\text{-bias}-\text{max} = \text{Maximum} \left[I_a\text{-bias}, I_b\text{-bias}, I_c\text{-bias} \right] \]

1.5.1.1.4 Tripping criteria

The tripping criteria per phase are formulated as follows. The differential threshold changes according to the value of I-bias-max, as in the percentage bias characteristic.

\textbf{Note:} The transient bias is on a per phase basis and is not be affected by the K1 or K2 setting.

For \(I\text{-bias-max} \leqslant Is2 \)

\[
I_{\text{diff}} > K1 \times I\text{-bias-max} + \text{Transient_bias} + Is1
\]

For \(I\text{-bias-max} > Is2 \)

\[
I_{\text{diff}} > K2 \times I\text{-bias-max} + \text{Transient Bias} - Is2 \times (K2-K1) + Is1
\]

A count strategy is used so the protection operates slower near the boundary of operation. This approach is used to stabilize the relay under some marginal transient conditions.
1.5.2 High impedance differential protection

The high impedance principle is best explained by considering a differential scheme where one CT is saturated for an external fault, as shown in Figure 19.
Figure 19: Principle of high impedance differential protection

If the relay circuit is considered to be very high impedance, the secondary current produced by the healthy CT flows through the saturated CT. If the magnetizing impedance of the saturated CT is considered to be negligible, the maximum voltage across the relay circuit is equal to the secondary fault current multiplied by the connected impedance, \((R_{L3} + R_{L4} + R_{CT2})\).

The relay can be made stable for this maximum applied voltage by increasing the overall impedance of the relay circuit, so the resulting current through the relay is less than its current setting. As the impedance of the relay input alone is relatively low, a series connected external resistor is required. The value of this resistor, \(R_{ST}\), is calculated by the formula shown in Figure 19. An additional non-linear resistor (Metrosil) may be required to limit the peak secondary circuit voltage during internal fault conditions.

To ensure that the protection operates quickly during an internal fault, the CTs used to operate the protection must have a knee point voltage of at least 2 Vs.

The high impedance differential protection function uses the \(IA2, IB2, IC2\) current inputs connected to measure the differential current in each phase, as shown in Figure 20.
1.5.3 Self balance winding differential

An alternative is to use self balance type differential protection arrangement, as shown in Figure 21, using the IA2, IB2, IC2 set of CTs.

For this configuration, the relay must be set to **High Impedance** using the cell **Diff Function** in the **Differential** protection menu.

Spill current can be kept to a minimum if the conductors are placed reasonably concentrically in the window of the core balance current transformers. With this low spill current and a reasonable independence of CT ratio to full load, a lower fault setting could be achieved compared to conventional high impedance circulating current differential schemes.

Disadvantages

1. Both ends of each phase winding need to pass through the CT. Therefore extra cabling is needed on the neutral end.

2. To avoid long cabling, the position of CTs is restricted to the proximity of the machine output terminals. In this case the cable between the machine output terminals and controlling switchgear might not be included in the differential zone.
1.6 Short circuit protection (50/51)

The overcurrent protection included in the P24x relays provides four-stage non-directional three-phase overcurrent protection with independent time delay characteristics. All overcurrent settings apply to all three phases but are independent for each of the four stages.

The first two stages of overcurrent protection have time-delayed characteristics. These are selectable between inverse definite minimum time (IDMT) and definite time (DT). The third and fourth stages have definite time characteristics only.

If a definite time setting of less than 100 ms is set, to avoid tripping during start-up due to asymmetric CT saturation, the definite time element has a minimum operating time of 100 ms for currents in the range of 1 $\times I>$ to 1.13 $\times I>$ as shown in Figure 19.

Figure 21: Self-balance winding differential protection

Figure 22: Definite time overcurrent element
Various methods can be used to achieve correct relay co-ordination on a system: by time alone, current alone or a combination of both time and current. Grading by current is only possible where there is an appreciable difference in fault level between the two relay locations. Grading by time is used by some utilities but can often lead to excessive fault clearance times at or near source substations where the fault level is highest. For these reasons the most commonly applied characteristic in coordinating overcurrent relays is the IDMT type.

These inverse time delayed characteristics comply with the following formula:

$$t = T x \left(\frac{\beta}{(M^a - 1)} + L \right) + C \quad \text{or} \quad t = TD / 7 x \left(\frac{\beta}{(M^a - 1)} + L \right)$$

Where:

- \(t \) = Operation time
- \(\beta \) = Constant
- \(M \) = \(I/I_s \)
- \(K \) = Constant
- \(I \) = Measured current
- \(I_s \) = Current threshold setting
- \(\alpha \) = Constant
- \(L \) = ANSI/IEEE constant (zero for IEC curves)
- \(T \) = Time multiplier setting for IEC curves
- \(T_D \) = Time dial setting for IEEE and user programmable curves
- \(t_{ucrv} \) = User curve operating time

<table>
<thead>
<tr>
<th>Curve description</th>
<th>Standard</th>
<th>(\beta) constant</th>
<th>(\alpha) constant</th>
<th>L constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Inverse</td>
<td>IEC</td>
<td>0.14</td>
<td>0.02</td>
<td>0</td>
</tr>
<tr>
<td>Very Inverse</td>
<td>IEC</td>
<td>13.5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Extremely Inverse</td>
<td>IEC</td>
<td>80</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Long Time Inverse</td>
<td>UK</td>
<td>120</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Rectifier</td>
<td>UK</td>
<td>45900</td>
<td>5.6</td>
<td>0</td>
</tr>
<tr>
<td>Moderately Inverse</td>
<td>IEEE</td>
<td>0.0515</td>
<td>0.02</td>
<td>0.114</td>
</tr>
<tr>
<td>Very Inverse</td>
<td>IEEE</td>
<td>19.61</td>
<td>2</td>
<td>0.491</td>
</tr>
<tr>
<td>Extremely Inverse</td>
<td>IEEE</td>
<td>28.2</td>
<td>2</td>
<td>0.1217</td>
</tr>
<tr>
<td>Inverse</td>
<td>US</td>
<td>5.95</td>
<td>2</td>
<td>0.18</td>
</tr>
<tr>
<td>Short Time Inverse</td>
<td>US</td>
<td>0.16758</td>
<td>0.02</td>
<td>0.11858</td>
</tr>
</tbody>
</table>

Table 1: Standard IDMT curves and their corresponding coefficients

The IEEE, US curves and User Curves are set differently to the IEC/UK curves, with regard to the time setting. A time multiplier setting (TMS) is used to adjust the operating time of the IEC curves, whereas a time dial setting is employed for the IEEE/US/User curves. The menu is arranged so that if an IEC/UK curve is selected, the Time Dial cell is not visible and vice versa for the TMS setting.
Note: The IEC/UK inverse characteristics can be used with a definite time reset characteristic. However, the IEEE/US/User curves may have an inverse or definite time reset characteristic. The following equation can be used to calculate the inverse reset time for IEEE/US/User curves:

\[
t_{\text{RESET}} = \frac{TD/7 \times S}{1 - M^2} \text{ in seconds}
\]

Where:

- \(TD\) = Time dial setting for IEEE and user programmable curves
- \(S\) = Constant
- \(M\) = \(I/I_s\)

<table>
<thead>
<tr>
<th>Curve description</th>
<th>Standard</th>
<th>(S) constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderately Inverse IEEE</td>
<td>IEEE</td>
<td>4.85</td>
</tr>
<tr>
<td>Very Inverse IEEE</td>
<td>IEEE</td>
<td>21.6</td>
</tr>
<tr>
<td>Extremely Inverse IEEE</td>
<td>IEEE</td>
<td>29.1</td>
</tr>
<tr>
<td>Inverse US</td>
<td>US</td>
<td>5.95</td>
</tr>
<tr>
<td>Short Time Inverse US</td>
<td>US</td>
<td>2.261</td>
</tr>
</tbody>
</table>

Table 2: IEEE and US reset curve "S" coefficient values

And for user programmable curves \(t_{\text{RESET}} = t = TD \times t_{\text{curv}}\)

1.6.1 RI curve

The RI curve (electromechanical) has been included in the first and second stage characteristic setting options for phase overcurrent and earth protections. The curve is represented by the following equation.

\[
t = K \times \left(\frac{1}{0.339 - \left(\frac{0.236}{M}\right)} \right) \text{ in seconds}
\]

With \(K\) adjustable from 0.1 to 10 in steps of 0.05

- \(M\) = \(I/I_s\)

1.6.2 Timer hold facility

The first two stages of overcurrent protection in the P24x relay are provided with a timer hold facility, which may either be set to zero or to a definite time value

Note: If an IEEE/US operate curve is selected, the reset characteristic may be set to either definite or inverse time in cell I>1 Reset Char; otherwise this setting cell is not visible in the menu.

Setting the timer to zero causes the overcurrent timer for that stage to reset instantaneously once the current falls below 95% of the current setting. Setting of the hold timer to a value other than zero delays the resetting of the protection element timers for this period. This may be useful in certain applications, for example when grading with upstream electromechanical overcurrent relays which have inherent reset time delays.

Another situation where the timer hold facility can be used to reduce fault clearance times is for intermittent faults. For example in plastic insulated cable, the fault energy can melt and reseal the cable insulation, extinguishing the fault. This process repeats to give a succession of fault current pulses, each of increasing duration with reducing intervals between the pulses, until the fault becomes permanent.
When the reset time of the overcurrent relay is instantaneous, the relay is repeatedly reset and not able to trip until the fault becomes permanent. Using the Timer Hold facility, the relay integrates the fault current pulses, reducing fault clearance time.

Settings i_{treset} and i_{2treset} are the timer hold facility for the first and second overcurrent stages.

Note: This cell is not visible for the IEEE/US curves if an inverse time reset characteristic has been selected, as the reset time is then determined by the programmed time dial setting.

The functional logic diagram for non-directional overcurrent is shown in Figure 23. The overcurrent block is a level detector that detects if the current magnitude is above the threshold. It provides a start and also initiates the IDMT/DT characteristic depending on the setting.

Figure 23: Non-directional overcurrent logic diagram

There is a timer block input for each stage which resets the overcurrent timers of all three phases if energized, taking account of the reset time delay if selected for the $i_{>1}$ and $i_{>2}$ stages.

Note: The short circuit element acts even if the current input signals are saturated.

A DDB (Digital Data Bus) signal is available to indicate the start and trip of each phase of the short circuit protection stages (Start $i_{>1/2/3/4}$ A,B,C: DDB 242,243,244/DBB 253,254,255/DBB 343,344,345/DBB 354,355,356 Trip $i_{>1/2/3/4}$ A,B,C: DDB 245,246,247/DBB 256,257,258/DBB 346,347,348/DBB 357,358,359). In addition a three phase start and trip DDB signal is provided (Start $i_{>1/2/3/4}$: DDB 241/252/342/353 Trip $i_{>1/2/3/4}$: DDB237/248/338/349). Also DDBs are provided to block or to inhibit overcurrent function (Timer Block $i_{>1/2/3/4}$: DDB 133/135/137/139 Inhibit $i_{>1/2/3/4}$: DDB 134/136/138/140). These signals are used to operate the output relays, trigger the disturbance recorder and either block the associated timer or inhibit the overcurrent function as programmed into the programmable Scheme Logic (PSL). The state of the DDB signals can also be programmed to be viewed in the Monitor Bit x cells of the COMMISSION TESTS column in the relay.

1.6.3 User programmable overcurrent protection

The overcurrent curve facility for the first and second stages of short circuit protection is user programmable. For information on how to program a customized overcurrent curve and send and extract curves to and from the relay, see to the document Px4x/EN UPCT/B11.
1.7 Negative sequence overcurrent protection (NPS) (46)

The P24x relays provide two independent stages of negative phase sequence overcurrent protection. Stage 1 has a current pick up setting \(I_{2>1} \) Current Set, and is time delayed in operation by the adjustable timer \(I_{2>1} \) Time Delay. Stage 2 has a current pick up setting \(I_{2>2} \) Current Set and is time delayed in operation by a Time Multiplier Setting \(I_{2>2} \) TMS.

The second stage element monitors the negative phase sequence current and trip according to an inverse characteristic as follows:

\[
T = \text{TMS} \times \left(\frac{1.2}{(I_{2}/I_{s})} \right) \quad \text{for} \quad I_{2}/I_{s} \leq 2
\]

\[
T = \text{TMS} \times 0.6 \quad \text{for} \quad I_{2}/I_{s} > 2
\]

A DDB (Digital Data Bus) signal indicates the trip of the negative phase sequence overcurrent protection stages (Trip \(I_{2>1/2} \): DDB274, 275). These signals are used to operate the output relays and trigger the disturbance recorder as programmed into the programmable Scheme Logic (PSL). The state of the DDB signals can also be programmed to be viewed in the Monitor Bit \(x \) cells of the COMMISSION TESTS column in the relay.

![Figure 24: Negative sequence overcurrent logic diagram](image)

1.8 Voltage elements (27/59/59N)

1.8.1 Undervoltage protection (27)

Both the under and overvoltage protection functions are in the Volt Protection menu. The undervoltage protection in the P24x relays has of two independent stages.

Stage 1 can be selected as IDMT, DT or Disabled, in the \(V<1 \) Function cell. Stage 2 is DT only and is enabled or disabled in the \(V<2 \) Status cell.

The IDMT characteristic available on the first stage is defined by the following formula:

\[
t = \frac{K}{(M - 1)}
\]

Where:

- \(K \) = Time multiplier setting
- \(t \) = Operating time in seconds
- \(M \) = Measured voltage/relay setting voltage (\(V< \) Voltage Set)

Note: The Measured quantity of the undervoltage function can be chosen as either Phase-Neutral or Phase-Phase using the relay menu \(V<1/2 \) Measur't Mode. The operation of the undervoltage function can be chosen as either Three Phase or Any Phase using the relay menu \(V<1/2 \) Operate Mode.

Two stages provide both alarm and trip stages, where required. Alternatively, different time settings may be required depending on the severity of the voltage dip. For example, motor loads can withstand a small voltage depression for longer than if a major voltage excursion occurred.

Note: The Undervoltage protection is blocked if the Circuit breaker is open. Therefore the 52a breaker status (CB Closed 3ph - DDB 105) must be mapped in the PSL for the Undervoltage protection to operate. Also In the case of VT failure, the undervoltage function is deactivated.
The undervoltage fault protection starts are mapped internally to the ANY START DDB signal – DDB 369.

A DDB (Digital Data Bus) signal is available to indicate the trip of each of the undervoltage protection stages (Trip V<1/2 AB/BC/CA: DDB 276-278, 284-286 Trip V<1/2 A/B/C: DDB 383-385, 389-391). There is a three-phase trip DDB signal (Trip V<1/2: DDB 279, 287). Also there are DDNs to block or to inhibit undervoltage function (Timer Block V<1/2: DDB 129/131 Inhibit V<1/2: DDB 130/132). These signals are used to operate the output relays, trigger the disturbance recorder and either block the associated timer or inhibit the undervoltage function as programmed into the programmable Scheme Logic (PSL). The state of the DDB signals can also be programmed to be viewed in the Monitor Bit x cells of the COMMISSION TESTS column in the relay.

![Diagram of undervoltage protection](image)

Figure 25: Undervoltage - single and three phase tripping mode (single stage)

1.8.2 Overvoltage protection (59)

The overvoltage protection in the P24x relays has two independent stages.

Stage 1 and 2 can be selected as DT or Disabled in the V>1/2 Status cell. The IDMT characteristic on the first stage is defined by the following formula:

\[t = \frac{K}{(M - 1)} \]

Where:

- \(K \) = Time multiplier setting
- \(t \) = Operating time in seconds
- \(M \) = Measured voltage / relay setting voltage (V> Voltage Set)

Note: The measured quantity of the overvoltage function can be chosen as either Phase-Neutral or Phase-Phase via the relay menu V< 1/2 Measur't Mode. The operation of the overvoltage function can be chosen as either Three Phase or Any Phase via the relay menu V< 1/2 Operate Mode.

The overvoltage fault protection starts are mapped internally to the ANY START DDB signal – DDB 369.

A DDB (Digital Data Bus) signal indicates the trip of each of the overvoltage protection stages (Trip V>1/2 AB/BC/CA: DDB 280-282, 288-290 Trip V<1/2 A/B/C: DDB 386-388, 392-394). There is a three-phase trip DDB signal (Trip V>1/2: DDB 283, 291). These signals are used to operate the output relays and trigger the disturbance recorder as programmed into the programmable Scheme Logic (PSL). The state of the DDB signals can also be programmed to be viewed in the Monitor Bit x cells of the COMMISSION TESTS column in the relay.
1.8.3 Negative Sequence Overvoltage (47)

Negative sequence overvoltage protection functions can be found in the relay menu **NEG SEQ O/V**. Two definite time stages of negative sequence overvoltage are available in the P241, P242 and P243. The negative sequence overvoltage elements can be selected as DT or Disabled in the **V2>status** cell. In the case of VT failure, the V2> function is deactivated.

The negative sequence overvoltage fault protection starts are mapped internally to the ANY START DDB signal – DDB 369.

A DDB (Digital Data Bus) signal indicates the start and the trip of each of the negative sequence overvoltage protection stages (Start V2>1/2 DDB 395, 397 Trip V2>1/2 DDB 396, 398). Also DDBs are provided to block or to inhibit negative sequence overvoltage function (Timer Block V<1/2: DDB 125/127 Inhibit V<1/2: DDB 126/128). These signals are used to operate the output relays and trigger the disturbance recorder as programmed into the programmable Scheme Logic (PSL). The state of the DDB signals can also be programmed to be viewed in the Monitor Bit x cells of the COMMISSION TESTS column in the relay.

1.8.4 3 Phase voltage checking (47/27)

The input voltage rotation and magnitude are monitored to determine both correct phase rotation and sufficient supply voltage, before allowing the motor to start.

For a good starting condition, the positive sequence voltage (V1) should be greater than the negative sequence voltage (V2). Also the phase voltages VA and VB and VC should be greater than the user settable threshold (V s).

The result of this function may be used into the programmable scheme logic to inhibit the start of the motor if the voltage is not sufficient (3Ph Volt Alarm: DDB177).

This feature requires a 52a circuit breaker auxiliary contact mapped to an opto input to acquire the information CB closed/CB open.

1.8.5 Residual overvoltage / NVD protection (59N)

The neutral voltage displacement protection function of the P24x relays consist of two stages of measured (VN>1, VN>2) neutral overvoltage protection. Stage one can be set as Definite Time (DT) or Inverse Definite Minimum Time (IDMT).
The operation of this function depends on the parameter VT connecting mode: If this is set to 2 VT + Residual, the function uses the residual voltage measured from the connected residual voltage input.

Note: If VT connecting mode is selected as 3VT, then derived neutral voltage protection is available and if it is selected as 2VT+Residual then measured neutral voltage protection is available.

Figure 27: 3 VTS configuration
Figure 28: Alternative relay connections for residual overvoltage/NVD protection

Figure 29: Residual overvoltage logic (single stage)

The residual overvoltage fault protection starts are mapped internally to the ANY START DDB signal – DDB 369.

A DDB (Digital Data Bus) signal is available to indicate the trip of each of the neutral voltage protection stages (Trip NVD VN>1/2: DDB 292, 293). These signals are used to operate the output relays and trigger the disturbance recorder as programmed into the programmable Scheme Logic (PSL). The state of the DDB signals can also be programmed to be viewed in the Monitor Bit x cells of the COMMISSION TESTS column in the relay.

The IDMT characteristic available on the first stage is defined by the following formula:

\[
T = \frac{K}{M - 1}
\]

Where:

- \(K\) = Time Multiplier Setting (VN>1 TMS)
- \(T\) = Operating Time in Seconds
- \(M\) = Measured Residual Voltage/Relay Setting Voltage (VN>1 Voltage Set)
1.9 Underfrequency protection (81U)
The P24x relays include 2 stages of underfrequency. Stage 1 and 2 may be selected as DT or Disabled, in the F<1/2 Status cell.

The logic diagram for the underfrequency logic is as shown in Figure 30. Only a single stage is shown. The other stage is identical in functionality.

If the frequency is below the setting and the breaker is closed (52A input high), the DT timer is started.

This feature is only enabled when the circuit breaker is closed, therefore it requires a 52a circuit breaker auxiliary contact mapped to an opto input to get the information CB closed / CB open.

If the frequency cannot be determined (Frequency Not Found), the function is also blocked. A DDB (Digital Data Bus) signal indicates the trip of each of the underfrequency protection stages (Trip F<1/2: DDB 259, 260). These signals are used to operate the output relays and trigger the disturbance recorder as programmed into the programmable Scheme Logic (PSL). The state of the DDB signals can also be programmed to be viewed in the Monitor Bit x cells of the COMMISSION TESTS column in the relay.

![Figure 30: Underfrequency logic](image)

1.10 Field failure protection function (40)
The field failure protection of the P24x consists of two elements, an impedance element with two time delayed stages and a power factor alarm element, shown in Figure 31. The Field Failure protection impedance elements have an adjustable delay on reset (delayed drop off) timer. The elements operate from phase A current and phase A voltage signals measured by the Ia and Va inputs on the relay. The minimum phase current and voltage required for P241/2/3 field failure protection to work is 20 mA and 1 V (In = 1 A, Vn = 100/120 V) and 100 mA and 1 V (In = 5 A, Vn = 100/120 V).
Figure 31: Field failure protection characteristics

DDB signals FFail Start 1/2: DDB 334, DDB 335, Field Fail1/2 Trip: DDB 336, DDB 337 indicate the start and tripping of each stage. A further DDB Field Fail Alarm signal is generated from the field failure alarm stage (DDB 234). The state of the DDB signals can be programmed to be viewed in COMMISSION TESTS > Monitor Bit x.

The field failure protection starts are mapped internally to the ANY START DDB signal – DDB 369.

The field failure protection is provided with a FFail Block signal (DDB 117) which may be used in the Programmable Scheme Logic to block the Field Failure protection.

Figure 32: Field failure logic diagram
1.11 Power elements (32R/37/55)

The standard power protection elements of the P24x relay calculate the three-phase active power based on the following formula using the current measured at the Ia, Ib, Ic inputs of the relay.

\[P = V_a I_a \cos \phi_a + V_b I_b \cos \phi_b + V_c I_c \cos \phi_c \]

1.11.1 Reverse power (32R)

When a power supply failure occurs on the feeder, synchronous motors become generators due to the inertia of their load and induction motors become generators.

The aim of the reverse power protection is to detect the inverse flow of energy and to ensure that the motor does not feed the fault which has appeared on the network.

The Reverse Power protection in the P24x has a single reverse power threshold **Rev P< Power Set**. If this setting is reached, the reverse power protection trips in a time equal to the time delay setting **Rev P< Time Delay**. A drop-off time, **Rev P< Drop-of Ti** during the motor start time can be used to avoid tripping orders during starts.

Trip Rev Power: DDB 273 indicates the trip of the reverse power protection. This signal is used to operate the output relays and trigger the disturbance recorder as programmed into the programmable Scheme Logic (PSL). The state of the DDB signals can also be programmed to be viewed in COMMISSION TESTS > Monitor Bit x.

This feature is only enabled when the circuit breaker is closed, therefore it requires a 52a circuit breaker auxiliary contact mapped to an opto input to obtain the CB closed / CB open information.

Figure 33: Reverse power protection

Figure 34: Reverse power logic diagram
1.11.2 Out of step protection (under power factor) (55)

1.11.2.1 Principle

![Figure 35: Out of step protection](image)

Figure 35: Out of step protection

![Figure 36: Out of step logic diagram](image)

Figure 36: Out of step logic diagram

1.11.2.2 Feature description

Power factor protection is provided for out-of-step protection of synchronous machines. The 3ph power factor is taken into account and a drop-off time during the motor start time can be used to avoid tripping during the motor start.

This feature is only enabled when the circuit breaker is closed, therefore it requires a 52a circuit breaker auxiliary contact mapped to an opto input to obtain the CB closed / CB open information.

Trip PF<Lead/Lag: DDB 271, 272 indicates the trip of each of the out of step protection stages. These signals are used to operate the output relays and trigger the disturbance recorder as programmed into the programmable Scheme Logic (PSL). The state of the DDB signals can also be programmed to be viewed in COMMISSION TESTS > Monitor Bit x.

1.11.3 Loss of load (under power) (37)

A trip is initiated if the minimum 3 phase active power is less than the programmed threshold for a settable time delay. Since rated power cannot be reached during starting, this feature can be disabled using a delay on drop off time during the motor start time.
A low forward power condition can only be established when the circuit breaker is closed and the active power calculated is above zero.

Note: As the absolute power is used for this function, it can also be used to protect against the reverse power of some synchronous motors.

Trip P<1/2: DDB 269, 270 indicates the trip of each of the underpower protection stages. These signals are used to operate the output relays and trigger the disturbance recorder as programmed into the programmable Scheme Logic (PSL). The state of the DDB signals can also be programmed to be viewed in **COMMISSION TESTS > Monitor Bit x**.

This feature is only enabled when the circuit breaker is closed, therefore it requires a 52a circuit breaker auxiliary contact mapped to an opto input to obtain the CB closed / CB open information.

Figure 37: Loss of load (underpower) protection

Tripping conditions:
- CB Closed,
- P active < **P<1 Power Set** or **P<2 Power Set**

Note: If the active power is negative, this function may generate a trip.

Figure 38: Loss of load logic diagram

1.12 Sensitive earth fault protection function (50N/51N/67N/32N/64N)

The P24x has two stages of sensitive earth fault protection. The first stage can be set as Inverse Definite Minimum Time (IDMT) and the second stage as Definite Time (DT) only. When directional earth fault protection is required, derive the operating current from either a core balanced CT or the residual connection of three-phase CTs at the terminals of the machine. The direction of the earth fault current for this element is determined with reference to the polarizing signal, the residual voltage. The polarizing signal is taken from the residual overvoltage/NVD protection input.
The element cannot operate unless the voltage exceeds the polarizing voltage threshold. This helps to restrain the element during phase/phase faults when transient CT saturation produces spill current in the residual connection of the phase CTs. No residual voltage is present during such non-earth fault conditions so the DEF element cannot operate. The element is therefore enabled only during genuine earth fault conditions when significant residual voltage is present. See Figure 39.

Figure 39: Directional sensitive earth fault characteristic
Figure 40: Wattmetric directional characteristic

The Wattmetric active power is given by the following formula:

\[PO = \frac{1}{3} V_n \times I_n \times \cos(\phi_0 - \alpha) \]

With:
\[\phi_0 = \text{phase shift between (In) and (-Vn)} \]
\[\alpha = \text{Characteristic Angle} \]

The tripping conditions are:
- \(\text{In} = \text{Residual current} > \text{PO> Current Set} \)
- \(\text{Vn} = \text{residual voltage} > \text{PO> Voltage Set} \)
- \(\phi_0 = \text{Arg}(\text{In}) - \text{Arg}(\text{Vn}) \in [95^\circ + \alpha, 265^\circ + \alpha] \) where \(\alpha = \text{PO> Char Angle} \)

\[PO = \frac{1}{3} V_n \times I_n \times \cos(\phi_0 - \alpha) > K \times (\text{PO> Current Set}) \times (\text{PO> Voltage Set}) \]

Start ISEF>1/2: DDB 262, 264, Start PO>: DDB295, Trip ISEF>1/2: DDB261, 263 and Trip PO>: DDB294 indicate the start and trip of each of the sensitive earth fault and wattmetric earth fault protection stages. These signals are used to operate the output relays and trigger the disturbance recorder as programmed into the programmable Scheme Logic (PSL). The state of the DDB signals can also be programmed to be viewed in COMMISSION TESTS > Monitor Bit x.
Figure 41: Directional SEF with VN polarization and wattmetric SEF

The standard directional sensitive earth fault element uses the following directional check criteria.

Directional forward

\[-90° < (\text{angle}(I_N) - \text{angle}(V_N + 180°) - \text{RCA}) < 90°\]

1.12.1 User programmable sensitive earth fault protection

There is a user programmable sensitive earth fault curve facility for the first stage of sensitive earth fault protection. For information on how to program a customized sensitive earth fault curve and send and extract curves to and from the relay, refer to the document *Px4x/EN UPCT/B11*.

1.13 Derived earth fault protection function (50N/51N)

The derived earth fault protection can be either non-directional or directional. To cover all types of applications schemes, the criteria used for the directional boundary can be determined in the following ways.

3 VTs connection scheme. This uses the same criteria as for sensitive earth fault protection (zero-sequence voltage polarization), with the same tripping conditions, 2 VTs connection scheme. In this case the criteria can be the angle between the negative phase sequence current and the negative phase sequence voltage.

The tripping conditions are indicated below:

\[I_2 = \text{negative phase sequence current} > \text{IN> I2pol Set}\]
\[V_2 = \text{negative phase sequence voltage} > \text{IN> V2pol Set}\]
\[\phi_0 = \text{Arg}(I_2) - \text{Arg}(V_2) \in [95° + \alpha, 265° + \alpha] \text{ where } \alpha = \text{IN> Char Angle}\]

Start IN>1/2: DDB 266, 268 and Trip IN>1/2: DDB 265, 267 indicate the start and trip of each of the derived earth fault protection stages. These signals are used to operate the output relays and trigger the disturbance recorder as programmed into the programmable Scheme Logic (PSL). The state of the DDB signals can also be programmed to be viewed in COMMISSION TESTS > Monitor Bit x.
Figure 42: Derived earth fault characteristic

Figure 43: Derived directional earth fault logic diagram
1.13.1 User programmable derived earth fault protection

There is a user programmable derived earth fault curve facility for the first stage of derived earth fault protection. For information on how to program a customized derived earth fault curve and send and extract curves to and from the relay, refer to the document Px4x/EN UPCT/B11.

1.14 Resistive temperature device (RTD) thermal protection

To protect against any general or localized overheating, the P241/2/3 relay has the ability to accept inputs from up to 10 - 3 wire Type A PT100, Ni100 or Ni120 resistive temperature sensing devices (RTD). These are connected as shown in Figure 45 below.

Figure 44: Typical derived earth fault application

Figure 45: Connection for RTD thermal probes

These probes can be strategically placed in areas of the machine that are susceptible to overheating or heat damage.

The probes can also be used to measure the external ambient temperature. The ambient temperature can be used to adapt the thermal overload protection operating time. A main
and back-up RTD can be selected in the settings for the external ambient temperature. The units of temperature measurement Celsius or Fahrenheit can also be selected.

- Typically a PT100/Ni100/Ni120 RTD probe can measure temperature within the range –0° to +400°C. The resistance of these devices changes with temperature, at 0°C a PT100 has a resistance of 100 Ω

If the measured resistance is outside of the permitted range, an RTD failure alarm is raised, indicating an open or short circuit RTD input.

These conditions are signaled using DDB signals in the PSL (RTD Short Cct, RTD Open Cct, RTD Data Error: DDB 201-203) and are also shown in the measurements 3 menu.

RTD 1-10 Alarm: DDB 191-200, RTD 1-10 and Trip: DDB 305-314 indicate the alarm and trip of each RTD. The state of the DDB signals can also be programmed to be viewed in COMMISSION TESTS > Monitor Bit x.

See the Installation chapter (P24x/EN IN), for recommendations on RTD connections and cables.

Figure 46: RTD logic diagram

1.14.1 Principle of the RTD connection

An RTD connection is used to compensate the influence of resistors r1 and r2.
Figure 47: RTD connection

The MiCOM P241 injects a constant current from connections 1 and 2, therefore \(i_1 = i_2 \)

\[
V_{13} = r_1 * I_1 + R_{rtd} * I_1 - r_3 * (I_1 + I_2),
\]

\[
V_{23} = r_2 * I_2 - r_3 * (I_1 + I_2),
\]

\[
V_{13} - U_{23} = r_1 * I_1 + R_{rtd} * I_1 - r_3 * (I_1 + I_2) - r_2 * I_2 + r_3 * (I_1 + I_2)
\]

Assuming the three cables have the same length and are of the same material, resistors \(r_1, r_2 \) and \(r_3 \) are the same.

\[
V_{13} - V_{23} = R_{rtd} * I_1 = \text{Voltage at the RTD terminals.}
\]

1.15 Circuit breaker failure protection (50BF)

The circuit breaker failure protection has two timers, **CB Fail 1 Timer** and **CB Fail 2 Timer**, allowing configuration for the following situations.

- **Simple CBF**, where only **CB Fail 1 Timer** is enabled. For any protection trip the **CB Fail 1 Timer** is started and is normally reset when the circuit breaker opens to isolate the fault. If breaker opening is not detected, **CB Fail 1 Timer** times out and closes an output contact assigned to breaker fail (Trip CBF1: DDB 319, using PSL). This contact is used to backtrip upstream switchgear, generally tripping all infeeds connected to the same busbar section.

- A retropping scheme, plus delayed backtripping. **CB Fail 1 Timer** is used to route a trip to a second trip circuit of the same circuit breaker. This requires duplicated circuit breaker trip coils and is known as retropping. If retropping fails to open the circuit breaker, there is an additional time delay and a backtrip can be issued. The backtrip uses **CB Fail 2 Timer**, which is also started at the instant of the initial protection element trip (Trip CBF2: DDB 320).

CBF elements **CB Fail 1 Timer** and **CB Fail 2 Timer** can be configured to operate for trips triggered by protection elements in the relay or using an external protection trip. The latter is achieved by allocating one of the relay opto-isolated inputs to **DDB 115 External Trip** using PSL.

The CBF can be reset from a breaker open indication or from a protection reset. In these cases resetting is only allowed provided the undercurrent elements have also reset. The following table shows the CBF resetting options.

<table>
<thead>
<tr>
<th>Initiation (menu selectable)</th>
<th>CB fail timer reset mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current based protection</td>
<td>The resetting mechanism is fixed.</td>
</tr>
<tr>
<td>(e.g. 50/51/46/67N/87...)</td>
<td>[IA< operates] &</td>
</tr>
<tr>
<td></td>
<td>[IB< operates] &</td>
</tr>
<tr>
<td></td>
<td>[IC< operates] &</td>
</tr>
</tbody>
</table>
Non-current based protection (e.g. 27/59N/81U/32R..)

Three options are available. The user can select from the following options.
- [All I< elements operate]
- [Protection element reset] AND [All I< elements operate]
- CB open AND [All I< elements operate]

External protection

Three options are available. The user can select from the following options.
- [All I< elements operate]
- [Protection element reset] AND [All I< elements operate]
- CB open AND [All I< elements operate]

Table 3: CBF resetting options

<table>
<thead>
<tr>
<th>Initiation (menu selectable)</th>
<th>CB fail timer reset mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Trip</td>
<td></td>
</tr>
<tr>
<td>IA= Start</td>
<td></td>
</tr>
<tr>
<td>IB= Start</td>
<td></td>
</tr>
<tr>
<td>IC= Start</td>
<td></td>
</tr>
<tr>
<td>Protection Trip</td>
<td></td>
</tr>
<tr>
<td>PO= Trip</td>
<td></td>
</tr>
<tr>
<td>P+ Trip</td>
<td></td>
</tr>
<tr>
<td>Reservoir power Trip</td>
<td></td>
</tr>
<tr>
<td>Vr= Trip</td>
<td></td>
</tr>
<tr>
<td>V+ Trip</td>
<td></td>
</tr>
<tr>
<td>VNO VNH=1 Trip</td>
<td></td>
</tr>
</tbody>
</table>

Setting (5050)
- G37-0: Disabled
- G37-1: Enabled

Setting (5046)
- CBF non I Reset
- G38-0: 1x only
- G38-1: CB open & I<
- G38-2: CB Prot reset & I<

Setting (5007)
- CBF Ext Reset
- G36-0: 1x only
- G36-1: CB open & I<
- G36-2: CB Prot reset & I<

Setting (5006)
- CBF fail 2 status
- G36-0: Disabled
- G36-1: Enabled

CB Fail 1 status
- G37-0: Disabled
- G37-1: Enabled

CB Fail 2 status
- G37-0: Disabled
- G37-1: Enabled

CB Fail Alarm
- Trip 3ph

Figure 48: CB fail logic

1.16 Current loop inputs and outputs

1.16.1 Current loop inputs

There are four analog (or current loop) inputs for transducers with ranges of 0 - 1 mA, 0 – 10 mA, 0 - 20 mA or 4 - 20 mA. The analog inputs can be used for various transducers such as vibration monitors, tachometers and pressure transducers. Associated with each current loop input are units (A, V, Hz, W, Var, VA, °C, F, %, s). There are also two protection stages, one for alarm and one for trip. Each current loop input can be individually enabled or disabled and each input has a definite time delay alarm and trip stage. There is also a delay on drop off time which applies to all inputs.
The Alarm and Trip stages operate when the input current is above the input value. The sample interval is nominally 50 ms per input.

The relationship between the transducer measuring range and the current input range is linear. The maximum and minimum settings correspond to the limits of the current input range. This relationship is shown in Figure 49.

Figure 49 also shows the relationship between the measured current and the analog-to-digital conversion (ADC) count. The hardware design allows for over-ranging, with the maximum ADC count (4095 for a 12-bit ADC) corresponding to 1.0836 mA for the 0 - 1 mA range, and 22.7556 mA for the 0 - 10 mA, 0 - 20 mA and 4 - 20 mA ranges. The relay therefore continues to measure and display values beyond the maximum setting, within its numbering capability.

![Figure 49: Relationship between the transducer measuring quantity and the current input range](image)

Note: If the maximum is set less than the minimum, the slopes of the graphs are negative. This is because the mathematical relationship remains the same irrespective of how maximum and minimum are set. For example, for 0 - 1 mA range, maximum always corresponds to 1 mA and minimum corresponds to 0 mA.

Analog Inp1/2/3/4 Alarm (DDB 211-214) and Trip Analog Inp1/2/3/4 (DDB 321-324) indicate operation of the alarm and trip stages of the each current loop inputs. The state of the DDB signals can also be programmed to be viewed in COMMISSION TESTS > Monitor Bit x.

The current loop input starts are mapped internally to the Any Start DDB signal (DDB 369).
1.16.2 Current loop output

There are four current loop (analog) outputs with ranges of 0 - 1 mA, 0 - 10 mA, 0 - 20 mA or 4 - 20 mA. They do not need separate transducers and can input to standard analogue moving coil ammeters or can input to a SCADA system using an existing analog RTU.

The CLIO output conversion task runs every 50 ms and the refresh interval for the output measurements is nominally 200 ms.

The user can set the measuring range for each analog output. The range limits are defined by the Maximum and Minimum settings.

This allows the user to “zoom in” and monitor a restricted range of the measurements with the desired resolution. For voltage, current and power quantities, these settings are set in primary quantities.

The output current of each analog output is linearly scaled to its range limits, as defined by the Maximum and Minimum settings. The relationship is shown in Figure 51.

Figure 50: Analog (current loop) input logic diagram
Figure 51: Relationship between the current output and the relay measurement

Note: If the Maximum is set less than the Minimum, the slopes of the graphs are negative. This is because the mathematical relationship remains the same irrespective of how Maximum and Minimum are set. For example, for 0 - 1 mA range, Maximum always corresponds to 1 mA and Minimum corresponds to 0 mA.

The P24x transducers are of the current output type. This means the correct value of output is maintained over the load range specified. The range of load resistance varies greatly, depending on the design and the value of output current. Transducers with a full scale output of 10 mA normally feed any load up to a value of 1000 Ω (compliance voltage of 10 V). This equates to a cable length of approximately 15 km for lightweight 1/0.6 mm cable. A screened cable earthed at one end only is recommended to reduce interference on the output current signal. The following table gives typical cable impedances/km for common cables. The compliance voltage dictates the maximum load that can be fed by a transducer output. Therefore the 20 mA output is restricted to a maximum load of approximately 500 Ω.

<table>
<thead>
<tr>
<th>Cable</th>
<th>1/0.6 mm</th>
<th>1/0.85 mm</th>
<th>1/1.38 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSA (mm²)</td>
<td>0.28</td>
<td>0.57</td>
<td>1.50</td>
</tr>
<tr>
<td>R (Ω/km)</td>
<td>65.52</td>
<td>32.65</td>
<td>12.38</td>
</tr>
</tbody>
</table>

Table 4: Impedance per kilometre values of typical cables

The receiving equipment can be connected at any point in the output loop, whether it is a simple moving-coil dc milliamp meter or a remote terminal unit forming part of a SCADA system. Provided the compliance voltage is not exceeded, additional equipment can be installed at a later date without needing to adjust the transducer output.
Where the output current range is used for control purposes, it is sometimes worthwhile to fit appropriately rated diodes, or Zener diodes, across the terminals of each of the units in the series loop to guard against the possibility of their internal circuitry becoming open circuit. In this way, a faulty unit in the loop does not cause all the indications to disappear because the constant current nature of the transducer output raises the voltage and continues to force the correct output signal round the loop.

<table>
<thead>
<tr>
<th>Current loop output parameter</th>
<th>Abbreviation</th>
<th>Units</th>
<th>Range</th>
<th>Step</th>
<th>Default min.</th>
<th>Default max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Magnitude</td>
<td>IA Magnitude</td>
<td>A</td>
<td>0 to 100 k</td>
<td>1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>IB Magnitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IC Magnitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IN Magnitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMS Phase Currents</td>
<td>IA RMS</td>
<td>A</td>
<td>0 to 100 k</td>
<td>1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>IB RMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IC RMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IN RMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-N voltage Magnitude</td>
<td>VAN Magnitude</td>
<td>V</td>
<td>0 to 20 k</td>
<td>1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>VBN Magnitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VCN Magnitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VN Magnitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-N voltage RMS</td>
<td>VAN RMS</td>
<td>V</td>
<td>0 to 20 k</td>
<td>1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>VBN RMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VCN RMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VN RMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-P voltage Magnitude</td>
<td>VAB Magnitude</td>
<td>V</td>
<td>0 to 20 k</td>
<td>1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>VBC Magnitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VCA Magnitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMS Phase-Phase Voltages</td>
<td>VAB RMS Magnitude</td>
<td>V</td>
<td>0 to 20 k</td>
<td>1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>VBC RMS Magnitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VCA RMS Magnitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>Frequency Hz</td>
<td>Hz</td>
<td>0 to 100</td>
<td>1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>3 Ph Active Power</td>
<td>Three-Phase Watts</td>
<td>W</td>
<td>-10 M to 30 M</td>
<td>1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>3 Ph Reactive Power</td>
<td>Three-Phase Vars</td>
<td>Var</td>
<td>-10 M to 30 M</td>
<td>1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>3 Ph Apparent Power</td>
<td>Three-Phase VA</td>
<td>VA</td>
<td>-10 M to 30 M</td>
<td>1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>3 Ph Power Factor</td>
<td>3Ph Power Factor</td>
<td>-1 to 1</td>
<td>0.01</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>RTD Temperatures</td>
<td>RTD 1 °C</td>
<td>°C</td>
<td>-40 to 400</td>
<td>1</td>
<td>0</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>RTD 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTD 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTD 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTD 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTD 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTD 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTD 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTD 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTD 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of hottest RTD</td>
<td>Nb Hottest RTD</td>
<td></td>
<td>1-10</td>
<td>1</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Thermal State</td>
<td>Thermal State</td>
<td>%</td>
<td>0 to 150</td>
<td>0.1</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 5: Current loop output parameters

<table>
<thead>
<tr>
<th>Current loop output parameter</th>
<th>Abbreviation</th>
<th>Units</th>
<th>Range</th>
<th>Step</th>
<th>Default min.</th>
<th>Default max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to Thermal Trip</td>
<td>Time to Thermal Trip</td>
<td>Sec</td>
<td>0-300</td>
<td>0.1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Time to Next Start</td>
<td>Time to Next Start</td>
<td>Sec</td>
<td>0-300</td>
<td>0.1</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Note 1: The current loop (analog) outputs are refreshed every 200 ms.

Note 2: The polarity of Watts, Vars and power factor is affected by the Measurements Mode setting.

Note 3: These settings are for nominal 1 A and 100/120 V versions only. For other nominal versions they need to be multiplied accordingly.

Note 4: All current loop (analog) output measurements are in primary values.
2 OPERATION OF NON PROTECTION FUNCTIONS

2.1 VT supervision

The voltage transformer supervision (VTS) feature is used to detect failure of the ac voltage inputs to the relay. This may be caused by internal voltage transformer faults, overloading, or faults on the interconnecting wiring to relays. This usually results in one or more VT fuses blowing. Following a failure of the ac voltage input there would be a misrepresentation of the phase voltages on the power system as measured by the relay, which may result in mal-operation.

The VTS logic in the relay detects the voltage failure and automatically adjusts the configuration of protection elements whose stability would otherwise be compromised. A time-delayed alarm output is also available.

There are three main aspects to consider if there is a failure of the VT supply.

- Loss of one or two-phase voltages
- Loss of all three-phase voltages under load conditions
- Absence of three-phase voltages on line energization

The VTS feature in the relay operates if it detects negative phase sequence (NPS) voltage when there is no negative phase sequence current. This gives operation for the loss of one or two-phase voltages. Stability of the VTS function is assured during system fault conditions by the presence of NPS current. The use of negative sequence quantities ensures correct operation even where three-limb or 'V' connected VTs are used.

Negative sequence VTS element:

The negative sequence thresholds used by the element are $V_2 = 10$ V and $I_2 = 0.05$ to 0.5 I_n settable (defaulted to 0.05 I_n).

2.1.1 Loss of all three-phase voltages under load conditions

If all three-phase voltages to the relay are lost, there are no negative phase sequence quantities present to operate the VTS function and the three-phase voltages collapse. If this is detected without a corresponding change in any of the phase current signals (which would indicate a fault), a VTS condition is raised. In practice, the relay detects the presence of superimposed current signals, which are changes in the current applied to the relay. These signals are generated by comparing the present value of the current with that exactly one cycle previously. Under normal load conditions, the value of superimposed current should therefore be zero. Under a fault condition, a superimposed current signal is generated which prevents the VTS from operating.

Use **Threshold 3P** to set the phase voltage level detector from 10 V to 70 V (default 30 V).

Use **Delta I>** to set the sensitivity of the superimposed current elements from 0.1 I_n to 5 I_n (default 0.1 I_n).

2.1.2 Absence of three-phase voltages on line energization

If a VT is inadvertently left isolated before the line is energized, voltage dependent elements could operate incorrectly. The previous VTS element detected three-phase VT failure by the absence of all three-phase voltages, with no corresponding change in current. When the line is energized there is a change in current, for example due to load or line charging current. An alternative method of detecting three-phase VT failure is therefore required when the line is energized.

The absence of measured voltage on all three phases when the line is energized can be due to a three-phase VT failure or a close up three-phase fault. The first condition requires the voltage dependent function to be blocked and the second requires tripping. To differentiate between these two conditions an overcurrent level detector (VTS I> Inhibit) prevents a VTS block from being issued if it operates. This element should be set in excess of any non-fault based currents on line energization (load, line charging current, transformer inrush current if applicable) but below the level of current produced by a close up three-phase fault. If the line is then closed where a three-phase VT failure is present, the overcurrent detector does...
not operate and a VTS block is applied. Closing onto a three-phase fault results in operation of the overcurrent detector and prevents a VTS block being applied.

Figure 52: VT supervision logic diagram

VTS Fast is given by the following equation.

\[(V_2 > \text{ And } I_2 > \text{ And } I_0 \text{ And } CB_Close \text{ And } I_{3ph} >) \text{ Or } (\text{FUS3P And } V< \text{ And } CB_Close \text{ And } I_{3ph} > \text{ And } (\Delta I > \text{ Or } I_{ph} >))\]

The following dedicated level detectors are required to drive the VTS logic.

- **I3Ph >** This level detector operates in less than 20 ms and the setting should be greater than the load current. This setting is specified as the VTS current threshold. These level detectors pick-up at 100% of the setting and drop-off at 95% of the setting.
- **I2 >** This level detector operates on negative sequence current and has a user setting. This level detector picks-up at 100% of the setting and drops-off at 95% of the setting.
- **ΔI >** This level detector operates on superimposed phase currents and is settable.
- **V3Ph >** This level detector operates on phase voltages and is settable.
- **V2 >** This level detector operates on negative sequence voltage. It has a fixed setting of 10 V with pick-up at 100% of the setting and drop-off at 95% of the setting.

2.1.2.1 Inputs

<table>
<thead>
<tr>
<th>Signal name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I3Ph ></td>
<td>Phase current levels (Fourier magnitudes)</td>
</tr>
<tr>
<td>I2 ></td>
<td>I2 level (Fourier magnitude)</td>
</tr>
<tr>
<td>ΔI ></td>
<td>Phase current samples (current and one cycle previous)</td>
</tr>
<tr>
<td>V3Ph ></td>
<td>Phase voltage signals (Fourier magnitudes)</td>
</tr>
<tr>
<td>V2 ></td>
<td>Negative sequence voltage (Fourier magnitude)</td>
</tr>
<tr>
<td>Input FFUs</td>
<td>To remotely initiate the VTS blocking using an opto</td>
</tr>
<tr>
<td>FUS3P</td>
<td>Detect 3P setting which allows the fuse failure 3 poles detection</td>
</tr>
</tbody>
</table>

Table 6: VTS inputs level detector settings outputs

<table>
<thead>
<tr>
<th>Signal name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTS Fast</td>
<td>Internal fuse failure</td>
</tr>
<tr>
<td>VTS Block</td>
<td>Alarm indication, internal fuse failure confirmed at the end of VTS timer</td>
</tr>
</tbody>
</table>

Table 7: VTS outputs
2.1.3 Operation

The relay may respond as follows to an operation of any VTS element:

- Forced blocking of voltage dependent protection elements (DDB 364 VT Supervision, Fast Block and DDB 363 VT, confirmed block)
- VTS provides alarm indication (DDB 363 VT, confirmed block). The confirmed fuse failure VTS_Block blocks the following protection functions:
 - Undervoltage
 - Positive sequence undervoltage
 - Loss of load
 - Reverse power
 - Residual Overvoltage
 - Wattmetric SEF
 - Reacceleration (if enabled)
 - Overcurrent DEF (if directional is used)
 - Overcurrent SEF (if directional is used)

Functions which use the directional element are blocked if set as directional:

- IN> VTS Blocking = xx for each stage. When the relevant bit is set to 1, operation of VTS blocks the stage if directionised. When set to 0 the function is set to Non-directional.
- ISEF> VTS Blocking = xx for each stage. When the relevant bit is set to 1, operation of VTS blocks the stage if directionised. When set to 0 the function is set to Non-directional.

The internal fuse failure VTS_Fast blocks the same functions but if a fault is detected before the confirmation timer is issued, the functions are unblocked. The fault can be detected by the criteria Iph>, I2>, I0> and ΔI>.

The VTS I> Inhibit element is used to override a VTS block if a fault occurs on the system which could trigger the VTS logic. Once the VTS block has been established, subsequent system faults should not override the block. The VTS block is therefore latched after a user settable time delay VTS Time Delay. Once the signal has latched, it is reset automatically by CB Open or by the three-phase voltages returning above the phase detector level settings.

A VTS indication is given after the VTS Time Delay has expired.

If a miniature circuit breaker (MCB) is used to protect the voltage transformer ac output circuits, use MCB auxiliary contacts to indicate a three-phase output disconnection. The VTS logic can operate correctly without this input. However, this facility provides compatibility with current practices of various utilities. Energizing an opto-isolated input assigned to DDB 362 MCB/VTS on the relay provides the necessary block.

The blocking of the VTS logic for a number of different fault conditions is considered below.

1. Phase-phase fault
 The I2> element detects phase-phase faults when the CB is closed and blocks the VTS logic.

2. Three phase faults
 The delta current level detectors detect the change in current for a close up 3 phase fault when the CB is closed and block the VTS.

 The IPh> level detector detects a 3 phase fault when closing the CB onto a fault and blocks the VTS logic.

2.2 CT supervision

The CT supervision feature operates when it detects derived residual current, without the corresponding derived or measured residual voltage that would normally accompany it.
The CT supervision can be set to operate from the residual voltage measured at the VNEUTRAL input (VN1 input for P241/2/3) or the residual voltage derived from the three-phase neutral voltage inputs as selected by the **CTS Vn Input** setting.

The voltage transformer connection used must be able to refer residual voltages from the primary to the secondary side. Therefore, this element should only be enabled where the three-phase VT is of five limb construction, or comprises three single-phase units, and has the primary star point earthed. A derived residual voltage or a measured residual voltage is available.

There are two stages of CT supervision CTS-1 and CTS-2. The derived neutral current is calculated vectorially from IA, IB, IC for CTS-1 and IA-2, IB-2, IC-2 for CTS-2. The neutral voltage is measured or derived, and is settable by the user.

CTS-1 supervises the CT inputs to IA, IB, IC which are used by the biased differential protection and all the power, impedance and overcurrent based protection functions. CTS-2 supervises the CT inputs to IA-2, IB-2, IC-2 which are used by the biased differential protection in the P243. The CTS-2 independent enabled/disabled setting prevents CTS-2 from giving unnecessary alarms when the Motor Differential is disabled.

When the element operates, a time-delayed alarm appears on the LCD and event record. Also DDB 229 (CT-1 Fail Alarm) and DDB 230 (CT-2 Fail Alarm), with an instantaneous block DDB 360 (CTS-1 Block) and DDB 361 (CTS-2 Block) to inhibit protection elements. Protection elements operating from derived quantities, (Negative Phase Sequence (NPS) Overcurrent, NPS Thermal, Thermal Overload protection) are always blocked when the CTS-1 supervision element operates. Other protection functions can be blocked by customizing the PSL and integrating DDB 360 (CTS-1 Block) and DDB 361 (CTS-2 Block) with the protection function logic.

Figure 53: CT supervision diagram

2.3 Circuit breaker state monitoring

MiCOM relays can be set to monitor normally open (52a) and normally closed (52b) auxiliary contacts of the circuit breaker. Under healthy conditions, these contacts are in opposite states. If both sets of contacts are open it indicates one of the following conditions.

- Auxiliary contacts/wiring defective
- Circuit Breaker (CB) is defective
- CB is in isolated position

If both sets of contacts are, only one of the following two conditions applies.
- Auxiliary contacts/wiring defective
- Circuit Breaker (CB) is defective

If any of the above conditions exist, an alarm is issued after a 5 s delay. A normally open or normally closed output contact can be assigned to this function using PSL. The time delay is set to avoid unwanted operation during normal switching.

If only 52A is used, the relay assumes a 52B signal from the absence of the 52A signal. Circuit breaker status information is available in this case but no discrepancy alarm is available. This is also true if only a 52B is used. If both 52A and 52B are used, status information is available and a discrepancy alarm can be produced (CB Status Alarm, DDB 185) according to the following table. 52A and 52B inputs are assigned to relay opto-isolated inputs using the PSL (CB Aux 3ph 52A: DDB 105, CB Aux 3ph 52A: DDB 106). The CB State Monitoring logic is shown in Figure 54.

<table>
<thead>
<tr>
<th>Auxiliary contact position</th>
<th>CB state detected</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>52A Open</td>
<td>52B Closed</td>
<td>Breaker Open</td>
</tr>
<tr>
<td>52A Closed</td>
<td>52B Open</td>
<td>Breaker Closed</td>
</tr>
<tr>
<td>52A Closed</td>
<td>52B Closed</td>
<td>CB Failure</td>
</tr>
<tr>
<td>52A Open</td>
<td>52B Open</td>
<td>State Unknown</td>
</tr>
</tbody>
</table>

Table 8: Possible states of CB auxiliary contacts and the CTS element corresponding actions

![Figure 54: CB state monitoring](image-url)
2.4 **Circuit breaker condition monitoring**

The P24x relays record various statistics related to each circuit breaker trip operation, allowing a more accurate assessment of the circuit breaker condition to be determined. These monitoring features are discussed in the following section.

2.4.1 Circuit breaker condition monitoring features

For each circuit breaker trip operation the relay records statistics as shown in the following table taken from the relay menu. The menu cells shown are counter values only. The Min./Max. values show the range of the counter values. These cells can not be set.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB Operations</td>
<td>0</td>
<td>0</td>
<td>10000</td>
</tr>
<tr>
<td>Displays the total number of trips issued by the relay.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total IA Broken</td>
<td>0</td>
<td>0</td>
<td>25000 In^2</td>
</tr>
<tr>
<td>Displays the total accumulated fault current interrupted by the relay for the A phase.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total IB Broken</td>
<td>0</td>
<td>0</td>
<td>25000 In^2</td>
</tr>
<tr>
<td>Displays the total accumulated fault current interrupted by the relay for the A phase.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total IC Broken</td>
<td>0</td>
<td>0</td>
<td>25000 In^2</td>
</tr>
<tr>
<td>Displays the total accumulated fault current interrupted by the relay for the A phase.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB Operate Time</td>
<td>0</td>
<td>0</td>
<td>0.5 s</td>
</tr>
<tr>
<td>Displays the calculated CB operating time. CB operating time = time from protection trip to undercurrent elements indicating the CB is open.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset All Values</td>
<td>No</td>
<td>Yes, No</td>
<td></td>
</tr>
<tr>
<td>Reset CB Data command. Resets CB Operations and Total IA/IB/IC broken current counters to 0.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 9: Circuit breaker condition monitoring features

These counters may be reset to zero, for example, following maintenance inspection and overhaul.

The circuit breaker condition monitoring counters are updated every time the relay issues a trip command. If the breaker is tripped by an external protection device it is also possible to update the CB condition monitoring. This is done by allocating one of the relay’s opto-isolated inputs using the programmable scheme logic to accept a trigger from an external device. The signal mapped to the opto is External Trip, DDB 115.

Note: The CB condition monitoring counters are not updated in Commissioning Test Mode.

Measurement 3 > Motor Run Time shows the motor accumulated run time. This is initiated each time the switching device is closed and remains closed.

2.5 **Circuit breaker control**

The relay includes the following options to control a single circuit breaker:

- Local tripping and closing, using the relay menu.
- Local tripping and closing, using relay opto-isolated inputs. (DDD111:Close, DDB112: Trip)
- Remote tripping and closing, using the relay communications.

We recommend separate relay output contacts are allocated for remote circuit breaker control and protection tripping. This enables the control outputs to be selected using a local/remote selector switch as shown in Figure 55. Where this feature is not required the same output contact(s) can be used for both protection and remote tripping.
A manual trip is allowed if the circuit breaker is initially closed. Likewise, a close command can only be issued if the CB is initially open. To confirm these states it is necessary to use the breaker 52A contact.

Once a CB Close command is initiated the output contact can be set to operate following a user-defined time delay (Man Close Delay). This gives personnel time to move away from the circuit breaker following the close command. This time delay applies to all manual CB Close commands.

The length of the trip or close control pulse can be set using the Trip Pulse Time and Close Pulse Time settings respectively. These should be set long enough to ensure the breaker has completed its open or close cycle before the pulse has elapsed.

Note: The manual close commands are found in the SYSTEM DATA column and the hotkey menu.

If an attempt to close the breaker is being made, and a protection trip signal is generated, the protection trip command overrides the close command.

If the CB fails to respond to the control command (indicated by no change in the state of CB Status inputs) a CB Failed to Trip or CB Failed to Close alarm is generated after the relevant trip or close pulses have expired. These alarms can be viewed on the relay LCD display, remotely using the relay communications, or can be assigned to operate output contacts for annunciation using the PSL.

2.6 Changing setting groups

The setting groups can be changed using a DDB signal, a menu selection or the hotkey menu. If Configuration > Setting Group - select via optos is selected, the dedicated DDB (107) can be used to select the setting group. This DDB signal can be connected to an opto input for local selection or a control input for remote selection of the setting groups.
If an opto is used to change the setting group, Setting Group 1 is selected when the Setting Group DDB (107) is de-energized and Setting Group 2 is selected when the Setting Group DDB (107) is energized.

If Configuration > Setting Group - select via menu is selected, Active Settings - Group1/2 can be used to select the setting group.

If Setting Group select via menu is selected, the setting group can be changed using the hotkey menu.

Note: Setting groups comprise both Settings and Programmable Scheme Logic. Each is independent for each group and is not shared. The settings are generated in the Settings and Records application in MiCOM S1 Studio, or can be applied directly from the relay front panel menu. The programmable scheme logic can only be set using the PSL Editor application in MiCOM S1 Studio, generating files with extension ".psl".

If the installation needs application-specific PSL, the appropriate .psl file must be downloaded to the relay for each setting group used. Otherwise the relay uses the factory default PSL which may have severe operational and safety consequences.

2.7 Control inputs

The control inputs function as software switches that can be set or reset either locally or remotely. These inputs can be used to trigger any function that they are connected to as part of the PSL. The three setting columns associated with the control inputs are CONTROL INPUTS, CTRL I/P CONFIG and CTRL I/P LABELS and are described in the following table.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL INPUTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ctrl I/P Status</td>
<td>0000000000000000000000000000000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Input 1</td>
<td>No Operation</td>
<td>No Operation, Set, Reset</td>
<td></td>
</tr>
<tr>
<td>Control Input 2 to 32</td>
<td>No Operation</td>
<td>No Operation, Set, Reset</td>
<td></td>
</tr>
</tbody>
</table>

Table 10: Control inputs setting columns and their descriptions

The Control Input commands are in the Control Input menu. In the Ctrl I/P status menu cell there is a 32 bit word which represent the 32 control input commands. The status of the 32 control inputs can be read from this 32 bit word. The 32 control inputs can also be set and reset from this cell by setting a 1(set) or 0(reset). Alternatively, each of the 32 Control Inputs can be set and reset using the individual menu setting cells Control Input 1, 2, 3 etc. The Control Inputs are available through the relay menu as described above and also using the rear communications port.

The PSL editor has 32 Control Input signals, DDB 608-639 which can be set to a logic 1 (On) state as described above. These are available to perform control functions defined by the user.

The status of the Control Inputs are held in non-volatile memory (battery backed RAM) so that when the relay is power-cycled, the states are restored on power-up.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL I/P CONFIG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hotkey Enabled</td>
<td>111111111111111111111111111111111111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Input 1</td>
<td>Latched</td>
<td>Latched, Pulsed</td>
<td></td>
</tr>
<tr>
<td>Ctrl Command 1</td>
<td>SET/RESET</td>
<td>SET/RESET, IN/OUT, ENABLED/DISABLED, ON/OFF</td>
<td></td>
</tr>
<tr>
<td>Control Input 2 to 32</td>
<td>Latched</td>
<td>Latched, Pulsed</td>
<td></td>
</tr>
<tr>
<td>Ctrl Command 2 to 32</td>
<td>SET/RESET</td>
<td>SET/RESET, IN/OUT, ENABLED/DISABLED, ON/OFF</td>
<td></td>
</tr>
</tbody>
</table>

Table 11: Control inputs commands
Table 12: Control inputs labels

The **CTRL I/P CONFIG** column has several functions one of which allows the user to configure the control inputs as either **latched** or **pulsed**. A latched control input remains in the set state until a reset command is given, either by the menu or the serial communications. A pulsed control input remains energized for 10 ms after the set command and then resets automatically.

In addition to the latched/pulsed option this column also allows the control inputs to be individually assigned to the **Hotkey** menu by setting 1 in the appropriate bit in the **Hotkey Enabled** cell. The hotkey menu allows the control inputs to be set, reset or pulsed without needing to enter the **CONTROL INPUTS** column. The **Ctrl Command** cell also allows the SET/RESET text, displayed in the hotkey menu, to be changed to something more suitable for the application of an individual control input, such as **ON / OFF** or **IN / OUT**.

The **CTRL I/P LABELS** column allows the text to be changed associated with each individual control input. This text is displayed when a control input is accessed by the hotkey menu, or it can be displayed in the PSL.

⚠️ Note: With the exception of pulsed operation, the status of the control inputs is stored in battery backed memory. If the auxiliary supply is interrupted, the status of all the inputs is recorded. When the auxiliary power supply is restored, the control inputs are reinstated to their status before the supply failed. If the battery is missing or discharged, the control inputs set to logic 0 once the auxiliary supply is restored.

2.8 Enhanced opto-input time stamping

Each opto-input sample is time stamped within a tolerance of ±1 ms with respect to the relay's real-time clock. These time stamps are used for the opto event logs and for the disturbance recording. The relay needs to be synchronized accurately to an external clock source such as the GPS clock. The synchronization consists of IRIG-B and SNTP through Ethernet communication. The P24x time synchronization accuracy is 1 ms through IRIG-B (both modulated and de-modulated) and SNTP. The total time stamping accuracy, with reference to an external clock source, also takes the time synchronization accuracy into consideration.

For both the filtered and unfiltered opto inputs, the time stamp of an opto change event is the sampling time at which the opto change of state has occurred. If a mixture of filtered and unfiltered opto inputs change state at the same sampling interval, two events are logged in the event file: the first event corresponds to the unfiltered opto input and the second event corresponds to the filtered opto input. The enhanced opto event time stamping is consistent across all the implemented protocols. The GOOSE messages are published according to time and are not delayed by any event filtering mechanism that is used to align the event time stamps.

2.9 PSL DATA column

The MiCOM P24x range of relays contains a PSL DATA column that can be used to track PSL modifications. A total of 12 cells are contained in the PSL DATA column, 3 for each setting group. The function for each cell is shown in the following table.

| Grp PSL Ref | When downloading a PSL to the relay, the user is prompted to enter which groups the PSL is for and a reference ID. The first 32 characters of the reference ID is displayed in this cell. The keys can be used to scroll through 32 characters as only 16 can be displayed at any one time. |
Note: The above cells are repeated for each setting group.

2.10 Reset of programmable LEDs and output contacts

The programmable LEDs and output contacts can be set to be latched in the programmable scheme logic. If there is a fault record, clearing the fault record by pressing the key once the fault record has been read clears any latched LEDs and output contacts. If there is no fault record, as long as the initiating signal to the LED or output contact is reset, the LEDs and contacts can be reset by one of the following methods.

- Using the View Records - Reset Indications menu command cell.
- Using DDB 113 Reset Latches which can be mapped to an Opto Input or a Control Input for example.

2.11 Real time clock synchronization using opto-inputs

Protective schemes often need the real time clock of the relays to be synchronized so that events from different relays can be placed in chronological order. This can be done using the IRIG-B input, if fitted, or the communication interface connected to the substation control system. The P24x can also be synchronized using an opto-input by routing it in PSL to DDB 116 (Time Sync.). Pulsing this input results in the real time clock snapping to the nearest minute if the pulse input is ± 3 s of the relay clock time. If the real time clock is within 3 s of the pulse, over a short period the relay clock slows down or speeds up to the correct time. The recommended pulse duration is 20 ms to be repeated no more than once per minute. An example of the time sync function is shown below.

<table>
<thead>
<tr>
<th>Time of “Sync. Pulse”</th>
<th>Corrected time</th>
</tr>
</thead>
<tbody>
<tr>
<td>19:47:00 to 19:47:29</td>
<td>19:47:00</td>
</tr>
<tr>
<td>19:47:30 to 19:47:59</td>
<td>19:48:00</td>
</tr>
</tbody>
</table>

Table 13: Example of time sync by using opto-inputs

Note: The above assumes a time format of hh:mm:ss

To avoid the event buffer from being filled with unnecessary time sync. events, it is possible to ignore any event that generated by the time sync. opto input. This can be done by applying the following settings.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECORD CONTROL</td>
<td></td>
</tr>
<tr>
<td>Opto Input Event</td>
<td>Enabled</td>
</tr>
<tr>
<td>Protection Event</td>
<td>Enabled</td>
</tr>
<tr>
<td>DDB 064 - 079 (Opto Inputs)</td>
<td>Set “Time Sync.” associated opto to 0</td>
</tr>
</tbody>
</table>

Table 14: Setting example to avoid event buffer overflow

To improve the recognition time of the time sync. opto input by approximately 10 ms, the opto input filtering could be disabled. To do this, in OPTO CONFIG > Opto Filter Cntl set the appropriate bit to 0.

Disabling the filtering may make the opto input more susceptible to induced noise. This can be minimized as described in section 2.3.3 of the Firmware Design chapter (P24x/EN FD).
2.12 Read only mode

With IEC 61850, Ethernet and Internet communication capabilities, security has become a pressing issue. The Px40 relays allow the user to enable or disable configuration changes remotely. This feature is available only in relays with Courier, Courier with IEC 60870-5-103, Courier with IEC 61850 and Courier with IEC 60870-5-103 and IEC 61850 protocol options. In the IEC 60870-5-103 protocol, Read Only Mode function is different to the existing Command block feature.

2.12.1 Protocol / port Implementation:

2.12.1.1 IEC 60870-5-103 protocol on rear port 1:

The protocol does not support settings. However, the indications, measurands and disturbance records commands are available at the interface.

Allowed:

- Poll Class 1 (read spontaneous events)
- Poll Class 2 (read measurands)
- GI sequence (ASDU7 'Start GI', Poll Class 1)
- Transmission of Disturbance Records sequence (ASDU24, ASDU25, Poll Class 1)
- Time Synchronization (ASDU6)
- General Commands (ASDU20), namely:
 - INF23 activate characteristic 1
 - INF24 activate characteristic 2
 - INF25 activate characteristic 3
 - INF26 activate characteristic 4

Blocked:

- Write parameter (=change setting) (private ASDUs)
- General Commands (ASDU20), namely:
 - INF16 auto-recloser on/off
 - INF19 LED reset
 - Private INFs (e.g CB open/close, Control Inputs)

2.12.1.2 Courier protocol on rear port 1/2 and Ethernet

Allowed:

- Read settings, statuses, measurands
- Read records (event, fault, disturbance)
- Time Synchronization
- Change active setting group

Blocked:

- Write settings
- All controls, including:
 - Reset Indication (Trip LED)
 - Operate Control Inputs
 - CB operations
 - Auto-reclose operations
 - Reset demands
 - Clear event / fault / maintenance / disturbance records
 - Test LEDs & contacts

2.12.1.3 IEC 61850

Allowed:

- Read statuses, measurands
- Generate Reports
Extract Disturbance Records
Time Synchronization
Change active setting group

Blocked:

All controls, including:
- Enable / Disable protection
- Operate Control Inputs
- CB operations (Close / Trip, Lock)
- Reset LEDs

2.12.1.4 Courier database support

Three new settings, one for each remote communications port at the back of the relay allow the read only mode at each port to be enabled or disabled.

The **NIC Read Only** setting applies to all the communications protocols transmitted using the Ethernet Port, including the Tunnelled Courier. Their default values are **Disabled**.

The Modbus and DNP3 communications interfaces that do not support the feature ignore these settings.

2.12.2 New DDB signals

The remote read only mode can be used in the PSL with the following dedicated DDB signals.

- RP1 Read Only
- RP2 Read Only
- NIC Read Only

These read-only DDB signals can be used with Opto Inputs, Control Inputs and Function Keys. They are available in every build, however they are effective only in Courier, IEC 60870-5-103 build and in IEC 61850 firmware version 42 onwards. The setting cells are not available in Modbus and DNP3.0.

2.13 Any trip

The **Any Trip** DDB (DDB 371) is a combination of all the individual trip signals. This DDB has been made independent from relay 3 in the version C2.0 software and later. In the previous versions of software the **Any Trip** signal was the operation of Relay 3. In the version C2.0 software and later DDB371 is the **Any Trip** signal and any output contact used for tripping can be connected to the **Any Trip** DDB leaving Relay 3 to be freely assigned for any function. The **Any Trip** signal affects the following functions:

- Operates the Trip LED
- Triggers CB condition maintenance counters
- Used to measure the CB operating time
- Triggers the circuit breaker failure logic
- Used in the Fault recorder logic

In the default PSL, Relay 3 is still mapped to the **Any Trip** DDB and **Trip LED** DDB as well as the **Fault REC TRIG** DDB signals as shown in the PSL diagram below.
The new Trip LED DDB (DDB118) allows (in PSL) switching on Trip LED for a particular trip signal concerned. An example is shown below.

In the scheme shown above the trip relay is relay 6. Only the thermal trip provokes a Trip, and the Trip LED is switched on only with the thermal Trip.

2.14 Function keys (P242/3)

The P242/3 relay has 10 function keys for programming any operator control functionality such as Reset latched Relays/LEDs/Alarms, Select Group 2 using PSL. Each function key has an associated programmable tri-color LED that can be programmed to give the desired indication on function key activation.

These function keys can be used to trigger any function that they are connected to as part of the PSL. The function key commands can be found in the Function Keys menu (see Settings chapter, P24x/EN ST). In the Fn. Key Status menu cell there is a 10-bit word which represent the 10 function key commands and their status can be read from this 10-bit word.

In the programmable scheme logic editor 10 function key signals, DDB 676-685, which can be set to a logic 1 or On state, as described above, are available to perform control functions defined by the user.

The Function Keys column has the Fn. Key n Mode cell which allows the user to configure the function key as either Toggled or Normal. In the Toggled mode the function key DDB signal output remains in the set state until a reset command is given, by activating the function key on the next key press. In the Normal mode, the function key DDB signal remains energized for as long as the function key is pressed and then resets automatically. A minimum pulse duration can be programmed for a function key by adding a minimum pulse timer to the function key DDB output signal.

The Fn. Key n Status cell is used to enable/unlock or disable the function key signals in PSL. The Lock setting has been specifically provided to allow the locking of a function key, preventing further activation of the key on consequent key presses.

This allows function keys that are set to Toggled mode and their DDB signal active 'high', to be locked in their active state therefore preventing any further key presses from deactivating the associated function. Locking a function key that is set to the Normal mode causes the associated DDB signals to be permanently off. This safety feature prevents any inadvertent function key presses from activating or deactivating critical relay functions.
The **Fn. Key Labels** cell makes it possible to change the text associated with each individual function key. This text is displayed when a function key is accessed in the function key menu, or it can be displayed in the PSL.

The status of the function keys is stored in battery backed memory. If the auxiliary supply is interrupted, the status of all the function keys is recorded. When the auxiliary power supply is restored, the control inputs are reinstated to their status before the supply failed. If the battery is missing or discharged, the function key DDB signals are set to logic 0 once the auxiliary supply is restored.

Note: The relay only recognizes a single function key press at a time. Any key needs to be pressed for a minimum of 200 msec. before the key press is recognized in PSL. This de-glitching feature avoids accidental double presses.

2.15 Phase rotation

2.15.1 Description

The P241/242/243 can maintain correct operation of all the protection functions even when the motor is running in a reverse phase sequence. This is achieved through user configurable settings available for the two setting groups.

The default phase sequence for P24x is the clockwise rotation ABC. However, some applications may require an intermediate anti-clockwise phase rotation of ACB.

In process industry there is often a common practice to reverse two phases to facilitate the process, using phase reversal switches. The following sections describe some common scenarios and their effects.

2.15.2 Phase reversal switches affecting all CTs and VTs

The phase reversal affects all the voltage and current measurements in the same way, irrespective of which two phases are being swapped. This is also equivalent to a power system that is permanently reverse phase reversed.

All the protection functions that use the positive and negative sequence component of voltage and current are affected. These are Thermal Overload, 3 Ph Volt Check, Negative Sequence O/C and VT Supervision. The motor differential protection is not affected since the phase reversal applies to CT1 and CT2 in the same way.

The relationship between voltages and currents from CT for the standard phase rotation and reverse phase rotation are as shown below.

Figure 58: Standard and reverse phase rotation

2.15.2.1 System config settings

The following settings are available in the **SYSTEM CONFIG** menu as follows. These new settings are available for each of the two protection setting groups.
Table 15: Phase rotation setting in SYSTEM CONFIG

The Phase Sequence setting applies to a power system that has a permanent phase sequence of either ABC or ACB. It is also applicable for temporary phase reversal which affects all the VTs and CTs. As distinct from the other phase reversal settings, this setting does not perform any internal phase swapping of the analogue channels.

The Phase Sequence setting affects the sequence component calculations as follows:

<table>
<thead>
<tr>
<th>Standard ABC</th>
<th>Reverse ACB</th>
</tr>
</thead>
<tbody>
<tr>
<td>The calculations of positive (I1, V1) and negative (I2, V2) phase sequence voltage and current remain unchanged as follows:</td>
<td>The calculations of positive (I1, V1) and negative (I2, V2) phase sequence voltage and current are given by the equations:</td>
</tr>
<tr>
<td>$X_1 = \frac{1}{3}(X_a + \alpha X_b + \alpha^2 X_c)$</td>
<td>$X_1 = \frac{1}{3}(X_a + \alpha^2 X_b + \alpha X_c)$</td>
</tr>
<tr>
<td>$X_2 = \frac{1}{3}(X_a + \alpha X_b + \alpha^2 X_c)$</td>
<td>$X_2 = \frac{1}{3}(X_a + \alpha X_b + \alpha^2 X_c)$</td>
</tr>
</tbody>
</table>

Where: $\alpha = 1\angle 120^\circ$
(OP) 5-72

MiCOM P40 Agile P241, P242, P243
APPLICATION NOTES
Application Notes

MiCOM P40 Agile P241, P242, P243
CONTENTS

1 INTRODUCTION

1.1 Protection of asynchronous and synchronous motors 9

1.2 Introduction to the P24x relay 9

2 APPLICATION OF INDIVIDUAL PROTECTION FUNCTIONS 10

2.1 Motor differential protection (P243 only) (87) 10

2.1.1 Setting guidelines for biased differential protection 10

2.1.2 Setting guidelines for high impedance differential protection 11

2.1.3 Setting guidelines for the self balance winding differential 14

2.2 Thermal overload protection (49) 14

2.2.1 Introduction 14

2.2.2 Thermal replica 15

2.2.3 Setting guidelines for thermal overload 16

2.2.3.1 Thermal setting Ith 16

2.2.3.2 K coefficient 17

2.2.3.3 Thermal time constants 17

2.2.4 Thermal state modification 18

2.2.5 Thermal probe influence 20

2.2.6 Specific applications 20

2.2.6.1 Inhibition of the thermal trip during starting 20

2.2.6.2 Emergency restart 20

2.2.6.3 Thermal alarm 21

2.2.6.4 Lockout threshold 21

2.3 Resistive temperature detectors 21

2.3.1 RTD thermal protection features 21

2.3.2 RTD thermal protection settings 21

2.4 Short circuit protection (50/51) 22

2.4.1 Setting guidelines 23

2.4.2 Setting example 24

2.5 Earthfault protection (50N/51N/67N/32N/64N) 24

2.5.1 Solidly earthed system 26

2.5.1.1 Principle 26

2.5.1.2 Typical settings 27

2.5.2 Insulated system 28

2.5.2.1 Principle 28

2.5.2.2 Setting guidelines 30

2.5.3 Resistance earthed systems 30

2.5.3.1 Setting guidelines 30

2.5.3.2 High resistance earthing 30
2.5.4 Petersen coil earthed systems
2.5.4.1 Principle
2.5.4.2 Operation of sensitive earth fault element
2.5.5 Wattmetric characteristic
2.5.5.1 Principle
2.5.5.2 Application considerations
2.5.5.3 Calculation of required relay settings:
2.6 Residual overvoltage (neutral displacement) protection (59N)
2.6.1 Setting guidelines
2.7 Negative sequence protection (46)
2.7.1 Loss of one phase while starting & running
2.7.1.1 Principle
2.7.1.2 Setting guidelines
2.7.2 3 Phase voltage check (reverse phase detection) (47/27)
2.7.2.1 Principle
2.7.2.2 Setting guidelines
2.8 Start / stall protection (48/51LR/50S/14)
2.8.1 Excessive start time/locked rotor protection - stall time > start time (51LR)
2.8.1.1 Setting guidelines
2.8.2 Stall protection (50S)
2.8.2.1 Principle
2.8.2.2 Setting guidelines
2.8.3 Excessive start time/locked rotor protection - stall time < start time (14)
2.8.3.1 Setting guidelines
2.8.4 Number of starts limitation (66)
2.8.5 Anti-Backspin protection (27 Abs)
2.8.6 Setting guidelines for ABS protection
2.8.7 Momentary reduction in system voltage during running of the motor
2.8.7.1 Low voltage protection (reacceleration authorization)
2.8.7.2 AUTO RE-START authorization: Re-start/load restoration
2.9 Undervoltage protection function (27)
2.9.1 Principle
2.9.2 Setting guidelines for undervoltage protection
2.10 Loss-of-load protection (37)
2.10.1 Principle
2.10.2 Setting guidelines
2.11 Synchronous motor protection
2.11.1 Out-of-step protection (under power factor) (55)
2.11.2 Reverse power (loss-of-supply) (32R)
2.11.2.1 Underfrequency (81U)
2.11.3 Setting guidelines:
2.11.3.1 Overvoltage (59)
2.11.3.2 Setting guidelines: 51

2.12 Field failure protection function (40) 51

2.12.1 Setting guidelines for field failure protection 51

2.12.1.1 Impedance element 1 51

2.12.1.2 Impedance element 2 52

2.12.1.3 Power factor element 53

2.13 Circuit breaker failure protection (50BF) 53

2.13.1 Breaker failure protection configurations 53

2.13.2 Reset mechanisms for breaker fail timers 53

2.13.3 Typical breaker fail timer settings 54

2.14 Current loop inputs and outputs 55

2.14.1 Current loop inputs 55

2.14.2 Setting guidelines for current loop inputs 55

2.14.3 Current loop outputs 55

2.14.4 Setting guidelines for current loop outputs 56

2.15 Phase rotation 56

3 APPLICATION OF NON-PROTECTION FUNCTIONS 58

3.1 VT supervision 58

3.1.1 Setting the VT supervision element 58

3.2 CT supervision 58

3.2.1 Setting the CT supervision element 59

3.3 Trip circuit supervision (TCS) 59

3.3.1 TCS scheme 1 59

3.3.1.1 Scheme description 59

3.3.2 Scheme 1 PSL 60

3.3.3 TCS scheme 2 60

3.3.3.1 Scheme description 60

3.3.4 Scheme 2 PSL 61

3.3.5 TCS scheme 3 61

3.3.5.1 Scheme description 61

3.3.6 Scheme 3 PSL 62

4 CURRENT TRANSFORMER REQUIREMENTS 63

4.1 Motor differential function (P243) 63

4.1.1 Biased differential protection 63

4.2 Non-directional definite time/IDMT short circuit and definite time/IDMT derived earth fault protection 64

4.2.1 Definite time/IDMT delayed short circuit elements 64

4.2.2 Definite time delayed/IDMT derived earth fault elements 64

4.3 Non-directional instantaneous short circuit and derived earth fault protection 64

4.3.1 Instantaneous short circuit elements 64

4.3.2 Instantaneous derived earth fault elements 64

4.4 Directional definite time/IDMT derived earth fault protection 65
4.4.1 Directional time delayed derived earth fault protection 65
4.4.2 Directional instantaneous derived earth fault protection 65

4.5 Non-directional/directional definite time/IDMT sensitive earth fault (SEF) protection 65
4.5.1 Non-directional time delayed SEF protection (residually connected) 65
4.5.2 Non-directional instantaneous SEF protection (residually connected) 65
4.5.3 Directional time delayed SEF protection (residually connected) 65
4.5.4 Directional instantaneous SEF protection (residually connected) 65
4.5.5 SEF protection - as fed from a core-balance CT 65

4.6 Converting an IEC185 current transformer standard protection classification to a kneepoint voltage 66
4.7 Converting IEC185 current transformer standard protection classification to an ANSI/IEEE standard voltage rating 66

5 READ ONLY MODE 68
6 AUXILIARY SUPPLY FUSE RATING 69

FIGURES

Figure 1: Example of settings 18
Figure 2: Thermal curve modification 19
Figure 3: OR logic 22
Figure 4: AND logic 23
Figure 5: Inhibition of V< and V2> during start 23
Figure 6: Definite time overcurrent element 23
Figure 7: Core balanced CT with cable 26
Figure 8: Fuse characteristic 27
Figure 9: Current distribution in an insulated system with C phase fault 28
Figure 10: Phasor diagrams for insulated system with C phase fault 29
Figure 11: Directional tripping characteristic 31
Figure 12: Current distribution in Petersen coil earthed system 32
Figure 13: Distribution of currents during a C phase to earth fault 33
Figure 14: Theoretical case - no resistance present in XL or XC 34
Figure 15: Zero sequence network showing residual currents 35
Figure 16: Practical case:- resistance present in XL and Xc 36
Figure 17: Resistive components of spill current 37
Figure 18: Residual voltage 40
Figure 19: Residual voltage 41
Figure 20: Equivalent circuits 42
Figure 21: TCS scheme 1 49
Figure 22: PSL for TCS schemes 1 and 3 60
Figure 23: TCS scheme 2 60
Figure 24: PSL for TCS scheme 2 61
Figure 25: TCS scheme 3 61
TABLES

Table 1: Recommended characteristics and types of Metrosil units to be used with 1 Amp CTs 13
Table 2: Recommended characteristics and types of Metrosil units to be used with 5 Amp CTs 13
Table 3: Specific motor parameters used to show how to determine the P24x settings 16
Table 4: Reduction of per unit power delivered by motors relative to the ambient temperature 20
Table 5: Correction coefficients used by the relay to offset the thermal replica at different ambient temperatures 20
Table 6: Typical operating temperatures of a healthy plan 21
Table 7: Standard IDMT curve constant values 24
Table 8: CBF resetting options 54
Table 9: Typical CBF timer settings 54
Table 10: Recommended resistor value and opto voltage settings 60
Table 11: Recommended resistor value and opto voltage settings 62
Table 12: The CT requirements for the P24x protection functions excluding differential protection 63
Table 13: Auxiliary supplies and the corresponding fuse ratings 69
1 INTRODUCTION

1.1 Protection of asynchronous and synchronous motors

Both asynchronous (induction) and synchronous motors perform a vital role in many industrial processes throughout the world, a vast majority of which would be unable to function without such a device. Loss of a motor through damage incurs much more than a possible electrical rewind but also a stop in an electrical process, resulting in expensive plant down time. This problem may be exacerbated by the damaged machine being positioned in an inaccessible position, such as an awkward corner of a factory or by a spare not being readily available. Therefore, prior warning of a problem is vitally important to reduce the impact on a process resulting from a faulted motor.

Comprehensive protection relays, such as the P24x, can be used to protect a motor from catastrophic failure, or possibly give the operator prior warning of a problem, which can reduce plant down time. Any protective device, though reliable in operation under abnormal conditions, must not affect the continuous operation of the motor under normal operating conditions.

Unfortunately, motor characteristics vary greatly depending on their precise application. Each application requires careful consideration regarding the specification and setting of the motor protection. For example, starting and stalling currents and times must be known when applying overload protection, and furthermore the thermal withstand of the machine under balanced and unbalanced loading must be defined.

The conditions which motor protection detects can be divided into two broad categories; imposed external conditions and internal faults. Imposed external conditions include unbalanced supply voltages, undervoltages, single phasing and reverse phase sequence starting and in synchronous machines only, loss of synchronism. Internal faults include bearing failures, internal shunt faults (commonly earth faults), and overloads.

1.2 Introduction to the P24x relay

The MiCOM Px40 relay range uses the latest numerical technology and includes devices designed for the protection of a wide range of power system plant such as motors, generators, feeders, overhead lines and cables.

These relays are designed around a common hardware and software platform to achieve a high degree of commonality between products. One such product in the range is the Motor Protection Relay. This relay has been designed to cater for the protection of both asynchronous and synchronous motors, which may require extensive protection.

The relay also includes a comprehensive range of non-protection features to aid with power system diagnosis and fault analysis. All these features can be accessed remotely from one of the relays remote, serial communications options.
2 APPLICATION OF INDIVIDUAL PROTECTION FUNCTIONS

The following sections detail the individual protection functions in addition to where and how they may be applied.

2.1 Motor differential protection (P243 only) (87)

Failure of stator windings or connection insulation can result in severe damage to the windings and the stator core. The extent of the damage depends on the fault current level and the duration of the fault. Protection should be applied to limit the damage and repair costs.

The MiCOM P243 provides motor differential protection. This form of unit protection allows discriminative detection of winding faults. It has no intentional time delay where a significant fault current arises. Arrange the protection zone, defined by the location of the CTs, to overlap protection for other items of plant, such as a busbar or transformer.

Heavy through current arising from an external fault condition can cause one CT to saturate more than the other. This results in a difference between the secondary current produced by each CT. It is essential to stabilize the protection for these conditions. Three methods are commonly used:

- A biasing technique, where the relay setting is raised as through-current increases.
- A high impedance technique, where the relay impedance is such that under maximum through-fault conditions, the current in the differential element is insufficient for the relay to operate.
- A self balance type differential protection arrangement.

Note: If the conductors are placed reasonably concentric within the window of the core balance current transformers, spill current can be kept to a minimum. With this low spill current and a reasonably inductive independence of CT ratio to full load a lower fault setting could be achieved than conventional high impedance circulating current differential schemes.

The motor differential protection function available in the P24x relay can be used in either biased differential or high impedance differential mode.

Note: The high impedance mode can be used to achieve a self balance scheme. Both modes of operation are equally valid; users may have a preference for one over the other. The operating principle of each is described in the Operation chapter, P24x/EN OP.

2.1.1 Setting guidelines for biased differential protection

To select biased differential protection, set the Diff Function cell to Percentage Bias.

Set the differential current setting Diff Is1 to a low setting to protect as much of the machine winding as possible. A setting of 5% of rated current of the machine is generally considered to be adequate. Set Diff Is2, the threshold above which the second bias setting is applied, to 120% of the machine rated current.

Set the initial bias slope setting, Diff k1 to 0% to provide optimum sensitivity for internal faults. Set the second bias slope, Diff k2 to 150% to provide adequate stability for external faults.

These settings can be increased where low accuracy class CTs are used to supply the protection.
2.1.2 Setting guidelines for high impedance differential protection

Set the **Diff Function** cell to **High Impedance** to select high impedance differential protection.

Set the differential current setting **Diff Is1** to a low setting to protect as much of the machine winding as possible. A setting of 5% of rated current of the machine is adequate. This setting may need to be increased where low accuracy class CTs are used to supply the protection. Make sure the primary operating current of the element is less than the minimum fault current for which the protection should operate.

The primary operating current (Iop) is a function of the current transformer ratio, the relay operating current (Diff Is1), the number of current transformers in parallel with a relay element (n) and the magnetizing current of each current transformer (Ie) at the stability voltage (Vs). This relationship can be expressed in three ways:

To determine the maximum current transformer magnetizing current to achieve a specific primary operating current with a particular relay operating current.

\[
I_e < \frac{1}{n} \left(\frac{I_{op}}{CT.Ratio} - Mot.Diff.REF > I_s \right)
\]

To determine the maximum relay current setting to achieve a specific primary operating current with a given current transformer magnetizing current.

\[
Mot.Diff.I_s < \left(\frac{I_{op}}{CT.Ratio} - n I_e \right)
\]

To express the protection primary operating current for a particular relay operating current and with a particular level of magnetizing current.

\[
I_{op} = (CT.Ratio) \times (Mot.Diff.I_s + n I_e)
\]

To achieve the required primary operating current with the current transformers that are used, a current setting (Diff Is1) must be selected for the high impedance element, as detailed in expression (ii) above. The setting of the stabilizing resistor (RST) must be calculated in the following manner, where the setting is a function of the required stability voltage setting (Vs) and the relay current setting (Diff Is1).

\[
R_{ST} = \frac{V_s}{Mot.Diff.I_s} = 1.5 \times I_F \times \left(\frac{R_{CT} + 2R_L}{Mot.Diff.I_s} \right)
\]

Note: The above formula assumes negligible relay burden.

USE OF “METROSIL” NON-LINEAR RESISTORS

Metrosils are used to limit the peak voltage developed by the current transformers under internal fault conditions, to a value below the insulation level of the current transformers, relay and interconnecting leads, which are normally able to withstand 3000 V peak.

Use the following formulae to estimate the peak transient voltage produced for an internal fault. This is a function of the current transformer kneepoint voltage and the prospective voltage that would be produced for an internal fault if current transformer saturation did not occur. This prospective voltage is a function of maximum internal fault secondary current, the current transformer ratio, the current transformer secondary winding resistance, the current transformer lead resistance to the common point, the relay lead resistance and the stabilizing resistor value.

\[
V_p = 2 \sqrt{2V_k \left(V_f - V_k \right)}
\]

\[
V_f = I_f (R_{CT} + 2R_L + R_{ST})
\]

Where:

\[
V_p = \text{Peak voltage developed by the CT under internal fault conditions.}
\]
V_k = Current transformer knee-point voltage.

V_f = Maximum voltage that would be produced if CT saturation did not occur.

I_f = Maximum internal secondary fault current.

R_{CT} = Current transformer secondary winding resistance.

R_L = Maximum lead burden from current transformer to relay.

R_{ST} = Relay stabilizing resistor.

When the value given by the formulae is greater than 3000 V peak, Metrosils should be applied. They are connected across the relay circuit and serve the purpose of shunting the secondary current output of the current transformer from the relay to prevent very high secondary voltages.

Metrosils are externally mounted and take the form of annular discs. Their operating characteristics follow the expression:

$$V = C I^{0.25}$$

Where:

V = Instantaneous voltage applied to the non-linear resistor ("Metrosil").

C = Constant of the non-linear resistor ("Metrosil").

I = Instantaneous current through the non-linear resistor ("Metrosil").

With a sinusoidal voltage applied across the Metrosil, the RMS current would be approximately 0.52x the peak current. This current value can be calculated as follows:

$$I_{(rms)} = 0.52 \left(\frac{V_s\,(rms) \times \sqrt{2}}{C} \right)^4$$

Where:

$V_s\,(rms)$ = rms value of the sinusoidal voltage applied across the Metrosil.

This is due to the fact that the current waveform through the non-linear resistor ("Metrosil") is not sinusoidal but appreciably distorted.

For satisfactory application of a non-linear resistor ("Metrosil"), its characteristic should comply with the following requirements:

- At the relay voltage setting, the non-linear resistor ("Metrosil") current should be as low as possible, but no greater than approximately 30 mA rms. for 1 A current transformer and approximately 100 mA rms. for 5 A current transformers.

- At the maximum secondary current, the non-linear resistor ("Metrosil") should limit the voltage to 1500 V rms or 2120 V peak for 0.25 second. At higher relay voltage settings, it is not always possible to limit the fault voltage to 1500 V rms., so higher fault voltages may have to be tolerated.

The following tables show the typical Metrosil types that are required, depending on relay current rating, REF voltage setting etc.

Metrosil Units for Relays with a 1 Amp CT
The Metrosil units with 1 Amp CTs have been designed to comply with the following restrictions:

- At the relay voltage setting, the Metrosil current should be less than 30 mA rms.
- At the maximum secondary internal fault current the Metrosil unit should limit the voltage to 1500 V rms if possible.

The Metrosil units normally recommended for use with 1 Amp CTs are shown in the following table:

<table>
<thead>
<tr>
<th>Relay voltage setting</th>
<th>Nominal characteristic</th>
<th>Recommended metrosil type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>β</td>
</tr>
<tr>
<td>Up to 125 V rms</td>
<td>450</td>
<td>0.25</td>
</tr>
<tr>
<td>125 to 300 V rms</td>
<td>900</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Table 1: Recommended characteristics and types of Metrosil units to be used with 1 Amp CTs

Note: Single pole Metrosil units are normally supplied without mounting brackets unless otherwise specified by the customer.

Metrosil Units for Relays with a 5 Amp CT

These Metrosil units have been designed to comply with the following requirements:

- At the relay voltage setting, the Metrosil current should be less than 100 mA rms (the actual maximum currents passed by the units shown below their type description).
- At the maximum secondary internal fault current the Metrosil unit should limit the voltage to 1500 V rms for 0.25 secs. At the higher relay settings, it is not possible to limit the fault voltage to 1500 V rms so higher fault voltages have to be tolerated (indicated by *, **, ***).

The Metrosil units normally recommended for use with 5 Amp CTs and single pole relays are shown in the following table:

<table>
<thead>
<tr>
<th>Secondary internal fault current</th>
<th>Recommended METROSIL type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amps rms</td>
</tr>
<tr>
<td>50 A</td>
<td>600 A/S1/S1213</td>
</tr>
<tr>
<td>100 A</td>
<td>600 A/S2/P/S1217</td>
</tr>
<tr>
<td>150 A</td>
<td>600 A/S3/P/S1219</td>
</tr>
</tbody>
</table>

Table 2: Recommended characteristics and types of Metrosil units to be used with 5 Amp CTs

Note: *2400 V peak **2200 V peak ***2600 V peak

In some situations single disc assemblies are acceptable, contact General Electric for detailed applications.

The Metrosil units recommended for use with 5 Amp CTs can also be applied for use with triple pole relays and consist of three single pole units mounted on the same central stud but electrically insulated for each other. To order these units please specify "Triple Pole Metrosil Type", followed by the single pole type reference.
• Metrosil units for higher relay voltage settings and fault currents can be supplied if required. For further advice and guidance on selecting METROSILS please contact the Applications department at General Electric.

2.1.3 Setting guidelines for the self balance winding differential
For this configuration, the relay must be set to High Impedance using the cell Diff Function in the Differential protection menu. Set the differential current setting Diff Is1 to a low setting to protect as much of the machine winding as possible. A setting of 5% of rated current of the machine is generally considered adequate.

If the conductors are placed reasonably concentrically within the window of the core balance current transformers, spill current can be kept to a minimum. This low spill current and a reasonable independence of CT ratio to full load, allows a lower fault setting than with conventional high impedance circulating current differential schemes.

Disadvantages:
1. The necessity of passing both ends of each phase winding through the CT and so the need for extra cabling on the neutral end.
2. To avoid long cabling, position of CTs are restricted to the proximity of the machine output terminals in which case the cable between the machine output terminals and controlling switchgear might not be included within the differential zone.

2.2 Thermal overload protection (49)
For the Thermal overload protection function to operate correctly, the circuit breaker must be closed and its associated closing signal, 52a, must be recognized by the relay.

2.2.1 Introduction
Overloads can result in stator temperature rises which exceed the thermal limit of the winding insulation. Empirical results suggest that the life of insulation is approximately halved for each 10°C rise in temperature above the rated value. The life of insulation is not wholly dependent on the rise in temperature but on the time the insulation is maintained at this elevated temperature. Due to the relatively large heat storage capacity of an induction motor, infrequent overloads of short duration may not damage the machine. However, sustained overloads of a few per cent may result in premature ageing and failure of insulation.

The physical and electrical complexity of motor construction, their diverse applications, variety of possible abnormal operating conditions and the different modes of failure that may occur, result in a complex thermal relationship. It is not therefore possible to create an accurate mathematical model of the true thermal characteristics of the machine.

However, if a motor is considered to be a homogeneous body, developing heat internally at a constant rate and dissipating heat at a rate directly proportional to its temperature rise, it can be shown that the temperature at any instant is given by:

\[T = T_{\text{max}} (1 - e^{-\frac{t}{\tau}}) \]

Where;

\[T_{\text{max}} = \text{Final steady state temperature,} \]
\[\tau = \text{Heating time constant.} \]

This assumes a thermal equilibrium in the form:

Heat developed = Heat stored + Heat dissipated

Temperature rise is proportional to the current squared:

\[T = K I_r^2 (1 - e^{-\frac{t}{\tau}}) \]

Where;

\[I_r = \text{That current, which when left to flow continuously, would produce a temperature } T_{\text{max}}, \text{ in the motor.} \]
For an overload current 'I', the temperature is given by;

\[T = KI^2 (1 - e^{-t/\tau}) \]

For a motor not to exceed the rated temperature, the time 't' for which the motor can withstand the current 'I' can be shown to be given by;

\[t = \tau \ln \left[1/(1-(IR/I)^2) \right] \]

An overload protection element should therefore satisfy the above relationship. The value of \(I_R \) may be the full load motor current or a percentage of it, depending on the motor design.

It is an oversimplification to regard a motor as a homogeneous body. The temperature rise of different parts, or even of various points in the same part, can be very uneven. However, it is reasonable to consider the current-time relationship follows an inverse fashion. A more accurate representation of the thermal state of the motor can be obtained through the use of temperature monitoring devices (RTDs) which target these specific areas.

2.2.2 Thermal replica

The P24x relay models the time-current thermal characteristic of a motor by internally generating a thermal replica of the machine. The thermal overload protection can be selectively enabled or disabled. The positive or rms and negative sequence components of the load current are measured independently and are combined together to form an equivalent current, \(I_{eq} \), which is supplied to this replica circuit. The heating effect in the thermal replica is produced by \(I_{eq}^2 \) and therefore takes into account the heating effect due to both positive or rms and negative sequence components of current.

The equivalent current for operation of the overload protection is in accordance with the following expressions;

\[I_{eq} = \sqrt{(I_1^2 + KI_2^2)} \]

Note: This equation is used in software version A4.x (09) and before

\[I_{eq} = \sqrt{(I_{RMS}^2 + KI_2^2)} \]

Note: This equation is used in software version B1.0 (20) and later

Where;

- \(I_{RMS} \) = Root Mean Square current
- \(I_1 \) = Positive sequence current
- \(I_2 \) = Negative sequence current
- \(K \) = A user settable constant proportional to the thermal capacity of the motor.

As previously described, the temperature of a motor rises exponentially with increasing current. Similarly, when current decreases, the temperature also decreases in a similar manner. Therefore, to achieve close sustained overload protection, the P24x relay incorporates a wide range of thermal time constants. These allow the relay replica to closely match the protected motor during heating and cooling.

Furthermore, the thermal withstand capability of the motor is affected by heating in the winding prior to the fault. The thermal replica is designed to take into account the extremes of zero pre-fault current, known as the 'cold' condition, and full rated pre-fault current, known as the 'hot' condition. With no pre-fault current, the relay operates on the 'cold curve'. When a motor is, or has been, running at full load prior to a fault, the windings dissipate heat and the 'hot curve' is applicable. Therefore, during normal operation, the relay operates in these two limits, unless programmed to do otherwise.

To protect the motor during all operating conditions, three independently adjustable time constants are employed in the overload curve:

- \(T1 = \) Overload time constant applied when the current is between \(I_h \) & \(2I_h \).
- \(T2 = \) Overload time constant applied for currents above \(2I_h \).
Tr = Cooling time constant applied when the motor is stopped.

The following equation is used to calculate the trip time for a given current.

Note: The relay trips at a value corresponding to 100% of its thermal state. The percentage of thermal capacity follows the relationship $\%\theta = (\frac{I_{eq}}{I_{th}})^2 \times 100$.

\[t = T \ln \left(\frac{(k^2 - A^2)}{(k^2 - 1)} \right) \]

And the following equation is used to calculate the time it takes for the thermal alarm to be set.

\[t_{alarm} = T \ln \left(\frac{(k^2 - A^2)}{(k^2 - \text{Thermal Alarm}/100)} \right) \]

Where:
- $T = T_1$ if $I_{in} < I_{eq} <= 2I_{in}$
- $T = T_2$ if $I_{eq} > 2I_{in}$
- $T = Tr$ if $I_{eq} = 0$ (CB open)
- $k = \frac{I_{eq}}{I_{th}}$
- $A = \text{initial thermal state of the machine.}$
- $I_{in} = \text{Thermal current setting}$
- Thermal Alarm = Thermal alarm setting (20%-100%)

The time to trip varies depending on the load current carried before application of the overload, such as whether the overload was applied from “hot” or “cold”.

2.2.3 Setting guidelines for thermal overload

2.2.3.1 Thermal setting I_{in}

The I_{in} Current Set setting chosen depends on the type of motor being protected. Most machines are termed CMR (continuous maximum rating) motors. These motors are designed to carry the nameplate value or full load current continuously. A CMR motor may be run at some value less than its CMR and set to trip at its CMR.

Alternatively, if the machine is not a CMR motor, then the I_{in} setting needs to take into account the amount of overload, which can be tolerated, without resulting in thermal damage. A typical allowable overload may be in the region of 10% of rated temperature. It is important to realize that the temperature build up in the machine is approximately equal to the current squared; therefore a 10% temperature overload is equivalent to a 5% current overload.

Setting example:

The following motor parameters are used to show how to determine the P24x settings:

<table>
<thead>
<tr>
<th>Voltage</th>
<th>11 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full load current</td>
<td>293 A</td>
</tr>
<tr>
<td>Starting current</td>
<td>470 %</td>
</tr>
<tr>
<td>Starting time</td>
<td>10 s</td>
</tr>
<tr>
<td>Heating time constant</td>
<td>20 min</td>
</tr>
<tr>
<td>Cooling time constant</td>
<td>100 min</td>
</tr>
<tr>
<td>Hot locked rotor withstand time</td>
<td>20 s</td>
</tr>
<tr>
<td>Cold locked rotor withstand time</td>
<td>30 s</td>
</tr>
<tr>
<td>CT Ratio</td>
<td>300 / 1</td>
</tr>
<tr>
<td>VT Ratio</td>
<td>11.5 kV / 110 V</td>
</tr>
<tr>
<td>Starting D.O.L</td>
<td>D.O.L</td>
</tr>
</tbody>
</table>

Table 3: Specific motor parameters used to show how to determine the P24x settings
For this application we have assumed the machine is a CMR motor and therefore the I_{th} setting is calculated as follows;

$$I_{th} = I_{CMR} \times \left(\frac{1}{CT\ Ratio} \right)$$

Where:

I_{CMR} = Continuous Motor Rating

Therefore: $I_{th} = 293 \times \frac{1}{300} = 0.976 \text{ In}$

Therefore set: $I_{th} = 0.98 \text{ In}$

2.2.3.2 K coefficient

The constant **K Coefficient** is used to increase the influence of negative sequence current on the thermal replica. This factor should be set equal to the ratio of negative phase sequence, rotor resistance to positive sequence resistance at rated speed. When an exact setting cannot be calculated, a default setting of 3 should be used. This is a typical setting and is sufficient for the majority of applications.

Therefore set: **K Coefficient = 3**

2.2.3.3 Thermal time constants

The relay heating and cooling time constants are set in accordance with the stator thermal heating and cooling time constants. The relay heating time constant (**Thermal Const T1**) should be set equal to, or as close as possible to, the stator heating thermal time constant, which is obtainable from the motor manufacturer. It is good practice to set T1 slightly less than the stator heating thermal time constant to allow for relay tolerances. However, this is not always necessary, since the stator thermal time constants provided by the motor manufacturer are usually conservative.

Thermal Const T2 is automatically applied above 2 I_{th} and is used to modify the relay thermal curve during starting for certain applications, for example, where star/delta starters are being utilized. During normal running, with the motor connected in delta, the current in the motor winding is only 57% of that monitored by the relay. However, during starting, with the motor connected in star, the current monitored by the relay is equal to the current in the motor winding. For this reason, T2 can be used to reduce the operating time of the relay during starting. For applications where direct on line (DOL) starting is utilized, T2 should be set equal to T1, resulting in one continuous thermal curve.

It is important to plot the chosen thermal characteristics on a time-current graph to ensure that the cold curve does not intersect the starting characteristic.

In certain applications, the thermal time constants may not be available. However, a graphical representation of these values may be given. In such applications, a stator heating time constant must be chosen, such that when plotted on a time-current graph, it closely matches the cold withstand curve of the motor.

Cooling Const Tr is the cooling time constant. This setting is important for cyclic operation of the motor, since precise information of the thermal state of the motor is required during heating and cooling. It is set as a multiple of T1 and should be set to the nearest value above the motor cooling time constant.

Setting Example:

For this particular application the stator thermal time constants of the motor are known, therefore the required time constant settings are as follows;

Therefore set: $T1 = 20$ minutes

$T2 = T1$ since machine is DOL starting

Tr to $5 \times T1 = 100$ mins.

These settings are shown in Figure 1.
2.2.4 Thermal state modification

If a CMR induction motor is fully loaded, this is equivalent to a temperature of 100%, as far as the thermal replica is concerned. The motor protection relay is therefore normally set to trip when the temperature reaches 100%. However, a stator temperature of 100% does not necessarily correspond to a rotor temperature of 100%; the rotor temperature could be as low as 50% of the permitted level. The main reason for this is that the rotor winding is able to dissipate the heat more efficiently than the stator winding, particularly with fan-driven, airflow machines.

During starting, the slip is low and both the stator and rotor currents are high, thereby creating heat in both windings. However, a motor is usually designed to allow one start when it has previously been run at a stator temperature not exceeding its rating.
From cold, the motor thermal replica characteristic is on its 'cold' curve, with the highest tripping times. As the machine is run over a period of time, the projected thermal trip times are reduced, eventually reaching their minimum when operating on the 'hot' curve. Unfortunately, any rapid increase in current, for example a starting condition, may result in an unnecessary trip. This is shown in Figure 2.

![Figure 2: Thermal curve modification](image)

In the past, motor manufacturers and end users have been aware of the limitation of the stator thermal model and the possible solution has been to oversize the machine, which is expensive.

The P24x relay incorporates a feature whereby the thermal curve can be modified to overcome this problem. Previously, the relay has a dual time constant (T1 and T2) characteristic for applications such as star/delta starting. In this example T2 was set to a lower value than T1. To enable a hot re-start, for a DOL machine, it may be necessary to set T2 to a higher value than T1 to avoid the starting characteristic. This is shown in Figure 2.
2.2.5 Thermal probe influence

Motors are designed to operate within a specific ambient temperature. If the machine is operated in a higher ambient temperature than specified, the windings may overheat resulting in insulation deterioration, even if it is operating within rated load. Therefore, if the machine is operated in an environment where the ambient temperature may fluctuate, it is important to compensate the thermal overload curve to maintain close thermal overload protection. Strategically placed temperature sensors can be used to provide information on ambient conditions, which in turn can then be used to influence the thermal replica. Motors which are particularly at risk are those operated in direct sunlight, boiler houses, tropical environments and motors which are reliant on forced cooling.

The power delivered by a motor varies with the ambient temperature, the following table shows variations in power delivered as the temperature changes for a typical motor.

<table>
<thead>
<tr>
<th>Ambient Temperature °C</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power delivered as a % of nominal power</td>
<td>100</td>
<td>95</td>
<td>90</td>
<td>85</td>
<td>80</td>
</tr>
</tbody>
</table>

Table 4: Reduction of per unit power delivered by motors relative to the ambient temperature

As the nominal power varies linearly with nominal current, with a constant voltage, the above table is applicable to nominal current.

The thermal setting is also directly proportional to nominal current. So to compensate for the ambient temperature variation, the thermal setting is corrected dependent on the ambient temperature for the following conditions:

- During the calculation of thermal state
- During the detection of thermal alarm
- During the detection of thermal overload
- During the detection of thermal lockout

A correction coefficient is calculated depending on the temperature as shown in the table below and is multiplied to the thermal thresholds:

<table>
<thead>
<tr>
<th>Ambient Temperature °C</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplication Coefficient</td>
<td>1</td>
<td>0.95</td>
<td>0.90</td>
<td>0.85</td>
<td>0.80</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Table 5: Correction coefficients used by the relay to offset the thermal replica at different ambient temperatures

The P24x accepts inputs from up to 10 RTDs (resistance temperature detectors). Two of these RTDs (one main and one back-up), can be used to measure the external/ambient temperature and influences the thermal curve.

2.2.6 Specific applications

2.2.6.1 Inhibition of the thermal trip during starting

It may be necessary to disable the thermal overload curve when starting motors which have extreme starting conditions, such as very long start times or very high start current values. With this feature enabled, if the calculated thermal state reaches 90% before the end of the starting period, this value is retained at 90% for the remaining starting period. At the end of the starting period the inhibit is removed.

Note: This function does not affect the operation of the Thermal Alarm feature.

2.2.6.2 Emergency restart

Where a motor forms part of an essential process, it is sometimes desirable for it to continue operation, even under severe overload conditions. This usually means the motor being subjected to temperatures in excess of its design limits. Even though this may decrease the life of the motor, or even under extreme circumstances, burn the motor out, this may be justified for the application.
2.2.6.3 Thermal alarm

The **Thermal Alarm** threshold is expressed as a percentage of the thermal state of the machine and is used to give an alarm when the thermal state reaches a predetermined value. There is no definitive setting for the thermal alarm threshold since it is application dependent. A typical setting would be 90%.

2.2.6.4 Lockout threshold

This facility can be used to inhibit a hot restart until the motor has cooled to the **Lockout Thresh**. This setting is expressed as a percentage of the thermal state of the motor. A contact is designed to open when the thermal state of the machine reaches this setting and close again when the thermal state drops below this setting. This contact would therefore be wired into the starting circuitry to provide the inhibit.

There is no definitive setting for the lockout threshold since it is based on the motors capability to withstand a hot restart. It is typically set to the minimum value of 20%Ith.

2.3 Resistive temperature detectors

Prolonged overloading of motors or generators can cause their windings to overheat, resulting in premature ageing of the insulation, or in extreme cases, insulation failure. Worn or unlubricated bearings can also generate localized heating within the bearing housing. To protect against any general or localized overheating, the P24x relays have the ability to accept inputs from resistive temperature sensing devices (RTDs). Such probes are strategically placed in areas of the machine which are susceptible to overheating, or heat damage.

2.3.1 RTD thermal protection features

Typically an RTD probe can measure temperature within the range -40 to +400°C. The temperature at each probe location can be determined by the relay, and is available for:

- Temperature monitoring, displayed locally, or remotely via the relay communications
- Alarming, should a temperature threshold be exceeded for longer than a set time delay
- Tripping, should a temperature threshold be exceeded for longer than a set time delay
- Should the measured resistance be outside of the permitted range, an RTD failure alarm is raised, indicating an open or short circuit RTD input

Note: Direct temperature measurement can provide more reliable thermal protection than devices which use a thermal replica energized from phase current. The latter is susceptible to inaccuracies in time constants used by the replica model, and also inaccuracies due to the variation in ambient temperature.

2.3.2 RTD thermal protection settings

Typical operating temperatures for protected plant are given. Actual figures must be obtained from the equipment manufacturers:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Typical service temperature at full load</th>
<th>Short term overloading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearing temperature of motors or generators</td>
<td>Possibly 60 – 80°C, depending on the type of bearing.</td>
<td>+60 - +80°C</td>
</tr>
<tr>
<td>Top oil temperature of transformers</td>
<td>80°C (50 – 60°C above ambient).</td>
<td>A temperature gradient from winding temperature is usually assumed, such that top oil RTDs can provide winding protection.</td>
</tr>
<tr>
<td>Winding hot spot temperature</td>
<td>98°C for normal ageing of insulation.</td>
<td>Cyclic overloading might give +140°C during emergencies.</td>
</tr>
</tbody>
</table>

Table 6: Typical operating temperatures of a healthy plan
The P24x relay has an alarm threshold setting, with a time delay for each RTD input. Each input also has a trip element, with a temperature threshold and a time delay. The time delays may be set to 0 s if instantaneous protection is required.

Temperature settings can be set in degrees Celsius or Fahrenheit within the range 0-400°C.

2.4 **Short circuit protection (50/51)**

Faults between phases seldom occur because of the relatively large amount of insulation between phase windings. As the stator windings are completely enclosed in earthed metal, most faults involve earth, which would then operate the earth fault protection. However, a fast operating overcurrent element is often employed to protect against phase faults occurring at the motor terminals; such as terminal flashovers.

The short circuit protection included within the P24x relays consists of a four stage non-directional overcurrent element. The first two stages have a time delayed characteristic that can be set as either Inverse Definite Minimum Time (IDMT) or Definite Time (DT). The third and fourth stages have a definite time delay. Each stage can be selectively enabled or disabled.

This element uses Ia, Ib, and Ic relay inputs and can be fed from CTs at the terminal of the motor.

If a definite time setting of less than 100 ms is set, to avoid tripping during start-up as a result of asymmetric CT saturation, the definite time element has a minimum operating time of 100 ms for currents in the range 1xI> to 1.13xI> as shown in Figure 6.

If required to set I> below the starting current to increase the sensitivity, it is possible to use undervoltage protection function in conjunction with negative sequence overvoltage protection function to block the short circuit protection function under normal conditions and unblock the function when there is a genuine short circuit condition. Under a genuine short circuit condition and depending on the type of the fault, either or both undervoltage and negative sequence overvoltage start elements are picked up. The associated DDBs can then be utilized in the PSL to unblock the short circuit protection function. Typical settings to implement this algorithm are 60% for undervoltage protection function and 5% for negative sequence overvoltage protection function. Typical PSL schemes to implement this algorithm are shown below:

![Figure 3: OR logic](image-url)
Where: x=1, 2 and y=1, 2, 3, 4

Figure 4: AND logic

In case of VT failure, V< and V2> functions are disabled automatically. Therefore, associated start elements remain in the reset condition but VTS Block Alarm is asserted and in turn I> function is unblocked. As V< and V2> are only used to block I> from tripping during start and should not generate a trip, it is required to inhibit these elements and this can be done in the PSL. See Figure 5 as an example.

Figure 5: Inhibition of V< and V2> during start

The definite time characteristic is shown below in Figure 6.

Figure 6: Definite time overcurrent element

2.4.1 Setting guidelines

To prevent operation during starting, the instantaneous element is usually set to 1.25 times the maximum starting current.
The timer setting is very much system dependent, but may typically be set to a value in the region of 100 ms. A time delay setting of less than 2 cycles duration is not realistic due to the fact that a minimum confirmation time, equivalent to two cycle duration, is required before tripping.

Note: If the motor is controlled by a fused contactor, it needs to be coordinated with the fuse. This is to prevent the contactor attempting to interrupt current in excess of its breaking capacity.

2.4.2 Setting example

Utilizing the previously specified motor parameters, set:

\[I > \text{Current Set} = \frac{(1.25 \times 4.7 \times 293)}{300} = 5.7 \text{ In} \]
\[I > \text{Time Delay} = 100 \text{ ms} \]

These settings are shown in Figure 6.

2.5 Earthfault protection (50N/51N/67N/32N/64N)

One of the most common faults on a motor is a stator winding fault. This is usually the result of prolonged or cyclic overheating, which causes the insulation to deteriorate. Since the windings are surrounded by an earthed metal case, stator faults usually manifest themselves as earthfaults. The type of earthfault protection and CT arrangement adopted depends on the amount of earth fault current available during a fault. The magnitude of current is dependent on the system earthing arrangements.

The P24x earth fault element is equipped with two independent stages, which are selectable as either forward, reverse or non-directional. The first stage may be selected as either IDMT or DT and the second stage is DT only.

The inverse time delayed characteristics listed above, comply with the following formula:

\[t = T \times \left\{ \left[\frac{K}{(I/Is)} \alpha (-1) \right] + L \right\} \]

Where;

- \(t \) = operation time
- \(K \) = constant
- \(I \) = measured current
- \(Is \) = current threshold setting
- \(\alpha \) = constant
- \(L \) = ANSI/IEEE constant (zero for IEC curves)
- \(T \) = Time multiplier Setting or Time Dial Setting

<table>
<thead>
<tr>
<th>Curve description</th>
<th>Standard</th>
<th>(K) constant</th>
<th>(\alpha) constant</th>
<th>(L) constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Inverse</td>
<td>IEC</td>
<td>0.14</td>
<td>0.02</td>
<td>0</td>
</tr>
<tr>
<td>Very Inverse</td>
<td>IEC</td>
<td>13.5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Extremely Inverse</td>
<td>IEC</td>
<td>80</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Long Time Inverse</td>
<td>UK</td>
<td>120</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Moderately Inverse</td>
<td>IEEE</td>
<td>0.0515</td>
<td>0.02</td>
<td>0.114</td>
</tr>
<tr>
<td>Very Inverse</td>
<td>IEEE</td>
<td>19.61</td>
<td>2</td>
<td>0.491</td>
</tr>
<tr>
<td>Extremely Inverse</td>
<td>IEEE</td>
<td>28.2</td>
<td>2</td>
<td>0.1217</td>
</tr>
<tr>
<td>Inverse</td>
<td>US-C08</td>
<td>5.95</td>
<td>2</td>
<td>0.18</td>
</tr>
<tr>
<td>Short Time Inverse</td>
<td>US-C02</td>
<td>0.02394</td>
<td>0.02</td>
<td>0.01694</td>
</tr>
</tbody>
</table>

Table 7: Standard IDMT curve constant values
Note: The IEEE and US curves are set differently to the IEC/UK curves, with regard to the time setting. A time multiplier setting (TMS) is used to adjust the operating time of the IEC curves, whereas a time dial setting is employed for the IEEE/US curves. Both the TMS and Time Dial settings act as multipliers on the basic operating time.

Note: All the curves are shown in the Technical Data chapter, P24X/EN TD.

The element operates from residual current obtained from either the residual connection of the three phase CTs, or from an independent core balance CT. The core-balance CT is normally of the ring type, through the centre of which is passed the three phase cable to the motor. The advantage in using this CT arrangement lies in the fact that only one CT core is used, in place of the conventional three phase CTs whose three secondary windings are residually connected. In this way the CT magnetizing current at relay operation is reduced by approximately three-to-one; an important consideration in the detection of low level earthfaults, where low effective settings are required. Furthermore, the primary current rating does not need to be related to motor full load current as no secondary current flows under normal balanced conditions. This allows the CT ratio to be chosen such as to optimize the effective primary pick-up current.

Core-balance transformers are normally mounted over a cable at a point close to the cable gland. Physically split cores, that is 'slip-over' types, are normally available for applications in which the cable is already in position, as on existing installations. Figure 7 shows the correct method of earthing the cable sheath when using a core balance CT.
Where directional earth fault protection is required, the element should be polarized from residual voltage (-3Vo). This is derived from either the three phase VT inputs to the relay or the residual voltage input. The VT Connect Mode, 3VT, 2VT+VResidual, 2VT+Vremanent can be selected in the CT and VT Ratios menu.

Different VT ratio settings for the three modes of connection are available.

2.5.1 Solidly earthed system

2.5.1.1 Principle

On solidly earthed systems, for earth fault settings >20% of the motor continuous rated current, it is acceptable to use the conventional residual CT connection for the detection of earth faults. Below this value the use of a core balance CT can be more applicable.

Care must be taken to ensure the relay does not operate from the spill current resulting from asymmetric CT saturation during starting. To achieve stability under these conditions, it is usual to insert a stabilizing resistor in series with the relay (when set for instantaneous operation) or use a time delay. The required value of resistor is calculated as follows;

\[R_{stab} = \frac{I_d}{I_d} (R_{ct} + N \cdot R_1 + R_i) \]

Where;
Ik = earth fault setting in amps
Ist = motor starting current referred to CT secondary
Rct = d.c. resistance of CT secondary
N = 1 for 4 wire CT connection (star point at CTS)
2 for 6 wire CT connection (both star points formed at relay panel).
R1 = resistance of single lead from relay to CT
Rr = Relay resistance in ohms

Note: The value of the CT Knee-pint is calculated as \(V_k \geq 4 \times I_0 \times R_s \) when \(R_s \) is the actual stabilizing resistance value.

2.5.1.2 Typical settings

Typically, the earth fault element should be set non-directional with a setting of approximately 30% of the motor continuous rated current.

Where a stabilizing resistor is used, the earth fault element should be set instantaneous. If one is not used, stability during asymmetric CT saturation can be achieved by time delaying the earth fault element. The actual timer setting is very much system dependent.

If the motor is supplied by a fused contactor, it is important to grade the earth fault protection to ensure that the contactor does not attempt to interrupt fault current in excess of its breaking capacity. Figure 8 gives an example:

![Fuse characteristic](image-url)
2.5.2 Insulated system

2.5.2.1 Principle

The advantage gained by running a power system which is insulated from earth, is that during a single phase to earth fault condition, no earth fault current is allowed to flow. Therefore, it is possible to maintain power flow on the system, even when an earth fault condition is present. This advantage is offset by the fact that the resultant steady state and transient overvoltages on the sound phases can be very high.

Operational advantages may be gained by the use of insulated systems. However, it is still vital that detection of the fault is achieved. This is obviously not possible by means of standard current operated earth fault protection. One possibility for fault detection is by means of a residual overvoltage device. This functionality is included within the P24x relay and is detailed in section 2.6. However, fully discriminative earth fault protection on this type of system may be achieved by the application of a sensitive earth fault element. This type of relay is set to detect the resultant imbalance in the system charging currents that occurs under earth fault conditions. It is therefore essential that a core balance CT is used for this application.

Figure 9: Current distribution in an insulated system with C phase fault

Figure 9 shows the relays on the healthy motor feeders see the unbalance in the charging currents for their own feeder.

The relay on the faulted feeder, however, sees the charging current from the rest of the system (IH1 and IH2 in this case), with its own feeders charging current (IH3) becoming cancelled out. This is further shown by the phasor diagrams shown in Figure 10.
Figure 10: Phasor diagrams for insulated system with C phase fault

Referring to the phasor diagram, it can be seen that the C phase to earth fault causes the voltages on the healthy phases to rise by a factor of $\sqrt{3}$. The A phase charging currents (I_{a1}), is then shown to be leading the resultant A phase voltage by 90°. Likewise, the B phase charging current leads the resultant V_b by 90°.

The unbalance current detected by a core balance current transformer on the healthy motor feeders can be seen to be a simple vector addition of I_{a1} and I_{b1}, giving a residual current which lies at exactly 90° lagging the residual voltage ($-3V_o$). As the healthy phase voltages have risen by a factor of $\sqrt{3}$, the charging currents on these phases are $\sqrt{3}$ times larger than their steady state values. Therefore, the magnitude of residual current, I_{R1}, is equal to $3 \times$ the steady state per phase charging current.

The phasor diagrams indicate that the residual currents on the healthy and faulted motor feeders, I_{R1} and I_{R3} respectively, are in antiphase. A directional element could therefore be used to provide discriminative earth fault protection.

If the polarizing voltage of this element, V_{res} (equal to $-3V_o$), is shifted through $+90^\circ$, the residual current seen by the relay on the faulted feeder lies within the operate region of the directional characteristic and the current on the healthy feeders falls within the restrain region.

Note: The actual residual voltage used as a reference signal for the directional earth fault protection in the P24x relay is internally phase shifted by 180° and is therefore shown as $-3V_o$ in the vector diagrams.

The required characteristic angle setting for the sensitive earth fault element when applied to insulated systems is $+90^\circ$.

Note: The recommended setting corresponds to the relay being connected such that its direction of current flow for operation is from the motor feeder into the busbar. The correct relay connections to give a defined direction for operation are shown in the relay connection diagrams in the Installation chapter, P24x/EN IN.
The P24x relay internally derives the residual polarizing voltage for the directional earth fault element. Therefore, either a 5-limb or three single phase VTs should be applied to drive the relay, not a VT of the three-limb design. The former types allow the passage of residual flux through the VT and therefore permit the relay to derive the required residual voltage. A three limb VT provides no path for the flow of residual flux and is therefore unsuitable. Alternatively, the relay can be driven by a phase to phase connected VT with a broken delta winding connected to the residual voltage input.

Note: Discrimination can be provided without the need for directional control. This can only be achieved if it is possible to set the relay in excess of the charging current of the protected feeder and below the charging current for the rest of the system.

2.5.2.2 Setting guidelines

The residual current detected by the relay on the faulted feeder is equal to the sum of the charging currents flowing from the rest of the system. The addition of the two healthy phase charging currents on each feeder gives a total charging current which has a magnitude of three times the per phase value. Therefore, the total unbalance current detected by the relay is equal to three times the per phase charging current of the rest of the system. A typical relay setting may therefore be in the order of 30% of this value, that is equal to the per phase charging current of the remaining system. Practically though, the required setting may well be determined on site, where system faults can be applied and suitable settings can be adopted based on practically obtained results. The use of the P24x relays comprehensive measurement and fault recording facilities may prove very useful in this respect.

The timer setting of this element is not critical, since for the first fault only capacitive current exists on the system. However, for subsequent faults, fast tripping is required. If the motor is operated using a fused contactor it is important to delay the protection sufficiently to ensure that the contactor does not attempt to interrupt fault current in excess of its breaking capacity.

2.5.3 Resistance earthed systems

Earthing the system using a resistor reduces both the fault current and transient overvoltages. Resistance earthing can sometimes be advantageous in hazardous environments such as in mines since the earthing resistance reduces touch and step potentials during earth faults.

2.5.3.1 Setting guidelines

On a resistance earthed system, it is common practice to limit the fault current to approximately full load current.

For such an application, the relay can be set non-directional with a current sensitivity of less than 30% of the minimum earth fault level but greater than three times the steady state charging current of the motor feeder. Figure 9 shows the healthy feeder sees this value of charging current regardless of the method of earthing.

Similar guidelines to those given for solidly earthed systems (section 2.5.1) are applicable with regard to the required time delay setting.

Note: If the above setting guidelines for applying a non-directional relay cannot be achieved due to the current magnitudes, then a sensitive directional earth fault element is required. This eliminates the need to set the relay in excess of the charging current for the protected feeder.

2.5.3.2 High resistance earthing

For certain applications, the fault current may be severely limited by the use of very high resistance earthing. It is usual in this case to choose a value of resistor which limits the resistive fault current to a similar magnitude as the system charging current. Therefore, charging current has a marked influence on the angle of the fault current with respect to the polarizing voltage (-3 Vo).
In this application sensitive directional earthfault protection, operated from a core balance CT, is required. The relay characteristic angle setting should therefore be set to +45° (refer to Figure 10).

Note: This recommended setting corresponds to the relay being connected such that its direction of current flow for operation is from the motor feeder into the busbar.

The current sensitivity of the relay should be approximately 30% of $\sqrt{2}$ times the charging current for the rest of the system (3 x steady state value). The correct relay connections to give a defined direction for operation are shown on the relay connection diagram in the Installation chapter, *P24x/EN IN*.

The timer setting of this element is not critical because minimal damage results from the first fault. However, for subsequent faults fast tripping is required.

Note: Similar comments apply with respect to those given in section 2.5.2 regarding the VT requirements for the P24x relay when directionalizing earth fault elements (R.C.A = relay characteristic angle).

Figure 11: Directional tripping characteristic

2.5.4 Petersen coil earthed systems

2.5.4.1 Principle

Power systems are usually earthed to limit transient overvoltages during arcing faults and also to assist with detection and clearance of earth faults. Impedance earthing has the advantage of limiting damage incurred by plant during earth fault conditions and also limits the risk of explosive failure of switchgear, which is a danger to personnel. In addition, it limits touch and step potentials at a substation or in the vicinity of an earth fault.

If a high impedance device is used for earthing the system, or the system is unearthed, the earth fault current is reduced. However, the steady state and transient overvoltages on the sound phases can be very high. Therefore high impedance earthing is only used in low or medium voltage networks where the necessary insulation against such overvoltages is not too costly. Higher system voltages would normally be solidly earthed or earthed using a low impedance.
A special case of high impedance earthing using a reactor occurs when the inductive earthing reactance is made equal to the total system capacitive reactance to earth at system frequency. This practice is widely referred to as Petersen (or resonant) Coil Earthing. With a correctly tuned system, the steady state earthfault current is zero, so that earth faults become self-extinguishing. Such systems can, if designed, be run with one phase earthed for a long period until the cause of the fault is identified and rectified. With the effectiveness of this method being dependent on the correct tuning of the coil reactance to the system capacitive reactance, an expansion of the system at any time would necessitate an adjustment of the coil reactance.

Petersen coil earthed systems are commonly found in areas where the power system consists mainly of rural overhead lines and can be particularly beneficial in locations which are subject to a high incidence of transient faults. The Petersen coil, for example, can extinguish transient earth faults caused by lightning strikes without the need for outages.

Figure 12 shows a source of generation earthed through a Petersen Coil, with an earth fault applied on the A Phase. Under this situation, it can be seen that the A phase shunt capacitance becomes short circuited by the fault. Therefore, the calculations show that if the reactance of the earthing coil is set correctly, the resulting earth fault current is zero.

Prior to actually applying protective relays to provide earth fault protection on systems which are earthed using a Petersen Coil, it is imperative to gain an understanding of the current distributions that occur under fault conditions on such systems. With this knowledge, it is
then possible to decide on the type of relay that may be applied, ensuring that it is both set and connected correctly.

Figure 13 shows a radial distribution system having a source which is earthed using a Petersen Coil. Three outgoing feeders are present, the lower of which has a phase to earth fault applied on the C phase.

Figure 13: Distribution of currents during a C phase to earth fault

Figure 14 (a, b and c) shows vector diagrams for the previous system, assuming that it is fully compensated (for example, coil reactance fully tuned to system capacitance), in addition to assuming a theoretical situation where no resistance is present either in the earthing coil or in the feeder cables.
Referring to the vector diagram shown in Figure 14a, the C phase to earth fault causes the voltages on the healthy phases to rise by a factor of $\sqrt{3}$. The A phase charging currents (I_{a1}, I_{a2} and I_{a3}), are then shown to be leading the resultant A phase voltage by 90° and likewise for the B phase charging currents with respect to the resultant V_b.

The unbalance current detected by a core balance current transformer on the healthy feeders can be seen to be a simple vector addition of I_{a1} and I_{b1}, giving a residual current which lies at exactly 90° lagging the residual voltage (Figure 14 b). As the healthy phase voltages have risen by a factor of $\sqrt{3}$, the charging currents on these phases are also $\sqrt{3}$ times larger than their steady state values. Therefore, the magnitude of residual current, I_{R1}, is equal to $3 \times$ the steady state per phase charging current.

Note: The actual residual voltage used as a reference signal for directional earth fault relays is phase shifted by 180° and is therefore shown as $-3V_o$ in the vector diagrams. This phase shift is automatically introduced within the 24x relays.

On the faulted feeder, the residual current is the addition of the charging current on the healthy phases (I_{h3}) plus the fault current (I_f). The net unbalance is therefore equal to $I_l-\text{Ih1}-\text{Ih2}$, as shown in Figure 14 c.

This situation may be more readily observed by considering the zero sequence network for this fault condition. This is shown in Figure 15 below:
In comparing the residual currents occurring on the healthy and on the faulted feeders (Figure 16 b & 16c), it can be seen that the currents would be similar in both magnitude and phase; so it would not be possible to apply a relay which could provide discrimination.

However, the scenario of no resistance being present in the coil or feeder cables is purely theoretical. Further consideration therefore needs to be given to a practical application in which the resistive component is no longer ignored, see Figure 16.
Figure 16: Practical case:- resistance present in XL and Xc

Figure 16a again shows the relationship between the capacitive currents, coil current and residual voltage. It can now be seen that due to the presence of resistance in the feeders, the healthy phase charging currents are now leading their respective phase voltages by less than 90°. In a similar manner, the resistance present in the earthing coil has the effect of shifting the current, IL, to an angle less than 90° lagging. The result of these slight shifts in angles can be seen in Figure 16b and 16c.

The residual current now appears at an angle in excess of 90° from the polarizing voltage for the unfaulted feeder and less than 90° on the faulted feeder. Therefore, a directional relay with a characteristic angle setting of 0° (with respect to the polarizing signal of -3Vo) could be applied to provide discrimination. The healthy feeder residual current would appear in the restrain section of the characteristic but the residual current on the faulted feeder would be in the operate region.

In practical systems a resistance is inserted in parallel with the earthing coil. This increases the level of earth fault current to a more detectable level. It also increases the angular difference between the residual signals to help the application of discriminating protection.

2.5.4.2 Operation of sensitive earth fault element

The angular difference between the residual currents on the healthy and faulted feeders allows a directional relay to be applied whose zero torque line passes between the two currents. The following types of protection elements may be applied for earth fault detection.

- A suitably sensitive directional earth fault relay having a relay characteristic angle setting (RCA) of zero degrees, with the possibility of fine adjustment about this threshold.
- A sensitive directional zero sequence wattmetric relay having similar requirements to the above with respect to the required RCA settings.

Both stages 1 and 2 of the sensitive earth fault element of the P24x relay are settable down to 0.2% of rated current and would therefore fulfill the requirements of the first method listed above and could therefore be applied successfully. However, many utilities (particularly in
central Europe) have standardized on the wattmetric method of earth fault detection, which is described in the following section.

Zero sequence power measurement, as a derivative of Vo and Io, offers improved relay security against false operation with any spurious core balance CT output for non earth fault conditions. This is also the case for a sensitive directional earth fault relay having an adjustable Vo polarizing threshold.

2.5.5 Wattmetric characteristic

2.5.5.1 Principle

The previous analysis shows that a small angular difference exists between the spill current on the healthy and faulted feeders. This angular difference gives rise to active components of current which are in antiphase to one another. This is shown in Figure 17 below:

![Figure 17: Resistive components of spill current](image)

Therefore, the active components of zero sequence power lies in similar planes. On a relay capable of detecting active power it would be able to make a discriminatory decision. That is, if the wattmetric component of zero sequence power was detected in the forward direction, then this would be indicative of a fault on that feeder; if power was detected in the reverse direction, then the fault must be present on an adjacent feeder or at the source.

For operation of the directional earth fault element within the P24x relays, all three of the settable thresholds on the relay must be exceeded; namely the current (P0>Current Set), the voltage (P0>Voltage Set) and the power (P0>Coef. K Set). The directional decision within the relays is based on current rather than power. The 'Coef. K' threshold is simply present as an additional level that must be exceeded before a trip is initiated.

The wattmetric power formula is calculated using residual rather than zero sequence quantities. Residual quantities are three times their respective zero sequence values and so the complete formula for operation is shown below:-

\[
V_{res} \times I_{res} \times \cos(\Phi - \Phi_c) = 9 \times V_o \times I_o \times \cos(\Phi - \Phi_c)
\]

Where:

- \(\Phi \) = Angle between the Polarizing Voltage (-Vres) and the Residual Current
- \(\Phi_c \) = Relay Characteristic Angle (RCA) Setting (ISEF> Char Angle)
- \(V_{res} \) = Residual Voltage
- \(I_{res} \) = Residual Current
- \(V_o \) = Zero Sequence Voltage
- \(I_o \) = Zero Sequence Current
2.5.5.2 Application considerations

Required relay current and voltage connections:

Referring to the relevant application diagram for the P24x relay, it should be applied such that its direction for forward operation is looking down into the protected feeder (away from the busbar), with a 0° RCA setting.

The relay application diagram shows it is usual for the earth fault element to be driven from a core balance current transformer (CBCT). This eliminates the possibility of spill current that may arise from slight mismatches between residually connected line CT’s. It also enables a much lower CT ratio to be applied, thereby allowing the required protection sensitivity to be more easily achieved.

2.5.5.3 Calculation of required relay settings:

As has been previously shown, for a fully compensated system, the residual current detected by the relay on the faulted feeder is equal to the coil current minus the sum of the charging currents flowing from the rest of the system. Further, as stated in the previous section, the addition of the two healthy phase charging currents on each feeder gives a total charging current which has a magnitude of three times the steady state per phase value. Therefore, for a fully compensated system, the total unbalance current detected by the relay is equal to three times the per phase charging current of the faulted circuit. A typical relay setting may therefore be in the order of 30% of this value, i.e. equal to the per phase charging current of the faulted circuit. Practically though, the required setting may well be determined on site, where system faults can be applied and suitable settings can be adopted based on practically obtained results.

Also, in most situations, the system is not fully compensated and therefore a small level of steady state fault current is allowed to flow. The residual current seen by the relay on the faulted feeder may therefore be a larger value, which further emphasizes the fact that relay settings should be based on practical current levels, wherever possible.

The above also holds true regarding the required Relay Characteristic Angle (RCA) setting. As has been shown earlier, a nominal RCA setting of 0° is required. However, fine tuning of this setting is required on site to obtain the optimum setting in accordance with the levels of coil and feeder resistances present. The loading and performance of the CT has an effect in this regard. The effect of CT magnetizing current creates phase lead of current. While this assists with operation of faulted feeder relays it reduces the stability margin of healthy feeder relays. A compromise can therefore be reached through fine adjustment of the RCA. This is adjustable in 1° steps on the P24x relays.

2.6 Residual overvoltage (neutral displacement) protection (59N)

On a healthy three phase power system, the addition of each of the three phase to earth voltages is nominally zero, as it is simply the vector addition of three balanced vectors at 120° to one another. However, when an earth fault occurs on the primary system, this balance is upset and a 'residual' voltage is produced. This could be measured, for example, at the secondary terminals of a voltage transformer having a "broken delta" secondary connection.

Note: This condition causes a rise in the neutral voltage with respect to earth which is commonly referred to as "neutral voltage displacement" or NVD.

Therefore, it can be seen that the detection of a residual overvoltage condition is an alternative means of earth fault detection which does not require any measurement of current. This may be particularly advantageous in high impedance earthed / insulated systems, where the provision of core balance CT’s on each feeder may be either impractical or uneconomic.

Note: Where residual overvoltage protection is applied, such a voltage is generated for a fault occurring anywhere on that section of the system and so the applied protection must be discriminative. The NVD element within the P24x relay is of two stage design, each stage having separate voltage and time delay settings. Stage 1 may be set to operate on either an IDMT or DT characteristic, whilst stage 2 may be set to DT only.
The IDMT characteristic available on the first stage is defined by the following formula:
\[t = \frac{TMS}{1 - M} \]
Where;
TMS = Time Multiplier Setting
\(t \) = Operating Time in Seconds
M = Derived Residual Voltage / Relay Setting Voltage

Two stages are included for this NVD protection to account for applications which require both alarm and trip stages. In such applications, an alarm is usually required to be generated soon after the condition is detected which simply serves to indicate the presence of an earth fault on the system. The system has been designed to withstand the associated healthy phase overvoltages for several hours following fault inception. This therefore gives time for system operators to find and remove the fault condition.

This element should be driven from residual voltage (-3Vo). This can be derived from either the three phase VT inputs to the relay or the residual voltage input. The VT Connect Mode, 3VT, 2VT+VResidual, 2VT+Vremanent can be selected in the CT and VT Ratios menu.

Different VT ratio settings for the three modes of connection are available.
Residual voltage at R (relay point) is dependant upon Z_S / Z_L ratio.

$$V_{RES} = \frac{Z_{S0}}{2Z_{S1} + Z_{S0} + 2Z_{L1} + Z_{L0}} \times 3 \ E$$

Figure 18: Residual voltage
2.6.1 Setting guidelines

The voltage setting applied to the elements is dependent on the magnitude of residual voltage that is expected to occur during the earth fault condition. This in turn is dependent on the method of system earthing employed and is therefore application dependent. Figure 18 shows the formula used in calculating the expected residual voltage occurring for an earth fault on a resistance earthed system.

Note: The IDMT characteristics are selectable on the first stage of NVD so that elements located at various points on the system may be time graded with one another.

2.7 Negative sequence protection (46)

Negative phase sequence current is generated from an unbalanced current condition, such as unbalanced loading, loss of one phase or single phase faults.

Consider the equivalent circuits for positive and negative phase sequence currents shown in Figure 20, the magnetizing impedance being neglected.
With positive phase sequence voltages applied to the motor, a rotating field is set up between the stator and rotor. The resulting effect is that the direction of rotation of the rotor is equal to that of the applied field. With negative phase sequence voltages, the field rotates in the opposite direction, cutting a rotating rotor conductor at almost twice the system frequency. The actual frequency of negative phase sequence voltage and current in the rotor circuit is equal to \((2-s)f\).

From the equivalent circuits:

Motor positive sequence impedance at a given slip \(s\) by the formula:
\[
\left[(R_{1} + R'_{2}/2-s)^2 + (X_{1} + X'_{2})^2\right]^{0.5}
\]
That means: \(\left[(R_{1} + R'_{2})^2 + (X_{1} + X'_{2})^2\right]^{0.5}\) when \(s = 1\) at standstill.

Motor negative sequence impedance at a given slip \(s\) by the formula:
\[
\left[(R_{1} + R'_{2}/s)^2 + (X_{1} + X'_{2})^2\right]^{0.5}
\]
That means: \(\left[(R_{1} + R'_{2}/s)^2 + (X_{1} + X'_{2})^2\right]^{0.5}\) when \(s << 1\) at normal running speed.

Where;

PPS = positive phase sequence
NPS = negative phase sequence
\(R_{1}\) = PPS Stator Resistance
\(R'_{1}\) = PPS Rotor Resistance Referred to Stator
\(X_{1}\) = PPS Rotor Reactance
\(X'_{1}\) = PPS Rotor Reactance Referred to Stator
\(R_{2}\) = NPS Stator Resistance
The value of resistance is generally much less than the leakage reactance. Therefore, neglecting the resistance term, the motor negative phase sequence impedance at normal running speed can be approximated to the positive phase sequence impedance at standstill.

At normal running speed;

\[
\frac{\text{positive sequence impedance}}{\text{negative sequence impedance}} \approx \frac{\text{starting current}}{\text{normal load current}}
\]

For example, if a motor has a starting current of six times the full load value, the negative sequence impedance would be about 1/6 the positive sequence impedance.

The a.c. resistance of the rotor conductor to the induced negative sequence current is greater due to the higher frequency \((2-s)f\), causing skin effect. The heating effect of negative sequence current is therefore greater and increases the motor losses.

It is therefore essential to detect any negative sequence current present on the system and act accordingly before dangerous temperatures occur in the motor.

The P24x relay includes several methods for the detection of negative phase sequence currents, depending on the cause of the unbalance. These methods are addressed in detail below.

2.7.1 Loss of one phase while starting & running

2.7.1.1 Principle

If a motor is started with one phase open, it remains stationary and it can draw a current equal to 0.866 times the normal starting current. Under these circumstances, the negative phase sequence component present in the current is equal to half the normal starting current value. This is an extreme condition, as this amount of negative phase sequence current rapidly overheats the motor, and unless corrective action is taken, the motor will be seriously damaged.

Loss of one phase of the supply to a motor during normal running conditions, results in the following conditions:

- Heating increases considerably due to high rotor losses caused by the -ve sequence current now present
- Output of the motor is reduced and, depending on the load, an induction motor may stall or a synchronous motor may pull out of synchronism,
- The motor current will increase.

One common factor in the aforementioned conditions is the presence of negative phase sequence current. The P24x relay therefore incorporates a negative phase sequence current element to detect such extreme operating conditions. This negative phase sequence current element operating time characteristic is of an inverse time nature and is governed by the following formula:

\[
t = \begin{cases}
TMS \times \frac{1.2}{|I_2/I_1|} & \text{for } |I_2/I_1| \leq 2 \\
TMS \times 0.6 & \text{for } |I_2/I_1| > 2
\end{cases}
\]

The element may be selectively enabled or disabled.

In addition to this, an independent, definite time alarm stage is provided.
2.7.1.2 Setting guidelines

This element should be set in excess of the anticipated negative phase sequence current resulting from asymmetric CT saturation during starting, but less than the negative phase sequence current resulting from loss of one phase during starting.

A typical setting for the negative sequence overcurrent element is 30% of the anticipated negative sequence current resulting from loss of one phase during starting for a motor with a starting current to load current ratio of 6 to 1.

Therefore set:

\[I_{2\text{>2 Current Set}} = \frac{1}{6} \text{normal starting current or full load current} \]

The setting for the alarm time delay is application dependent.

2.7.2 3 Phase voltage check (reverse phase detection) (47/27)

2.7.2.1 Principle

Incorrect phase rotation of the incoming supply to the motor results in the motor rotating in the opposite direction. For certain directionally sensitive applications, such as lifts and conveyor belts, this is a potentially dangerous condition and must be detected rapidly.

Although the above condition does not result in the flow of negative phase sequence current in the motor, 100% negative phase sequence current are presented to the measuring circuitry of the relay.

If the machine is allowed to rotate in the opposite direction, the thermal protection and negative phase sequence overcurrent element detects the condition and trips the circuit breaker in their respective time delays. However, it is sometimes better not to allow the motor to rotate at all.

For such applications, the P24x relay includes a 3 phase voltage check detector. This element monitors the input voltage rotation and magnitude. The positive sequence voltage should be greater than the negative sequence voltage and the phase voltages VA, VB and VC should be greater than the user settable threshold. If the aforementioned conditions are not satisfied then an alarm is raised. This alarm contact can be interlocked with the motor contactor or circuit breaker to prevent the motor from being energized until correct phase rotation and sufficient voltage exist on the system.

This feature requires a 52a circuit breaker auxiliary contact mapped to an opto input to get the information CBclosed/CB open.

2.7.2.2 Setting guidelines

The undervoltage interlock (Start Low V Set) is provided to prevent the motor attempting to start on reduced voltage. The setting is system dependent but may typically be set to 80% - 90% of Vn.

2.8 Start / stall protection (48/51LR/50S/14)

When a motor is started, it draws a value of current in excess of full load rating for a set period of time, namely the starting time. It is normal practice to assume a constant starting current for the whole of the starting time.

The starting current varies depending on the type and method of starting utilized. If the motor is started direct-on-line (DOL), the current could easily reach 6 times full load current. However, when star/delta starting is utilized, the starting current is \(\sqrt{3} \) less than when DOL starting.

If a motor stalls while running, or is unable to start due to excessive loading, it draws a current equivalent to the locked rotor current. The level of starting current is equal to the level of locked rotor current, therefore it is not possible to distinguish between 3 phase stalling and healthy starting by monitoring current alone.

In the majority of cases the starting time of a normal induction motor is less than the maximum stall withstand time. Under this condition it is possible to discriminate on a time basis between the two conditions and therefore provide protection against stalling.
However, where motors are used to drive high inertia loads, the stall withstand time may be less than the starting time. In such cases, it is not possible to discriminate between start and stall conditions by time alone.

The P24x relay provides extensive start and stall protection, in order that all of the aforementioned conditions may be accounted for. The methods used to achieve this are discussed in more detail below.

This feature requires a 52a circuit breaker auxiliary contact mapped to an opto input to get the information CBclosed/CB open.

2.8.1 Excessive start time/locked rotor protection - stall time > start time (51LR)

A motor may fail to accelerate for several reasons. For example, loss of one supply phase, mechanical failure or insufficient supply voltage. Failure of a machine to accelerate results in excessive current being drawn by the motor. This current generates extremely high temperatures within the machine. The motor does not have the added cooling normally provided by rotation, therefore irreparable damage will result very quickly.

Where the stall withstand time is less than the starting time, it is possible to utilize a contact from a speed sensing device wired into a specified opto input (Speed Input: DDB 104) in conjunction with measurement of the phase current to detect a safe start.

Three methods are available for detecting a start and they are menu selectable. See the Operation chapter, P24x/EN OP, for detailed information.

2.8.1.1 Setting guidelines

The starting current threshold should be set greater than full load current, but less than motor starting current. Where the stall withstand time is greater than the starting time, timer – Prol Start Time - should be set 1 or 2 seconds above the motor starting time and less than the cold stall withstand time. The Prolonged Start needs to be set to Enabled for this function to operate.

Setting example:

Utilizing the previously specified motor parameters;

Starting current \(= 3 \times I_{th} = 882\text{A}\)

Prolonged start time \(= 12\text{ seconds}\).

These settings are shown in Figure 1.

2.8.2 Stall protection (50S)

2.8.2.1 Principle

An induction motor may stall for several reasons, such as overloading or undervoltage. When a machine stalls it runs down while drawing a current equal to the locked rotor current.

Where the stall withstand time is greater than the starting time, a stall condition during running is simply detected by the line current exceeding the programmed threshold. If the current fails to fall back below this threshold before the programmed time delay has elapsed, a trip can be initiated.

Note: This function is disabled when the relay detects a start condition.

2.8.2.2 Setting guidelines

The stall current threshold (Stall Setting) should be set greater than full load current, but less than motor stall current (which is usually equal to starting current). Its corresponding timer (Stall Time) should be set less than the motor hot stall withstand time. The Stall Detection needs to be set to Enabled for this function to operate.

Setting example:

Utilizing the previously specified motor parameters;

Stall Setting \(= 3 \times I_{n} = 882\text{A}\)
Stall Time = 6 seconds

These settings are shown in Figure 1.

2.8.3 Excessive start time/locked rotor protection - stall time < start time (14)

As the rotor resistance of an induction motor is proportional to slip, it decreases during acceleration. When the motor is stationary, the rotating field in the air gap, set up by currents flowing in the stator winding will cut the rotor. This field travels at synchronous speed relative to the rotor and induces a voltage at system frequency, therefore generating circulating currents in the rotor bars. At this frequency, the reactivity of the rotor causes the current to flow in the outer section of the rotor conductors; commonly known as the 'skin effect'. Since the current is occupying a smaller section of the rotor, the apparent impedance presented to it is increased, therefore the \(i^2R \) heating is greatly increased. As the motor accelerates during starting the slip begins to decrease and the current is able to occupy more of the rotor conductor. The apparent impedance therefore reduces along with the heating effect. The motor is therefore able to tolerate starting current for the starting time, but not locked rotor current.

The above description explains why, for certain applications, such as motors driving high inertia loads, the stall withstand time may be safely exceeded during starting, without resulting in an overtemperature condition within the motor. Therefore, since the stall withstand time is less than the start time, it is not possible to use time alone to distinguish between a start and a stall condition.

Where the stall withstand time is less than the starting time, it is possible to utilize a contact from a speed sensing device wired into a specified opto input (Speed Input: DDB 104) in conjunction with measurement of the phase current to detect a safe start.

2.8.3.1 Setting guidelines

The Starting current threshold (Starting current) should be set greater than full load current, but less than motor locked rotor current (usually equal to starting current). Its corresponding timer (Stall Time) should be set less than the motor cold stall withstand time. The Stall Rotor-str needs to be set to Enabled for this function to operate.

2.8.4 Number of starts limitation (66)

Repeated starting, or intermittent operation of a motor, may generate dangerously high temperatures within the motor, unless sufficient time is allowed for cooling between starts.

The P24x relay incorporates several starts limitation facilities. This limitation is fully programmable and is applicable to both hot and cold start conditions. A hot start is defined by a thermal state greater than 50% and a cold start is defined as a thermal state lower than 50%.

Restarting the motor from a hot thermal state:

For certain applications, it is not desirable to allow the motor time to cool down to a specified thermal state before a re-start is permitted. The P24x relay incorporates several features which allow a subsequent start from a hot thermal state, these are discussed in the section on 'thermal overload protection'.

The motor accumulated run time displayed in the menu cell “Motor Run Time” of the “Measurement 3” menu is initiated each time the switching device is closed and remains closed.
2.8.5 Anti-Backspin protection (27 Abs)
A motor may be driving a very high inertia load. Once the CB/Contactor supplying power to
the motor is switched off, the rotor may continue to turn for a considerable length of time as it
decelerates. The motor now becomes a generator and applying supply voltage out of phase
can result in catastrophic failure. In some other applications for example when a motor is on
a down-hole pump, after the motor stops, the liquid may fall back down the pipe and spin the
rotor backwards. Don’t start the motor at this time. In these circumstances the anti-backspin
function is used to detect when the rotor has stopped, to allow re-starting of the motor.

The operation of this function depends on the parameter VT connecting mode: If this is set
to 2 VT + Vremanent, then the function uses an undervoltage with the connected Phase-
Phase remanent voltage. If not, the function uses only a time delay.

2.8.6 Setting guidelines for ABS protection
The voltage threshold setting for the anti-backspin protection VRem Antibacks should be
set at some low value to indicate that the motor is stopped. The default setting of 10 V
secondary is adequate for most applications.

If the VT connecting mode is set to 2 VT + Vremanent the time delay Antibacks Delay
must be set to an adequate time for the motor to stop after and the remanent voltage has
dropped below the VRem Antibacks setting following a trip.

If the VT connecting mode is not set to 2 VT + Vremanent then the time delay Antibacks
Delay must be set to an adequate time for the motor to stop after the trip. The default setting
of 3000 s is adequate for the majority of applications.

2.8.7 Momentary reduction in system voltage during running of the motor
In cases when the supply voltage falls below a settable under voltage threshold, the duration
of the fall in voltage can be classified as short, medium, or long (corresponding to “Reac
Time”, “Reac Long Time” and “Reac Shed Time” respectively of P24x relay designations).
- Short falls are intended to cover situations when it is appropriate to authorize
 reacceleration of the rotor and not to issue a trip order after voltage restoration is
detected via a settable under voltage threshold.
- Medium falls are intended to cover situations for when the voltage has not been
 recovered within a set short time detected via a settable over voltage threshold and
 the motor has tripped as a result, but it is appropriate to automatically restart the motor
 within a set long time after the voltage has become restored. Detection of restored
 voltage is based on a settable over voltage threshold.
- Long falls are intended to cover cases when restoration is from back-up power, and
 there must be substantial intervals between starting different motors to maintain
 stability, and/or only critical motors can be started.

A short fall in voltage from the electrical network causes a reduction in rotor speed. If the
motor was running at the time a short fall occurred, a forced reacceleration occurs as soon
as the relay detects healthy supply voltage. A forced reacceleration bypasses any pre-
staged start-up sequence the starter type might otherwise provide.

When the voltage is restored, the rotor starts on a reacceleration phase to regain its nominal
speed. This reacceleration manifests itself as an intake of current of approximately the same
value as that of the locked rotor current, its duration being relative to the magnitude of the fall
in voltage and the duration of the fall in voltage.

2.8.7.1 Low voltage protection (reacceleration authorization)
Following a transient dip in the supply voltage, a motor will attempt to re-accelerate. Under
these circumstances it will draw a level of current exceeding the relay stall protection
threshold, (Stall Setting). Therefore, for successful re-acceleration the P24x relay can be
configured to temporarily inhibit the stall protection.

If a low voltage condition exists on the system for a time in excess of 100 ms, on recovery of
the voltage the relay will inhibit stall protection. Reacceleration is recognized if current
above the set threshold is detected within 5 seconds of the voltage recovery. During this
period the excessive start protection is enabled. This provides protection in the event of unsuccessful reacceleration. For example, a dip in the busbar voltage supplying several motors would result in each of them attempting reacceleration. Subsequently, a large current is drawn from the supply, therefore further reducing the supply voltage, resulting in potential stalling of all machines. This would not occur during normal starting as a staggered approach is normally adopted.

This function is disabled during the starting period, and requires a 52a circuit breaker auxiliary contact mapped to an opto input to get the information CBclosed/CB open.

Setting Guidelines:

The low voltage threshold (Reac Low V Set) is very much system dependent, however a typical setting may be 0.8-0.9 Vn.

2.8.7.2 AUTO RE-START authorization: Re-start/load restoration

When enabled, the Auto-Restart feature is available to carry out automatic re-starting of the motor on restoration of supply for cases when duration of the voltage fall is medium or long.

The AUTO RE-START element provides for controlling the timing of controlled starts following interruptions.

The automatic re-start of the motor is carried out after a medium set time delay T_reac-long or after an extended long time delay T_reac-shed. T_reac-long threshold setting can be used for when it is appropriate to restart the motor with any staged startup sequence the starter type might provide. T_reac-shed threshold setting can be used for to cover cases when restoration is from backup power, and there must be substantial delays between starting different motors to maintain stability, and/or only critical motors can be started. The Auto re-start feature, if enabled, becomes active after the relay has issued a trip signal due to a voltage sag condition with duration longer than T_reac-threshold.

If T_reac-long is set to a value other than Zero (off) and after a trip order has been issued (due to the supply voltage not being restored within the time interval of T_reac), the P24x relay initiates T_reac-long time-delay.

If the supply is restored within T_reac-long time delay interval, a close order is issued by the relay and a normal start is allowed to initiate. If the supply is not restored within T_reac-long time delay interval, AUTO RE-START will be deactivated.

It is possible extend the delay to start different motors and to arrange a load restoration sequence in cases where the system is weak or when restoration is from backup power. In this case T_reac-shed time delay can be adjusted to perform a sequence start. If T_reac-shed is set to a value other than Zero (off) re-start will be extended by T_reac-shed time delay.

2.9 Undervoltage protection function (27)

2.9.1 Principle

Undervoltage conditions may occur on a power system as a result of increased loading, fault conditions or incorrect regulation. Transient voltage dips may allow successful motor re-acceleration. However, sustained undervoltage conditions will result in the motor stalling. Time delayed undervoltage protection is therefore commonly applied.

The undervoltage protection included within the P24x relays consists of two independent phase to phase measuring stages.

Two stages are included to provide both alarm and trip stages, where required. Alternatively, different time settings may be needed depending on the severity of the voltage dip that is motor loads are able to withstand a small voltage depression for a longer time than if a major voltage excursion occurs. Therefore, two stages could be used; one with a higher setting and a longer time delay and vice versa for the second stage.

The inverse characteristic is given by the following formula;

\[t = \frac{T_{MS}}{(1 - M)} \]

Where;
2.9.2 Setting guidelines for undervoltage protection

The voltage threshold setting for the undervoltage protection should be set at some value below the voltage excursions which may be expected under normal system operating conditions. This threshold is dependent on the system in question but typical healthy system voltage excursions may be -10% of nominal value.

Similar comments apply with regard to a time setting for this element that is the required time delay is dependent on the time for which the motor is able to withstand depressed voltage. A typical time setting may be 0.5 seconds.

The setting Inhibit During St must be set to Enabled to allow the voltage decrease during motor starting.

This feature must be interlocked with the motor control gear to ensure that it is disabled when the motor is stopped. The interlock is made by the CB Close signal.

2.10 Loss-of-load protection (37)

2.10.1 Principle

To detect loss of motor load the P24x relay includes a low forward power element. It can be used to protect electric pumps against becoming unprimed or to stop a motor in the event of a failure in the mechanical transmission.

Note: A low forward power condition can only be established when the circuit breaker is closed and the active power calculated is above zero.

Where rated power cannot be reached during starting (for example where the motor is started with no connected load) it is necessary to inhibit this function for a set time.

This feature requires a 52a circuit breaker auxiliary contact mapped to an opto input to get the information CBclosed/CB open.

2.10.2 Setting guidelines

The setting of this element is very much system dependent. However, it is typically set to 10-20% below minimum load.

Referring to the previous example details, the motor rated power is:

\[P = \sqrt{3} \times 293 \times 11000 = 5.6 \text{ MVA} \]

Assuming that minimum loading may be 70%, the minimum power threshold may be set to 80% of this value i.e. 300 kW.

\[P_{< \text{Power Set}} = 300 \text{ kW} \]

The time delay, \(P_{< \text{Drop-off time}} \), should be set in excess of the time between motor starting and the load being established.

The time delay on pickup, \(P_{< \text{Time Delay}} \), is application dependent.

2.11 Synchronous motor protection

In the majority of applications, a synchronous motor would be started as an induction motor. If this is the case the aforementioned protection elements apply equally to both induction and synchronous motors. However, for the complete protection of synchronous motors, additional protective features are required. These features are discussed in the following sections.
2.11.1 Out-of-step protection (under power factor) (55)

A synchronous motor may decelerate and fall out of step when it is subjected to a mechanical overload exceeding its maximum available output. It may also lose synchronism from a fall in the field current or supply voltage. An out-of-step condition subjects the motor to undesirable overcurrent and pulsating torque, leading to eventual stalling.

When loss of synchronism is detected the motor must be disconnected from the supply.

On loss of synchronism a heavy current at a very low power factor is drawn from the supply. The P24x is able to monitor this change in power factor when the motor pole slips, therefore allowing appropriate action to be taken. If the power factor passes under a defined threshold for a defined time, a trip is generated.

This feature requires a 52a circuit breaker auxiliary contact mapped to an opto input to get the information CBclosed/CB open.

Setting Guidelines:

The ability of a motor to run at a low power factor is design dependent.

For a unity power factor machine, the following settings are typical:

- Power factor = 0.9,
- Time delay = 50 ms,
- Drop-off time delay = 1 or 2 seconds above the start time of the machine.

However, some machines are designed to operate at power factors as low as 0.7, in this case the settings have to be adjusted accordingly.

2.11.2 Reverse power (loss-of-supply) (32R)

On loss of supply, a synchronous motor should be disconnected if the supply is restored automatically or without the machine operator's knowledge. This is to avoid the possibility of the supply being restored out of phase with the motor generated emf.

This feature requires a 52a circuit breaker auxiliary contact mapped to an opto input to get the information CBclosed/CB open.

2.11.2.1 Underfrequency (81U)

If the motor is loaded, it decelerates fairly quickly on loss of supply and the frequency of the terminal voltage falls. The P24x relay can detect the fall in frequency and take appropriate action. This underfrequency element is a two stage device, which can be used for both alarm and trip purposes.

This feature requires a 52a circuit breaker auxiliary contact mapped to an opto input to get the information CBclosed/CB open.

Setting guidelines:

This setting is very much system dependent, since it may be possible for the frequency of the supply to deviate during normal conditions.

Small source frequency changes may arise following power transmission disturbances or immediately following a sudden increase in system loading. Significant frequency variations are relatively rare for large interconnected power systems. In some regions of the world, significant drops in system frequency have been experienced due to unavoidable deficit of generation during peak load periods.

So as not to trip the motor unnecessarily, it is therefore important to determine the minimum system frequency and set the underfrequency element below this value.

2.11.3 Overvoltage (59)

If the supply busbars have no other load connected and the motor is not loaded, on loss-of-supply the motor terminal voltage could rise instantaneously to 20-30% due to the open circuit regulation of the machine.
The P24x relay has an overvoltage feature which can be used to detect this condition. It consists of two independent definite time measuring elements which measure phase-phase voltage.

2.11.3.2 Setting guidelines:

The setting is very much system dependent. However, it would typically be set to 15% above rated voltage. Therefore for a 110 V VT, the relay setting would be $1.15 \times 110 = 126.5$ V. The timer would be motor design and application dependent.

2.12 Field failure protection function (40)

Complete loss of excitation may arise as a result of accidental tripping of the excitation system, an open circuit or short circuit occurring in the excitation DC circuit, flashover of any slip rings or failure of the excitation power source. The field failure protection of the P24x consists of two elements, an impedance element with two time delayed stages and a power factor alarm element.

When the excitation of a synchronous motor fails not enough synchronizing torque is provided to keep the rotor locked in step with the stator rotating magnetic field. The machine would then be excited from the power system and so be operating as an induction motor. This results in an increasing level of reactive power being drawn from the power system at a highly lagging power factor. If the field excitation is too low to meet the load requirements the synchronous motor can pole slip. An out-of-step (pole slip) condition subjects the motor to undesirable overcurrent and pulsating torque, leading to eventual stalling.

Operation as an induction motor under field failure conditions relies on the ability of the rest of the system being able to supply the required reactive power to the machine. If the system cannot supply enough reactive power the system voltage drops and the system may become unstable. This could occur if a large motor running at high power suffers a loss of field when connected to a relatively weak system. To ensure fast tripping under this condition one of the impedance elements can be used with a short time delay. This can trip the machine quickly to preserve system stability. This element should have a small diameter to prevent tripping under power swinging conditions. The second impedance element, set with a larger diameter, can provide detection of field failure under lightly loaded conditions. This second element should be time delayed to prevent operation during power swing conditions.

The P24x offers a power factor alarm element in the field failure protection which can operate when the motor is running at a lagging power factor caused by a loss of excitation. There is also a dedicated out of step protection function based on power factor measurement, see section 2.11.1

For large motors impedance based loss of excitation is recommended which provides improved protection for partial loss of field in addition to complete loss.

The field failure protection impedance elements are also provided with an adjustable delay on reset (delayed drop off) timer. This time delay can be set to avoid delayed tripping that may arise as a result of cyclic operation of the impedance measuring element, during the period of pole slipping following loss of excitation.

Some care would need to be exercised in setting this timer, since it could make the field failure protection function more likely to give an unwanted trip in the case of stable power swing. The impedance element trip time delay should therefore be increased when setting the reset time delay.

2.12.1 Setting guidelines for field failure protection

Each stage of field failure protection may be selected as **Enabled** or **Disabled**, within the `FFail1 Status`, `FFail2 Status` cells. The power factor alarm element may be selected as Enabled or Disabled within the `FFail Alm` Status cell.

2.12.1.1 Impedance element 1

To quickly detect a loss-of field condition, the diameter of the field failure impedance characteristic (`FFail1 Xb1`) should be set as large as possible, without conflicting with the impedance that might be seen under normal stable conditions or during stable power swing conditions.
Where a motor is operated with a rotor angle of less than 90° and never at a leading power factor, it is recommended that the diameter of the impedance characteristic, \(FFail1 \ Xb1 \), is set equal to the machine direct-axis synchronous reactance. The characteristic offset, \(FFail1 \ -Xa1 \), should be set equal to half the direct-axis transient reactance (0.5\(Xd' \)) in secondary ohms.

\[
\begin{align*}
FFail1 \ Xb1 &= Xd \\
FFail1 \ -Xa1 &= 0.5 \ Xd'
\end{align*}
\]

Where:

\(Xd \) = machine direct-axis synchronous reactance in ohms

\(Xd' \) = machine direct-axis transient reactance in ohms

Where high-speed voltage regulation equipment is used it may be possible to operate motors at rotor angles up to 120°. In this case, the impedance characteristic diameter, \(FFail1 \ Xb1 \), should be set to 50% of the direct-axis synchronous reactance (0.5\(Xd \)) and the offset, \(FFail1 \ -Xa1 \), should be set to 75% of the direct-axis transient reactance (0.75\(Xd' \)).

\[
\begin{align*}
FFail1 \ Xb1 &= 0.5 \ Xd \\
FFail1 \ -Xa1 &= 0.75 \ Xd'
\end{align*}
\]

The field failure protection time delay, \(FFail1 \ Time \ Delay \), should be set to minimize the risk of operation of the protection function during stable power swings following system disturbances. However, make sure the time delay is not so long that stator winding or rotor thermal damage occurs. A typical stator winding should be able to withstand a current of 2.0 p.u. to t 15 s. It may also take some time for the impedance seen at the generator terminals to enter the characteristic of the protection. A time delay less than 10 s would typically be applied. The minimum permissible delay, to avoid problems of false tripping due to stable power swings with the above impedance settings, would be of the order of 0.5 s.

The protection reset (delayed drop off) timer, \(FFail1 \ DO \ Timer \), would typically be set to 0 s to give instantaneous reset of the stage. A setting other than 0 s can be used to provide an integrating function for instances when the impedance may cyclically enter and exit the characteristic. This can allow detection of pole slipping conditions. When settings other than 0 s are used the protection pick-up time delay, \(FFail1 \ Time \ Delay \), should be increased to prevent mal-operation during stable power swing conditions.

It is desirable not to trip on the impedance field failure element until the field has been applied. Therefore, this feature can be selectively blocked in the PSL (FFail Block: DDB 117) until the motor comes up to speed and the field is applied.

2.12.1.2 Impedance element 2

The second impedance element can be set to give fast operation when the field fails under high load conditions. The diameter of the characteristic, \(FFail2 \ Xb \), should be set to 1 p.u. The characteristic offset, \(FFail2 \ -Xa2 \), should be set equal to half the direct-axis transient reactance (0.5\(Xd' \)).

\[
\begin{align*}
FFail2 \ Xb2 &= \frac{kV^2}{MVA} \\
FFail2 \ -Xa2 &= 0.5 \ Xd'
\end{align*}
\]

This setting detects a field failure condition from full load to about 30% load.

The time delay, \(FFail2 \ Time \ Delay \), can be set to instantaneous, such as 0 s.

The protection reset (delayed drop off) timer, \(FFail2 \ DO \ Timer \), would typically be set to 0 s to give instantaneous reset of the stage. A setting other than 0 s can be used to provide an integrating function for instances when the impedance may cyclically enter and exit the characteristic. This can allow detection of pole slipping conditions. When settings other than 0 s are used the protection pick-up time delay, \(FFail2 \ Time \ Delay \), should be increased to prevent mal-operation during stable power swing conditions.
It is desirable not to trip on the impedance field failure element until the field has been applied. Therefore, this feature can be selectively blocked in the PSL (FFail Block: DDB 117) until the motor comes up to speed and the field is applied.

2.12.1.3 Power factor element
The power factor alarm can be used to signal to the operator that excitation has failed.

The angle setting, FFail Alm Angle, should be set to greater than any angle that the machine could be operated at in normal running. A typical setting would be 25°, equivalent to a power factor of 0.9 lagging. The power factor element time delay, FFail Alm. Delay, should be set longer than the (FFail1 Time Delay). This is to prevent operation of the alarm element under transient conditions such as power swinging and to provide discrimination with the conventional field failure impedance elements.

2.13 Circuit breaker failure protection (50BF)
Following inception of a fault one or more main protection devices operates and issues a trip output to the circuit breaker(s) associated with the faulted circuit. Operation of the circuit breaker is essential to isolate the fault, and prevent damage/further damage to the power system. For transmission/sub-transmission systems, slow fault clearance can also threaten system stability. It is therefore common practice to install circuit breaker failure protection, which monitors that the circuit breaker has opened within a reasonable time. If the fault current has not been interrupted following a set time delay from circuit breaker trip initiation, breaker failure protection (CBF) will operate.

CBF operation can be used to backtrip upstream circuit breakers to ensure the fault is isolated correctly. CBF operation can also reset all start output contacts, ensuring that any blocks asserted on upstream protection are removed.

2.13.1 Breaker failure protection configurations
The circuit breaker failure protection incorporates two timers, CB Fail 1 Timer and CB Fail 2 Timer, allowing configuration for the following scenarios:

Simple CBF, where only CB Fail 1 Timer is enabled. For any protection trip, the CB Fail 1 Timer is started, and normally reset when the circuit breaker opens to isolate the fault. If breaker opening is not detected, CB Fail 1 Timer times out and closes an output contact assigned to breaker fail (using the programmable scheme logic). This contact is used to backtrip upstream switchgear, generally tripping all infeeds connected to the same busbar section.

A re-tripping scheme, plus delayed backtripping. Here, CB Fail 1 Timer is used to route a trip to a second trip circuit of the same circuit breaker. This requires duplicated circuit breaker trip coils, and is known as re-tripping. Should re-tripping fail to open the circuit breaker, a backtrip may be issued following an additional time delay. The backtrip uses CB Fail 2 Timer, which is also started at the instant of the initial protection element trip.

CBF elements CB Fail 1 Timer and CB Fail 2 Timer can be configured to operate for trips triggered by protection elements within the relay or via an external protection trip. The latter is achieved by allocating one of the relay opto-isolated inputs to External Trip using the programmable scheme logic.

2.13.2 Reset mechanisms for breaker fail timers
It is common practice to use low set undercurrent elements in protection relays to indicate that circuit breaker poles have interrupted the fault or load current, as required. This covers the following situations:

Where circuit breaker auxiliary contacts are defective, or cannot be relied on to definitely indicate that the breaker has tripped.

Where a circuit breaker has started to open but has become jammed. This may result in continued arcing at the primary contacts, with an additional arcing resistance in the fault current path. Should this resistance severely limit fault current, the initiating protection element may reset. Therefore, reset of the element may not give a reliable indication that the circuit breaker has opened fully.
For any protection function requiring current to operate, the relay uses operation of undercurrent elements \((I<) \) to detect that the necessary circuit breaker poles have tripped and reset the CB fail timers. However, the undercurrent elements may not be reliable methods of resetting circuit breaker fail in all applications. For example:

Where non-current operated protection, such as under/overvoltage or underfrequency, derives measurements from a line connected voltage transformer. Here, \(I< \) only gives a reliable reset method if the protected circuit would always have load current flowing. Detecting drop-off of the initiating protection element might be a more reliable method.

Where non-current operated protection, such as under/overvoltage or under/overfrequency, derives measurements from a busbar connected voltage transformer. Again using \(I< \) would rely on the feeder normally being loaded. Also, tripping the circuit breaker may not remove the initiating condition from the busbar and so drop-off of the protection element may not occur. In such cases, the position of the circuit breaker auxiliary contacts may give the best reset method.

Resetting of the CBF is possible from a breaker open indication or from a protection reset. In these cases resetting is only allowed provided the undercurrent elements have also reset.

The resetting options are summarized in the following table:

<table>
<thead>
<tr>
<th>Initiation (menu selectable)</th>
<th>CB fail timer reset mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current based protection</td>
<td>The resetting mechanism is fixed (50/51/46/87...) [IA< operates] & [IB< operates] & [IC< operates]</td>
</tr>
<tr>
<td>Non-current based protection (27/59/81/32R..)</td>
<td>Three options are available. The user can select from the following options. [All I< and IN< elements operate] [Protection element reset] AND [All I< and IN< elements operate] CB open (all 3 poles) AND [All I< and IN< elements operate]</td>
</tr>
<tr>
<td>External protection</td>
<td>Three options are available. The user can select any or all of the options. [All I< and IN< elements operate] [External trip reset] AND [All I< and IN< elements operate] CB open (all 3 poles) AND [All I< and IN< elements operate]</td>
</tr>
</tbody>
</table>

Table 8: CBF resetting options

2.13.3 Typical breaker fail timer settings

Typical timer settings to use are as follows:

<table>
<thead>
<tr>
<th>CB fail reset mechanism</th>
<th>tBF time delay</th>
<th>Typical delay for 2½ cycle circuit breaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiating element reset</td>
<td>CB interrupting time + element reset time (max.) + error in tBF timer + safety margin</td>
<td>50 + 50 + 10 + 50 = 160 ms</td>
</tr>
<tr>
<td>CB open</td>
<td>CB auxiliary contacts opening/closing time (max.) + error + safety margin</td>
<td>50 + 10 + 50 = 110 ms in tBF timer</td>
</tr>
<tr>
<td>Undercurrent elements</td>
<td>CB interrupting time + undercurrent element (max.) + operating time</td>
<td>50 + 12 + 50 = 112 ms safety margin</td>
</tr>
</tbody>
</table>

Table 9: Typical CBF timer settings

Note: All CB Fail resetting involves the operation of the undercurrent elements. Where element reset or CB open resetting is used the undercurrent time setting should still be used if this proves to be the worst case.
The examples above consider direct tripping of a 2½ cycle circuit breaker.

Note: Where auxiliary tripping relays are used, an additional 10-15 ms must be added to allow for trip relay operation.

2.14 Current loop inputs and outputs

2.14.1 Current loop inputs

Four analog (or current loop) inputs are provided for transducers with ranges of 0 - 1 mA, 0 - 10 mA, 0 - 20 mA or 4 - 20 mA. The analog inputs can be used for various transducers such as vibration monitors, tachometers and pressure transducers. Associated with each input there are two protection stages, one for alarm and one for trip. Each stage can be individually enabled or disabled and each stage has a definite time delay setting. The Alarm and Trip stages can be set for operation when the input current is above the Alarm/Trip threshold. Associated with each current loop input are units (None, A, V, Hz, W, Var, VA, °C, F, %, s).

2.14.2 Setting guidelines for current loop inputs

For each analog input, the user can define the following:

- The current input range: 0 - 1 mA, 0 - 10 mA, 0 - 20 mA, 4 - 20 mA
- The analog input unit (A, V, Hz, W, Var, VA, °C, F, %, s, none)
- Analog input minimum value (setting range A: 0 to 100 K, V: 0 to 20 k, Hz: 0 to 100, W/Var: +/- 1.41 G, VA: 0 to 1.41 G, °C: -40 to 50, F: -40 to 752, %: 0 to 150, s: 0 to 300, none -32.5 k to 50 k)
- Analog input maximum value (setting range as above)
- Alarm threshold, range within the maximum and minimum set values
- Alarm delay
- Trip threshold, range within maximum and minimum set values
- Trip delay

Each current loop input can be selected as Enabled or Disabled. The Alarm and Trip stages operate when the input current is above the input value. One of four types of analog inputs can be selected for transducers with ranges of 0 - 1 mA, 0 - 10 mA, 0 - 20 mA or 4 - 20 mA.

The Maximum and Minimum settings allow the user to enter the range of physical or electrical quantities measured by the transducer.

The user can select the unit of the measurement - None, A, V, Hz, W, Var, VA, °C, F, %, s. For example, if the analog input is used to monitor a power measuring transducer, the appropriate unit would be W.

Set the alarm and trip threshold settings within the range of physical or electrical quantities defined by the user. The relay converts the current input value to its corresponding transducer measuring value for the protection calculation.

For example if the Minimum is –1000 and the Maximum is 1000 for a 0 - 10 mA input, an input current of 10 mA is equivalent to a measurement value of 1000, 5 mA is 0 and 1mA is –800. If the Minimum is 1000 and the Maximum is -1000 for a 0 - 10 mA input, an input current of 10 mA is equivalent to a measurement value of –1000, 5 mA is 0 and 1 mA is 800. These values are available for display in the Analog Input 1/2/3/4 cells in the MEASUREMENTS 3 menu.

2.14.3 Current loop outputs

Four analog current outputs are provided with ranges of 0 - 1 mA, 0 - 10 mA, 0 - 20 mA or 4 - 20 mA which can alleviate the need for separate transducers. These may be used to feed standard moving coil ammeters for analog indication of certain measured quantities or into a SCADA using an existing analog RTU.

The outputs can be assigned to any of the following relay measurements:

- Magnitudes of IA, IB, IC, IN
• IA RMS, IB RMS, IC RMS
• Magnitudes of VAB, VBC, VCA, VAN, VBN, VCN, VN
• VAN RMS, VBN RMS, VCN RMS
• Frequency
• Three-phase active, reactive and apparent power, Three-phase power factor
• RTD temperatures
• Number of Hot Starts Allowed, Thermal State, Time to Thermal Trip, Time to Next Start

The user can set the measuring range for each analog output. The range limits are defined by the Maximum and Minimum settings. This allows the user to “zoom in” and monitor a restricted range of the measurements with the desired resolution. The voltage, current and power quantities are in primary quantities.

2.14.4 Setting guidelines for current loop outputs

One of four types of analog output can be selected for transducers with ranges of 0 - 1 mA, 0 - 10 mA, 0 - 20 mA or 4 - 20 mA. The 4 - 20 mA range is often used so that an output current is still present when the measured value falls to zero. This is to give a fail safe indication and may be used to distinguish between the analog transducer output becoming faulty and the measurement falling to zero.

The Maximum and Minimum settings allow the user to enter the measuring range for each analog output. The range, step size and unit corresponding to the selected parameter is shown in the table in the Operating chapter, P24x/EN OP. This allows the user to “zoom in” and monitor a restricted range of the measurements with the desired resolution.

The voltage, current and power quantities are in primary quantities. The relationship of the output current to the value of the measurand is of vital importance and needs careful consideration. Any receiving equipment must, of course, be used within its rating but, if possible, some kind of standard should be established.

One of the objectives must be to have the capability to monitor the voltage over a range of values, so an upper limit must be selected, typically 120%. However, this may lead to difficulties in scaling an instrument.

The same considerations apply to current transducers outputs and with added complexity to watt transducers outputs, where both the voltage and current transformer ratios must be taken into account.

Some of these difficulties do not need to be considered if the transducer is only feeding, for example, a SCADA outstation. Any equipment which can be programmed to apply a scaling factor to each input individually can accommodate most signals. Make sure the transducer is capable of providing a signal right up to the full-scale value of the input, that is, it does not saturate at the highest expected value of the measurand.

2.15 Phase rotation

A facility is provided in the P241/242/243 to maintain correct operation of all the protection functions even when the motor is running in a reverse phase sequence. This is achieved through user configurable settings available for the two setting groups.

The default phase sequence for P24x is the clockwise rotation ABC. However, some applications may require an intermediate anti-clockwise phase rotation of ACB.

In process industry there is often a common practice to reverse two phases to facilitate the process, using phase reversal switches. The following sections describe some common scenarios and their effects.

For such applications the correct phase rotation settings can be applied for a specific operating mode and phase configuration in different setting groups. The phase configuration can then be set by selecting the appropriate setting group. This method of selecting the phase configuration removes the need for external switching of CT circuits or the duplication of relays with connections to different CT phases. The phase rotation settings should only be changed when the motor is off-line so that transient differences in the phase rotation between the relay and power system due to the switching of phases don’t cause operation of any of the protection functions. To ensure that setting groups are only changed when the
machine is off-line the changing of the setting groups could be interlocked with the IA/IB/IC undercurrent start signals and an undervoltage start signal in the PSL.

All the protection functions that use the positive and negative sequence component of voltage and current are affected (Thermal Overload, 3 Ph Volt Check, Negative Sequence O/C, VT Supervision). The motor differential protection is not affected, since the phase reversal applies to CT1 and CT2 in the same way.
3 APPLICATION OF NON-PROTECTION FUNCTIONS

3.1 VT supervision

The voltage transformer supervision (VTS) feature is used to detect failure of the ac voltage inputs to the relay. This may be caused by internal voltage transformer faults, overloading, or faults on the interconnecting wiring to relays. This usually results in one or more VT fuses blowing. Following a failure of the ac voltage input there would be a misrepresentation of the phase voltages on the power system, as measured by the relay, which may result in mal-operation.

The VTS logic in the relay is designed to detect the voltage failure, and automatically adjust the configuration of protection elements whose stability would otherwise be compromised. A time-delayed alarm output is also available.

3.1.1 Setting the VT supervision element

If the VT supervision is enabled the following operations occur on detection of VTS.

- VTS provides alarm indication.
- Blocking of voltage dependent protection elements.
- The VTS block is latched after a user settable time delay ‘VTS Time Delay’. Once the signal has latched then resetting is available, provided the VTS condition has been removed and the 3 phase voltages have been restored above the phase level detector settings or CB has been opened.

The \textit{VTS Inhibit} overcurrent setting is used to inhibit the voltage transformer supervision in the event of a loss of all 3 phase voltages caused by a close up 3 phase fault occurring on the system following closure of the CB to energize the line. This element should be set in excess of any non-fault based currents on line energization (load, line charging current, transformer inrush current if applicable) but below the level of current produced by a close up three-phase fault.

This \textit{VTS NPS Inhibit} NPS overcurrent setting is used to inhibit the voltage transformer supervision in the event of a fault occurring on the system with negative sequence current above this setting.

The NPS current pick-up threshold must be set higher than the negative phase sequence current due to the maximum normal load unbalance on the system. This can be set practically at the commissioning stage, making use of the relay measurement function to display the standing negative phase sequence current, and setting at least 20% above this figure.

The delta (superimposed) phase current setting is used to distinguish between a close up 3 phase fault and a 3 phase VT failure condition under load conditions. For a close up 3 phase fault there is a loss of 3 phase voltage but there will be a delta change in the measured current. For a 3 phase VT failure where there will a loss of 3 phase voltage but no delta change in the measured current.

The \textit{Delta Inhibit} superimposed current setting is used to detect the change in current for a close up 3 phase fault when the CB is closed and block the VTS. This element should be set less than the superimposed current due to a 3 phase fault. The default setting of 0.1ln is adequate for the majority of applications.

The \textit{Threshold Undervoltage} setting is used to indicate a loss of 3 phase voltage that could be caused by a 3 phase VT fail condition or a close up 3 phase fault. The default setting of 30 V is adequate for the majority of applications.

3.2 CT supervision

The current transformer supervision feature is used to detect failure of one or more of the ac phase current inputs to the relay. Failure of a phase CT or an open circuit of the interconnecting wiring can result in incorrect operation of any current operated element. Additionally, interruption in the ac current circuits risks dangerous CT secondary voltages being generated.
3.2.1 Setting the CT supervision element

The residual voltage setting, $\text{CTS1/2 Vn< Inhibit}$ and the residual current setting, CTS1/2 In> set, should be set to avoid unwanted operation during healthy system conditions.

For example $\text{CTS1/2 Vn< Inhibit}$ should be set to 120% of the maximum steady state residual voltage. The CTS1/2 In> set is typically set below minimum load current. The time-delayed alarm, CTS1/2 Time Delay, is generally set to 5 seconds.

Where the magnitude of residual voltage during an earth fault is unpredictable, the element can be disabled to prevent a protection elements being blocked during fault conditions.

3.3 Trip circuit supervision (TCS)

The trip circuit, in most protective schemes, extends beyond the relay enclosure and passes through components such as fuses, links, relay contacts, auxiliary switches and other terminal boards. This complex arrangement, coupled with the importance of the trip circuit, has led to dedicated schemes for its supervision.

Several trip circuit supervision schemes with various features can be produced with the P24x range. Although there are no dedicated settings for TCS, in the P24x, the following schemes can be produced using the programmable scheme logic (PSL). A user alarm is used in the PSL to issue an alarm message on the relay front display. If necessary, the user alarm can be renamed using the menu text editor to indicate that there is a fault with the trip circuit.

3.3.1 TCS scheme 1

3.3.1.1 Scheme description

Figure 21: TCS scheme 1

This scheme provides supervision of the trip coil with the breaker open or closed, however, pre-closing supervision is not provided. This scheme is also incompatible with latched trip contacts, as a latched contact shorts out the opto for greater than the recommended DDO timer setting of 400 ms. If breaker status monitoring is required a further 1 or 2 opto inputs must be used.

Note: A 52a CB auxiliary contact follows the CB position and a 52b contact is the opposite.

When the breaker is closed, supervision current passes through the opto input, blocking diode and trip coil. When the breaker is open, current still flows through the opto input and into the trip coil via the 52b auxiliary contact. Therefore, no supervision of the trip path is provided while the breaker is open. Any fault in the trip path is only detected on CB closing, after a 400 ms delay.

Resistor R1 is an optional resistor that can be fitted to prevent mal-operation of the circuit breaker if the opto input is inadvertently shorted, by limiting the current to <60 mA. The resistor should not be fitted for auxiliary voltage ranges of 30/34 volts or less, as satisfactory operation can no longer be guaranteed. The table below shows the appropriate resistor value and voltage setting (OPTO CONFIG menu) for this scheme.
This TCS scheme functions correctly even without resistor R1, since the opto input automatically limits the supervision current to less that 10 mA. However, if the opto is accidentally shorted the circuit breaker may trip.

<table>
<thead>
<tr>
<th>Auxiliary voltage (Vx)</th>
<th>Resistor R1 (ohms)</th>
<th>Opto voltage setting with R1 fitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/27</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30/34</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>48/54</td>
<td>1.2 k</td>
<td>24/27</td>
</tr>
<tr>
<td>110/250</td>
<td>2.5 k</td>
<td>48/54</td>
</tr>
<tr>
<td>220/250</td>
<td>5.0 k</td>
<td>110/125</td>
</tr>
</tbody>
</table>

Table 10: Recommended resistor value and opto voltage settings

Note: When R1 is not fitted the opto voltage setting must be set equal to supply voltage of the supervision circuit.

3.3.2 Scheme 1 PSL

Figure 21 shows the scheme logic diagram for the TCS scheme 1. Any of the available opto inputs can be used to indicate whether or not the trip circuit is healthy. The delay on drop off timer operates as soon as the opto is energized, but takes 400 ms to drop off/reset in the event of a trip circuit failure. The 400 ms delay prevents a false alarm due to voltage dips caused by faults in other circuits or during normal tripping operation when the opto input is shorted by a self-reset trip contact. When the timer is operated the NC (normally closed) output relay opens and the LED and user alarms are reset.

The 50 ms delay on pick-up timer prevents false LED and user alarm indications during the relay power up time, following an auxiliary supply interruption.

3.3.3 TCS scheme 2

3.3.3.1 Scheme description

Figure 23: TCS scheme 2
Much like scheme 1, this scheme provides supervision of the trip coil with the breaker open or closed and also does not provide pre-closing supervision. However, using two opto inputs allows the relay to correctly monitor the circuit breaker status since they are connected in series with the CB auxiliary contacts. This is achieved by assigning Opto A to the 52a contact and Opto B to the 52b contact. Provided opto’s A and B are connected to CB Closed 3 Ph (DDB 105) and CB Open 3ph (DDB 106) the relay will correctly monitor the status of the breaker. This scheme is also fully compatible with latched contacts as the supervision current is maintained through the 52b contact when the trip contact is closed.

When the breaker is closed, supervision current passes through opto input A and the trip coil. When the breaker is open current flows through opto input B and the trip coil. As with scheme 1, no supervision of the trip path is provided while the breaker is open. Any fault in the trip path is only detected on CB closing, after a 400 ms delay.

As with scheme 1, optional resistors R1 and R2 can be added to prevent tripping of the CB if either opto is shorted. The resistor values of R1 and R2 are equal and can be set the same as R1 in scheme 1.

3.3.4 Scheme 2 PSL
The PSL for this scheme (Figure 25) is practically the same as that of scheme 1. The main difference being that both opto inputs must be off before a trip circuit fail alarm is given.

![Figure 24: PSL for TCS scheme 2](image)

3.3.5 TCS scheme 3
3.3.5.1 Scheme description

![Figure 25: TCS scheme 3](image)
Scheme 3 is designed to provide supervision of the trip coil with the breaker open or closed, but unlike schemes 1 and 2, it also provides pre-closing supervision. Since only one opto input is used, this scheme is not compatible with latched trip contacts. If circuit breaker status monitoring is required a further 1 or 2 opto inputs must be used.

When the breaker is closed, supervision current passes through the opto input, resistor R2 and the trip coil. When the breaker is open current flows through the opto input, resistors R1 and R2 (in parallel), resistor R3 and the trip coil. Unlike schemes 1 and 2, supervision current is maintained through the trip path with the breaker in either state, therefore giving pre-closing supervision.

As with schemes 1 and 2, resistors R1 and R2 are used to prevent false tripping, if the opto-input is accidentally shorted. However, unlike the other two schemes, this scheme is dependent on the position and value of these resistors. Removing them would result in incomplete trip circuit monitoring. The table below shows the resistor values and voltage settings required for satisfactory operation.

<table>
<thead>
<tr>
<th>Auxiliary voltage (Vx)</th>
<th>Resistor R1 & R2 (ohms)</th>
<th>Resistor R3 (ohms)</th>
<th>Opto voltage setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/27</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30/34</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>48/54</td>
<td>1.2 k</td>
<td>0.6 k</td>
<td>24/27</td>
</tr>
<tr>
<td>110/250</td>
<td>2.5 k</td>
<td>1.2 k</td>
<td>48/54</td>
</tr>
<tr>
<td>220/250</td>
<td>5.0 k</td>
<td>2.5 k</td>
<td>110/125</td>
</tr>
</tbody>
</table>

Table 11: Recommended resistor value and opto voltage settings

Note: Scheme 3 is not compatible with auxiliary supply voltages of 30/34 volts and below.

3.3.6 Scheme 3 PSL

The PSL for scheme 3 is identical to that of scheme 1 (see Figure 25).
4 CURRENT TRANSFORMER REQUIREMENTS

The current transformer requirements for each current input depend on the protection function with which they are related and whether the line current transformers are being shared with other current inputs. Where current transformers are being shared by multiple current inputs, the kneepoint voltage requirements should be calculated for each input and the highest calculated value used.

The CT requirements for the P24x protection functions except the current differential are shown below. The P243 is the only model which includes differential protection and for this relay the highest calculated value from the general protection and differential protection CT requirements should be used. The differential CT requirements are shown in Table 12.

The general current transformer requirements are based on a maximum prospective fault current of 50 times the relay rated current (In) and the relay having an instantaneous setting of 25 times rated current (In). The current transformer requirements are designed to provide operation of all protection elements except the differential protection.

Where the criteria for a specific application are in excess of those detailed above, or the actual lead resistance exceeds the limiting value quoted, the CT requirements may need to be increased according to the formulae in sections 4.2/3/4.

<table>
<thead>
<tr>
<th>Nominal rating</th>
<th>Nominal output</th>
<th>Accuracy class</th>
<th>Accuracy limited factor</th>
<th>Limiting lead resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A</td>
<td>2.5 VA</td>
<td>10P</td>
<td>20</td>
<td>1.3 ohms</td>
</tr>
<tr>
<td>5 A</td>
<td>7.5 VA</td>
<td>10P</td>
<td>20</td>
<td>0.11 ohms</td>
</tr>
</tbody>
</table>

Table 12: The CT requirements for the P24x protection functions excluding differential protection

4.1 Motor differential function (P243)

4.1.1 Biased differential protection

The kneepoint voltage requirements for the current transformers used for the current inputs of the motor differential function based on settings of $I_{s1} = 0.05I_n$, $k_1 = 0\%$, $I_{s2} = 1.2I_n$, $k_2 = 150\%$, and with a boundary condition of starting current $\leq 10I_n$, are:

Where the motor is not earthed or resistance earthed at the motor neutral point then the CT knee point voltage requirements are:

$$V_k \geq 30I_n (R_{ct} + R_L + R_r) \text{ with a minimum of } \frac{60}{I_n}$$

Where the motor is solidly earthed at the motor neutral point then the CT knee point voltage requirements are:

$$V_k \geq 40I_n (R_{ct} + 2R_L + R_r) \text{ with a minimum of } \frac{60}{I_n}$$

Where

V_k = Minimum current transformer kneepoint voltage for through fault stability.

I_n = Relay rated current.

R_{ct} = Resistance of current transformer secondary winding (Ω).

R_L = Resistance of a single lead from relay to current transformer (Ω).

R_r = Resistance of any other protective relays sharing the current transformer (Ω).
For Class-X current transformers, the excitation current at the calculated kneepoint voltage requirement should be less than 2.5In (<5% of the maximum perspective fault current 50 In, on which these CT requirements are based). For IEC standard protection class current transformers, it should be ensured that class 5P are used.

High impedance differential protection

If the motor differential protection function is used to implement high impedance differential protection, then the current transformer requirements are as follows:

\[Rs = \frac{[1.5 \times (I_f) \times (RCT + 2RL)]}{I_{S1}} \]
\[V_K \geq 2 \times I_{S1} \times Rs \]

Where

\[Rs = \text{Value of stabilizing resistor (ohms)} \]
\[I_f = \text{Maximum starting current (amps)} \]
\[V_K = \text{CT knee point voltage (volts)} \]
\[I_{S1} = \text{Current setting of differential element (amps)} \]
\[R_{CT} = \text{Resistance of current transformer secondary winding (ohms)} \]
\[R_L = \text{Resistance of a single lead from relay to current transformer (ohms)} \]

Self Balanced differential protection

If the motor differential protection function is used to implement self balanced differential protection, then the current transformer requirements are as follows:

\[V_K \geq \frac{(1.5 \times I_f \times (RCT + 2RL))/I_s}{1} \]

Where

\[I_f = \text{Maximum starting current (amps)} \]
\[V_K = \text{CT knee point voltage (volts)} \]
\[I_s = \text{Current setting of differential element (amps)} \]
\[R_{CT} = \text{Resistance of current transformer secondary winding (ohms)} \]
\[R_L = \text{Resistance of a single lead from relay to current transformer (ohms)} \]

4.2 Non-directional definite time/IDMT short circuit and definite time/IDMT derived earth fault protection

4.2.1 Definite time/IDMT delayed short circuit elements

\[V_K \geq I_{cP}/2 \times (RCT + R_L + R_p) \]

4.2.2 Definite time delayed/IDMT derived earth fault elements

\[V_K \geq I_{cN}/2 \times (RCT + 2R_L + R_p + R_m) \]

4.3 Non-directional instantaneous short circuit and derived earth fault protection

4.3.1 Instantaneous short circuit elements

\[V_K \geq I_{sp} \times (RCT + R_L + R_p) \]

4.3.2 Instantaneous derived earth fault elements

\[V_K \geq I_{sn} \times (RCT + 2R_L + R_p + R_m) \]
4.4 Directional definite time/IDMT derived earth fault protection

4.4.1 Directional time delayed derived earth fault protection

\[VK \geq \frac{I_{cn}}{2} \times (R_{CT} + 2R_{L} + R_{tp} + R_{m}) \]

4.4.2 Directional instantaneous derived earth fault protection

\[VK \geq \frac{Ifn}{2} \times (R_{CT} + 2R_{L} + R_{tp} + R_{m}) \]

4.5 Non-directional/directional definite time/IDMT sensitive earth fault (SEF) protection

4.5.1 Non-directional time delayed SEF protection (residually connected)

\[VK \geq \frac{I_{cn}}{2} \times (R_{CT} + 2R_{L} + R_{rn} + I_{tn}) \]

4.5.2 Non-directional instantaneous SEF protection (residually connected)

\[VK \geq \frac{Isn}{2} \times (R_{CT} + 2R_{L} + R_{rn} + I_{tn}) \]

4.5.3 Directional time delayed SEF protection (residually connected)

\[VK \geq \frac{I_{cn}}{2} \times (R_{CT} + 2R_{L} + R_{rn} + I_{tn}) \]

4.5.4 Directional instantaneous SEF protection (residually connected)

\[VK \geq \frac{Ifn}{2} \times (R_{CT} + 2R_{L} + R_{rn} + I_{tn}) \]

4.5.5 SEF protection - as fed from a core-balance CT

Core balance current transformers of metering class accuracy are required and should have a limiting secondary voltage satisfying the formulae given below:

Directional non-directional time delayed element:

\[VK \geq \frac{I_{cn}}{2} \times (R_{CT} + 2R_{L} + R_{rn}) \]

Directional instantaneous element:

\[VK \geq \frac{Ifn}{2} \times (R_{CT} + 2R_{L} + R_{rn}) \]

Non-directional instantaneous element

\[VK \geq \frac{Isn}{2} \times (R_{CT} + 2R_{L} + R_{rn}) \]

Note: In addition, it should be ensured that the phase error of the applied core balance current transformer is less than 90 minutes at 10% of rated current and less than 150 minutes at 1% of rated current.

Abbreviations used in the previous formulae are explained below:

- **VK** = Required CT knee-point voltage (volts)
- **Ifn** = Maximum prospective secondary earth fault current (amps)
- **Ifp** = Maximum prospective secondary phase fault current (amps)
- **Icn** = Maximum prospective secondary earth fault current or 31 times \(I_> \) setting (whichever is lower) (amps)
- **Icp** = Maximum prospective secondary phase fault current or 31 times \(I_> \) setting (whichever is lower) (amps)
- **Isn** = Stage 2 Earth Fault setting (amps)
- **Isp** = Stage 2 setting (amps)
- **RCT** = Resistance of current transformer secondary winding (ohms)
- **RL** = Resistance of a single lead from relay to current transformer (ohms)
4.6 Converting an IEC185 current transformer standard protection classification to a kneepoint voltage

The suitability of an IEC standard protection class current transformer can be checked against the kneepoint voltage requirements specified previously.

For example, if the available current transformers have a 15 VA 5P 10 designation, then an estimated kneepoint voltage can be obtained as follows:

\[
V_k = \frac{VA \times ALF}{I_n} + ALF \times I_n \times R_{ct}
\]

Where:
- \(V_k\) = Required kneepoint voltage
- \(VA\) = Current transformer rated burden (VA)
- \(ALF\) = Accuracy limit factor
- \(I_n\) = Current transformer secondary rated current (A)
- \(R_{ct}\) = Resistance of current transformer secondary winding (\(\Omega\))

If \(R_{ct}\) is not available, then the second term in the above equation can be ignored.

Example: 400/5A, 15VA 5P 10, \(R_{ct} = 0.2 \Omega\)

\[
V_k = \frac{15 \times 10}{5} + 10 \times 5 \times 0.2
\]

\[
= 40 V
\]

4.7 Converting IEC185 current transformer standard protection classification to an ANSI/IEEE standard voltage rating

MiCOM Px40 series protection is compatible with ANSI/IEEE current transformers as specified in the IEEE C57.13 standard. The applicable class for protection is class "C", which specifies a non air-gapped core. The CT design is identical to IEC class P, or British Standard class X, but the rating is specified differently.

The ANSI/IEEE "C" Class standard voltage rating required is lower than an IEC knee point voltage. This is because the ANSI/IEEE voltage rating is defined in terms of useful output voltage at the terminals of the CT, whereas the IEC knee point voltage includes the voltage drop across the internal resistance of the CT secondary winding added to the useful output. The IEC/BS knee point is also typically 5% higher than the ANSI/IEEE knee point.

Therefore:

\[
V_c = \frac{[V_k - Internal \ voltage \ drop]}{1.05}
\]

\[
= \frac{[V_k - (I_n \times R_{CT} \times ALF)]}{1.05}
\]

Where:
- \(V_c\) = "C" Class standard voltage rating
- \(V_k\) = IEC Knee point voltage required
- \(I_n\) = CT rated current = 5 A in USA
- \(R_{CT}\) = CT secondary winding resistance

(for 5 A CTs, the typical resistance is 0.002 ohms/secondary turn)
ALF = The CT accuracy limit factor, the rated dynamic current output of a "C" class CT (Kssc) is always 20 x In

The IEC accuracy limit factor is identical to the 20 times secondary current ANSI/IEEE rating. Therefore:

\[V_c = \frac{[V_k - (100 \cdot RCT)]}{1.05} \]
5 READ ONLY MODE

With IEC 61850 and Ethernet / Internet communication capabilities, security has become a pressing issue. The Px40 relay provides a facility to allow the user to enable or disable the change in configuration remotely.

Read Only mode can be enabled/disabled for the following rear ports:

- Rear Port 1 – IEC 60870-5-103 and Courier protocols
- Rear Port 2 (if fitted) – Courier protocol
- Ethernet Port (if fitted) – Courier protocol ("tunnelled")
6 AUXILIARY SUPPLY FUSE RATING

In the Safety section, the maximum allowable fuse rating of 16 A is quoted. To allow time grading with fuses upstream, a lower fuselink current rating is often preferable. The standard ratings of between 6 A and 16 A is recommended. Low voltage fuselinks, rated at 250 V minimum and compliant with IEC 60269-2 general application type gG are acceptable, with high rupturing capacity. This gives equivalent characteristics to HRC "red spot" fuses type NIT/TIA often specified historically.

The table below recommends advisory limits on relays connected per fused spur. This applies to MiCOM Px40 series devices with hardware suffix C and higher, as these have inrush current limitation on switch-on, to conserve the fuse-link.

<table>
<thead>
<tr>
<th>Battery nominal voltage</th>
<th>6 A 10 A fuse</th>
<th>15 or 16 A fuse</th>
<th>Fuse rating > 16 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 to 54 V</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>60 to 125 V</td>
<td>4</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>138 to 250 V</td>
<td>6</td>
<td>10</td>
<td>16</td>
</tr>
</tbody>
</table>

Table 13: Auxiliary supplies and the corresponding fuse ratings

Alternatively, miniature circuit breakers (MCB) may be used to protect the auxiliary supply circuits.
Application Notes

MiCOM P40 Agile P241, P242, P243
Programmable Logic

MiCOM P40 Agile P241, P242, P243
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PROGRAMMABLE LOGIC</td>
<td>5</td>
</tr>
<tr>
<td>1.1</td>
<td>Overview</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>MiCOM S1 Studio Px40 PSL editor</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>How to use MiCOM Px40 PSL editor</td>
<td>6</td>
</tr>
<tr>
<td>1.4</td>
<td>Warnings</td>
<td>6</td>
</tr>
<tr>
<td>1.5</td>
<td>Toolbar and commands</td>
<td>6</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Standard tools</td>
<td>6</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Alignment tools</td>
<td>6</td>
</tr>
<tr>
<td>1.5.3</td>
<td>Drawing tools</td>
<td>6</td>
</tr>
<tr>
<td>1.5.4</td>
<td>Nudge tools</td>
<td>7</td>
</tr>
<tr>
<td>1.5.5</td>
<td>Rotation tools</td>
<td>7</td>
</tr>
<tr>
<td>1.5.6</td>
<td>Structure tools</td>
<td>7</td>
</tr>
<tr>
<td>1.5.7</td>
<td>Zoom and pan tools</td>
<td>7</td>
</tr>
<tr>
<td>1.5.8</td>
<td>Logic symbols</td>
<td>7</td>
</tr>
<tr>
<td>1.6</td>
<td>PSL logic signals properties</td>
<td>8</td>
</tr>
<tr>
<td>1.6.1</td>
<td>Link properties</td>
<td>9</td>
</tr>
<tr>
<td>1.6.2</td>
<td>Opto signal properties</td>
<td>9</td>
</tr>
<tr>
<td>1.6.3</td>
<td>Input signal properties</td>
<td>9</td>
</tr>
<tr>
<td>1.6.4</td>
<td>Output signal properties</td>
<td>9</td>
</tr>
<tr>
<td>1.6.5</td>
<td>GOOSE input signal properties</td>
<td>10</td>
</tr>
<tr>
<td>1.6.6</td>
<td>GOOSE output signal properties</td>
<td>10</td>
</tr>
<tr>
<td>1.6.7</td>
<td>Control input signal properties</td>
<td>10</td>
</tr>
<tr>
<td>1.6.8</td>
<td>Function key properties (P242/3 only)</td>
<td>10</td>
</tr>
<tr>
<td>1.6.9</td>
<td>Fault recorder trigger properties</td>
<td>11</td>
</tr>
<tr>
<td>1.6.10</td>
<td>LED signal properties</td>
<td>11</td>
</tr>
<tr>
<td>1.6.11</td>
<td>Contact signal properties</td>
<td>11</td>
</tr>
<tr>
<td>1.6.12</td>
<td>LED conditioner properties</td>
<td>11</td>
</tr>
<tr>
<td>1.6.12.1</td>
<td>Tri-color LED conditioner (P242/3)</td>
<td>11</td>
</tr>
<tr>
<td>1.6.12.2</td>
<td>Red LED conditioner (P241)</td>
<td>12</td>
</tr>
<tr>
<td>1.6.13</td>
<td>Contact conditioner properties</td>
<td>12</td>
</tr>
<tr>
<td>1.6.14</td>
<td>Timer properties</td>
<td>12</td>
</tr>
<tr>
<td>1.6.15</td>
<td>Gate properties</td>
<td>13</td>
</tr>
<tr>
<td>1.7</td>
<td>Description of logic nodes</td>
<td>13</td>
</tr>
<tr>
<td>1.8</td>
<td>Factory default programmable scheme logic</td>
<td>22</td>
</tr>
<tr>
<td>1.9</td>
<td>Logic input mapping</td>
<td>22</td>
</tr>
<tr>
<td>1.10</td>
<td>Relay output contact mapping</td>
<td>23</td>
</tr>
<tr>
<td>1.11</td>
<td>Programmable LED output mapping</td>
<td>24</td>
</tr>
<tr>
<td>1.12</td>
<td>Fault recorder start mapping</td>
<td>25</td>
</tr>
</tbody>
</table>
2 MICOM P24X PROGRAMMABLE SCHEME LOGIC 26

FIGURES

Figure 1: Tri-color LED conditioning (P242/3) 11
Figure 2: P241 Opto Input Mappings 26
Figure 3: P241 Output Relay Mappings 27
Figure 4: P241 LED Mappings 28
Figure 5: Fault Recorder Trigger Mapping 29
Figure 6: P242/3 Opto Input Mappings 29
Figure 7: P242/3 Output Relay Mappings 30
Figure 8: P242/3 LED Mappings 31
Figure 9: Fault Recorder Trigger Mapping 32
Figure 10: Function Key Mapping 32

TABLES

Table 1: Description of available logic nodes 22
Table 2: Default settings 22
Table 3: P241 opto inputs default mappings 23
Table 4: P242/3 opto inputs default mappings 23
Table 5: P241 relay output contacts default mappings 23
Table 6: P242/3 relay output contacts default mappings 24
Table 7: P241 programmable LED default mappings 24
Table 8: P242/3 programmable LED default mappings 25
Table 9: Default fault record initiation 25
1 PROGRAMMABLE LOGIC

1.1 Overview

The purpose of the programmable scheme logic (PSL) is to allow the relay user to configure an individual protection scheme to suit their own particular application. This is achieved through the use of programmable logic gates and delay timers.

The input to the PSL is any combination of the status of opto inputs. It is also used to assign the mapping of functions to the opto inputs and output contacts, the outputs of the protection elements, such as protection starts and trips, and the outputs of the fixed protection scheme logic. The fixed scheme logic provides the relay’s standard protection schemes. The PSL consists of software logic gates and timers. The logic gates can be programmed to perform a range of different logic functions and can accept any number of inputs. The timers are used either to create a programmable delay, and/or to condition the logic outputs, e.g. to create a pulse of fixed duration on the output regardless of the length of the pulse on the input. The outputs of the PSL are the LEDs on the front panel of the relay and the output contacts at the rear.

The execution of the PSL logic is event driven; the logic is processed whenever any of its inputs change, for example as a result of a change in one of the digital input signals or a trip output from a protection element. Also, only the part of the PSL logic that is affected by the particular input change that has occurred is processed. This reduces the amount of processing time that is used by the PSL; even with large, complex PSL schemes the relay trip time will not lengthen.

This system provides flexibility for the user to create their own scheme logic design. However, it also means that the PSL can be configured into a very complex system; therefore setting of the PSL is implemented through the PC support package MiCOM S1 Studio.

1.2 MiCOM S1 Studio Px40 PSL editor

To access the Px40 PSL Editor menu click on

The PSL editors enable you to connect to any MiCOM device front port, retrieve and edit its Programmable Scheme Logic files and send the modified file back to a MiCOM Px40 device.
1.3 How to use MiCOM Px40 PSL editor
With the MiCOM Px40 PSL Module you can:

- Start a new PSL diagram
- Extract a PSL file from a MiCOM Px40 IED
- Open a diagram from a PSL file
- Add logic components to a PSL file
- Move components in a PSL file
- Edit link of a PSL file
- Add link to a PSL file
- Highlight path in a PSL file
- Use a conditioner output to control logic
- Download PSL file to a MiCOM Px40 IED
- Print PSL files

1.4 Warnings
Checks are done before the scheme is sent to the relay. Various warning messages may be displayed as a result of these checks.

The Editor first reads in the model number of the connected relay, then compares it with the stored model number. A "wildcard" comparison is used. If a model mismatch occurs, a warning is generated before sending starts. Both the stored model number and the number read from the relay are displayed with the warning. However, the user must decide if the settings to be sent are compatible with the connected relay. Ignoring the warning could lead to undesired behavior in the relay.

If there are any obvious potential problems, a list is generated. The types of potential problems that the program attempts to detect are:

- One or more gates, LED signals, contact signals, and/or timers have their outputs linked directly back to their inputs. An erroneous link of this sort could lock up the relay, or cause other more subtle problems to arise.
- Inputs To Trigger (ITT) exceeds the number of inputs. If a programmable gate has its ITT value set to greater than the number of actual inputs, the gate can never activate. There is no lower ITT value check; a 0-value does not generate a warning.
- Too many gates. There is a theoretical upper limit of 256 gates in a scheme, but the practical limit is determined by the complexity of the logic. In practice the scheme would have to be very complex, and this error is unlikely to occur.
- Too many links. There is no fixed upper limit to the number of links in a scheme. However, as with the maximum number of gates, the practical limit is determined by the complexity of the logic. In practice the scheme would have to be very complex, and this error is unlikely to occur.

1.5 Toolbar and commands
There are a number of toolbars available for easy navigation and editing of PSL.

1.5.1 Standard tools
For file management and printing.

1.5.2 Alignment tools
To snap logic elements into horizontally or vertically aligned groupings.

1.5.3 Drawing tools
To add text comments and other annotations, for easier reading of PSL schemes.
1.5.4 Nudge tools
To move logic elements.

1.5.5 Rotation tools
Tools to spin, mirror and flip.

1.5.6 Structure tools
To change the stacking order of logic components.

1.5.7 Zoom and pan tools
For scaling the displayed screen size, viewing the entire PSL, or zooming to a selection.

1.5.8 Logic symbols
P242/3 logic symbols

P241 logic symbols

This toolbar provides icons to place each type of logic element into the scheme diagram. Not all elements are available in all devices. Icons will only be displayed for those elements available in the selected device.

Link
Create a link between two logic symbols.

Opto Signal
Create an opto signal.

Input Signal
Create an input signal.

Output Signal
Create an output signal.

GOOSE In
Create an input signal to logic to receive an IEC 61850 GOOSE message transmitted from another IED.

GOOSE Out
Create an output signal from logic to transmit an IEC 61850 GOOSE message to another IED.

Control In
Create an input signal to logic that can be operated from an external command.
Function Key
Create a function key input signal.

Trigger Signal
Create a fault record trigger.

LED Signal
Create an LED input signal that repeats the status of tri-color LED.
(P242/3)
Create an LED input signal that repeats the status of red LED.
(P241)

Contact Signal
Create a contact signal.

LED Conditioner
Create an LED conditioner for tri-color LED (P242/3)
Create an LED conditioner for red LED (P241)

Contact Conditioner
Create a contact conditioner.

Timer
Create a timer.

AND Gate
Create an AND Gate.

OR Gate
Create an OR Gate.

Programmable Gate
Create a programmable gate.

SR Programmable Gate
Create a programmable SR gate.

1.6 PSL logic signals properties
The logic signal toolbar is used for the selection of logic signals.
Performing a right-mouse click on any logic signal will open a context sensitive menu and one of the options for certain logic elements is the Properties command. Selecting the Properties option will open a Component Properties window, the format of which will vary according to the logic signal selected.
Properties of each logic signal, including the Component Properties windows, are shown in the following sub-sections:

Signal properties menu
The Signals List tab is used for the selection of logic signals.
The signals listed will be appropriate to the type of logic symbol being added to the diagram. They will be of one of the following types:
1.6.1 Link properties

Links form the logical link between the output of a signal, gate or condition and the input to any element.

Any link that is connected to the input of a gate can be inverted via its properties window. An inverted link is indicated with a “bubble” on the input to the gate. It is not possible to invert a link that is not connected to the input of a gate.

Links can only be started from the output of a signal, gate, or conditioner, and can only be ended on an input to any element.

Since signals can only be either an input or an output then the concept is somewhat different. In order to follow the convention adopted for gates and conditioners, input signals are connected from the left and output signals to the right. The Editor will automatically enforce this convention.

A link attempt will be refused where one or more rules would otherwise be broken. A link will be refused for the following reasons:

- An attempt to connect to a signal that is already driven. The cause of the refusal may not be obvious, since the signal symbol may appear elsewhere in the diagram. Use “Highlight a Path” to find the other signal.
- An attempt is made to repeat a link between two symbols. The cause of the refusal may not be obvious, since the existing link may be represented elsewhere in the diagram.

1.6.2 Opto signal properties

Opto Signal

Each opto input can be selected and used for programming in PSL. Activation of the opto input will drive an associated DDB signal.

For example activating opto input L1 will assert DDB 064 in the PSL.

1.6.3 Input signal properties

Input Signal

Relay logic functions provide logic output signals that can be used for programming in PSL. Depending on the relay functionality, operation of an active relay function will drive an associated DDB signal in PSL.

For example DDB 298 will be asserted in the PSL on a successful motor start.

1.6.4 Output signal properties

Output Signal

Relay logic functions provide logic input signals that can be used for programming in PSL. Depending on the relay functionality, activation of the output signal will drive an associated DDB signal in PSL and cause an associated response to the relay function.
For example, if DDB 108 is asserted in the PSL, an emergency start of the motor will be initiated.

1.6.5 GOOSE input signal properties

GOOSE In
The PSL interfaces with the GOOSE Scheme Logic (see S1 Studio user’s manual) by means of 32 Virtual inputs. The Virtual Inputs can be used in much the same way as the Opto Input signals.

The logic that drives each of the Virtual Inputs is in the relay’s GOOSE Scheme Logic file. Any number of bit-pairs, from any enrolled device, can be mapped using logic gates onto a Virtual Input.

For example DDB 544 will be asserted in PSL should virtual input 1 and its associated bit pair operate.

1.6.6 GOOSE output signal properties

GOOSE Out
The PSL interfaces with the GOOSE Scheme Logic using 32 Virtual outputs.

It is possible to map virtual outputs to bit-pairs for transmitting to any enrolled devices (see S1 Users manual for more details).

For example if DDB 512 is asserted in PSL, Virtual Output 1 and its associated bit-pair mappings will operate.

1.6.7 Control input signal properties

Control Inputs
There are 32 control inputs which can be activated using the relay menu, ‘hotkeys’ or using rear communications. Depending on the programmed setting (latched or pulsed), an associated DDB signal is activated in PSL when a control input is operated.

For example, operate control input 1 to assert DDB 608 in the PSL.

1.6.8 Function key properties (P242/3 only)

Function Key
Each function key can be selected and used for programming in PSL. Activation of the function key drives an associated DDB signal and the DDB signal remains active depending on the programmed setting (toggled or normal). Toggled mode means the DDB signal will remain latched or unlatched on key press and normal means the DDB will only be active for the duration of the key press.

For example, operate function key 1 to assert DDB 676 in the PSL.
1.6.9 Fault recorder trigger properties

Fault Record Trigger
The fault recording facility can be activated by driving the fault recorder trigger DDB signal.
For example, assert DDB 468 to activate the fault recording in the PSL.

1.6.10 LED signal properties

LED
All programmable LEDs drive associated DDB signal when the LED is activated.
For example, DDB 652 is asserted when tri-color LED 7 is activated (P242/3) and DDB 102 for red LED 7 (P241).

1.6.11 Contact signal properties

Contact Signal
All relay output contacts will drive associated DDB signal when the output contact is activated.
For example DDB 000 will be asserted when output R1 is activated.

1.6.12 LED conditioner properties

1.6.12.1 Tri-color LED conditioner (P242/3)
1. Select the LED name from the list (only shown when inserting a new symbol).
2. Configure the LED output to be Red, Yellow or Green.
3. Configure a Green LED by driving the Green DDB input.
4. Configure a RED LED by driving the RED DDB input.
5. Configure a Yellow LED by driving the RED and GREEN DDB inputs simultaneously.

Figure 1: Tri-color LED conditioning (P242/3)
6. Configure the LED output to be latching or non-latching.
1.6.12.2 Red LED conditioner (P241)

1. Select the LED name from the list (only shown when inserting a new symbol).
2. Configure the LED output to be latching or non-latching.

1.6.13 Contact conditioner properties

Each contact can be conditioned with an associated timer that can be selected for pick up, drop off, dwell, pulse, pick-up/drop-off, straight-through, or latching operation.

Straight-through means it is not conditioned at all whereas **Latching** is used to create a sealed-in or lockout type function.

1. Select the contact name from the Contact Name list (only shown when inserting a new symbol).
2. Choose the conditioner type required in the Mode tick list.
3. Set the Pick-up Time (in milliseconds), if required.
4. Set the Drop-off Time (in milliseconds), if required.

1.6.14 Timer properties

Each timer can be selected for pick up, drop off, dwell, pulse or pick-up/drop-off operation.

1. Choose the operation mode from the Timer Mode tick list.
2. Set the Pick-up Time (in milliseconds), if required.
3. Set the Drop-off Time (in milliseconds), if required.
1.6.15 Gate properties

A Gate may be an AND, OR, or programmable gate.

An AND gate requires that all inputs are TRUE for the output to be TRUE.

An OR gate requires that one or more input is TRUE for the output to be TRUE.

A Programmable gate requires that the number of inputs that are TRUE is equal to or greater than its ‘Inputs to Trigger’ setting for the output to be TRUE.

1. Select the Gate type AND, OR, or Programmable.
2. Set the number of inputs to trigger when Programmable is selected.
3. Select if the output of the gate should be inverted using the Invert Output check box. An inverted output is indicated with a “bubble” on the gate output.

1.7 Description of logic nodes

<table>
<thead>
<tr>
<th>DDB no.</th>
<th>English text</th>
<th>Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Relay 1 (Output Label Setting)</td>
<td>Relay conditioner</td>
<td>Relay 1 is on</td>
</tr>
<tr>
<td>6</td>
<td>Relay 7 (Output Label Setting)</td>
<td>Relay conditioner</td>
<td>Relay 7 is on</td>
</tr>
<tr>
<td>15</td>
<td>Relay 16 (Output Label Setting)</td>
<td>Relay conditioner</td>
<td>Relay 16 is on (P242/3 only)</td>
</tr>
<tr>
<td>16 to 63</td>
<td>Not Used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Opto 1 (Input Label Setting)</td>
<td>Opto Isolator Input</td>
<td>Opto 1 is on</td>
</tr>
<tr>
<td>71</td>
<td>Opto 8 (Input Label Setting)</td>
<td>Opto Isolator Input</td>
<td>Opto 8 is on</td>
</tr>
<tr>
<td>79</td>
<td>Opto 16 (Input Setting)</td>
<td>Opto Isolator Input</td>
<td>Opto 16 is on (P242/3 only)</td>
</tr>
<tr>
<td>96</td>
<td>LED1 Red</td>
<td>PSL</td>
<td>LED 1 Red is on (P241 only)</td>
</tr>
<tr>
<td>103</td>
<td>LED8 Red</td>
<td>PSL</td>
<td>LED 8 Red is on (P241 only)</td>
</tr>
<tr>
<td>104</td>
<td>Speed Input</td>
<td>PSL</td>
<td>Speed Switch input is on</td>
</tr>
<tr>
<td>105</td>
<td>CB Aux 3Ph - 52A</td>
<td>PSL</td>
<td>CB1 Closed</td>
</tr>
<tr>
<td>106</td>
<td>CB Aux 3Ph - 52B</td>
<td>PSL</td>
<td>CB1 Open</td>
</tr>
<tr>
<td>107</td>
<td>Setting Group.</td>
<td>PSL</td>
<td>Setting Group change (Off = Group1, On = Group 2)</td>
</tr>
<tr>
<td>108</td>
<td>Emergency Rest.</td>
<td>PSL</td>
<td>Initiates Emergency Restart of motor</td>
</tr>
<tr>
<td>109</td>
<td>Reset Thermal</td>
<td>PSL</td>
<td>Resets Thermal State to 0%</td>
</tr>
<tr>
<td>DDB no.</td>
<td>English text</td>
<td>Source</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>110</td>
<td>Dist Rec Trig</td>
<td>PSL</td>
<td>Triggers the Disturbance Recorder</td>
</tr>
<tr>
<td>111</td>
<td>Close</td>
<td>PSL</td>
<td>Initiates a breaker close command</td>
</tr>
<tr>
<td>112</td>
<td>Trip</td>
<td>PSL</td>
<td>Initiates a breaker trip command</td>
</tr>
<tr>
<td>113</td>
<td>Reset Latches</td>
<td>PSL</td>
<td>Reset all latched LEDs and output relays</td>
</tr>
<tr>
<td>114</td>
<td>Test Mode</td>
<td>PSL</td>
<td>Commissioning Tests - automatically places relay in Test Mode which takes the relay out of service and allows secondary injection testing of the relay. For IEC 60870-5-103 protocol spontaneous events and cyclic measured data transmitted whilst the relay is in test mode will have a COT of 'test mode'</td>
</tr>
<tr>
<td>115</td>
<td>External Trip</td>
<td>PSL</td>
<td>External Trip 3 phase - allows external protection to initiate breaker fail and circuit breaker condition monitoring counters.</td>
</tr>
<tr>
<td>116</td>
<td>Time Synch</td>
<td>PSL</td>
<td>Time Synchronism by opto Input pulse</td>
</tr>
<tr>
<td>117</td>
<td>FFail Block</td>
<td>PSL</td>
<td>Blocks operation of the Field Failure protection</td>
</tr>
<tr>
<td>118</td>
<td>Trip LED</td>
<td>PSL</td>
<td>Signal to switch on the Trip LED</td>
</tr>
<tr>
<td>119</td>
<td>MCB/VTS</td>
<td>PSL</td>
<td>VT supervision input - signal from external Miniature Circuit Breaker showing MCB tripped</td>
</tr>
<tr>
<td>120</td>
<td>Monitor Blocking DDB</td>
<td>PSL</td>
<td>Monitor Blocking DDB</td>
</tr>
<tr>
<td>121</td>
<td>Command Blocking DDB</td>
<td>PSL</td>
<td>Command Blocking DDB</td>
</tr>
<tr>
<td>122</td>
<td>RP1 Read Only DDB</td>
<td>PSL</td>
<td>Rear communications Port 1 read only mode selection</td>
</tr>
<tr>
<td>123</td>
<td>RP2 Read Only DDB</td>
<td>PSL</td>
<td>Rear communications Port 1 read only mode selection</td>
</tr>
<tr>
<td>124</td>
<td>NIC Read Only DDB</td>
<td>PSL</td>
<td>Rear Ethernet communications port read only mode selection</td>
</tr>
<tr>
<td>125</td>
<td>V2>1 Timer Block</td>
<td>PSL</td>
<td>Block 1st stage Negative Phase Sequence Overvoltage Timer</td>
</tr>
<tr>
<td>126</td>
<td>V2>1 Inhibit</td>
<td>PSL</td>
<td>Inhibit 1st stage Negative Phase Sequence Overvoltage</td>
</tr>
<tr>
<td>127</td>
<td>V2>2 Timer Block</td>
<td>PSL</td>
<td>Block 2nd stage Negative Phase Sequence Overvoltage Timer</td>
</tr>
<tr>
<td>128</td>
<td>V2>2 Inhibit</td>
<td>PSL</td>
<td>Inhibit 2nd stage Negative Phase Sequence Overvoltage</td>
</tr>
<tr>
<td>129</td>
<td>V<1 Timer Block</td>
<td>PSL</td>
<td>Block 1st stage Undervoltage Timer</td>
</tr>
<tr>
<td>130</td>
<td>V<1 Inhibit</td>
<td>PSL</td>
<td>Inhibit 1st stage Undervoltage</td>
</tr>
<tr>
<td>131</td>
<td>V<2 Timer Block</td>
<td>PSL</td>
<td>Block 2nd stage Undervoltage Timer</td>
</tr>
<tr>
<td>132</td>
<td>V<2 Inhibit</td>
<td>PSL</td>
<td>Inhibit 2nd stage Undervoltage</td>
</tr>
<tr>
<td>133</td>
<td>I>1 Timer Block</td>
<td>PSL</td>
<td>Block 1st stage Overcurrent Timer</td>
</tr>
<tr>
<td>134</td>
<td>I>1 Inhibit</td>
<td>PSL</td>
<td>Inhibit 1st stage Overcurrent</td>
</tr>
<tr>
<td>135</td>
<td>I>2 Timer Block</td>
<td>PSL</td>
<td>Block 2nd stage Overcurrent Timer</td>
</tr>
<tr>
<td>136</td>
<td>I>2 Inhibit</td>
<td>PSL</td>
<td>Inhibit 2nd stage Overcurrent</td>
</tr>
<tr>
<td>137</td>
<td>I>3 Timer Block</td>
<td>PSL</td>
<td>Block 3rd stage Overcurrent Timer</td>
</tr>
<tr>
<td>138</td>
<td>I>3 Inhibit</td>
<td>PSL</td>
<td>Inhibit 3rd stage Overcurrent</td>
</tr>
<tr>
<td>139</td>
<td>I>4 Timer Block</td>
<td>PSL</td>
<td>Block 4th stage Overcurrent Timer</td>
</tr>
<tr>
<td>140</td>
<td>I>4 Inhibit</td>
<td>PSL</td>
<td>Inhibit 4th stage Overcurrent</td>
</tr>
<tr>
<td>141 to 173</td>
<td>Not Used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>174</td>
<td>General Alarm</td>
<td></td>
<td>Any Alarm is operated</td>
</tr>
<tr>
<td>DDB no.</td>
<td>English text</td>
<td>Source</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------------</td>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>175</td>
<td>Prot’n Disabled</td>
<td>Commission Test</td>
<td>Protection Disabled - typically out of service due to test mode</td>
</tr>
<tr>
<td>176</td>
<td>F Out of Range</td>
<td>Frequency Tracking</td>
<td>Frequency Out of bandwidth Range (45-60 Hz)</td>
</tr>
<tr>
<td>177</td>
<td>3Ph Volt Alarm</td>
<td>Rev Ph Seq</td>
<td>Phase rotation is incorrect (V2>V1) or phase voltages are below Start Voltage threshold</td>
</tr>
<tr>
<td>178</td>
<td>Thermal Alarm</td>
<td>Thermal Overload</td>
<td>Thermal State has exceeded alarm threshold</td>
</tr>
<tr>
<td>179</td>
<td>Thermal Lockout</td>
<td>Thermal Overload</td>
<td>Used to inhibit a motor start until Thermal State < Thermal Lockout threshold</td>
</tr>
<tr>
<td>180</td>
<td>Time Betwe Start</td>
<td>Start Protection</td>
<td>Used to inhibit a motor start for the Time Between Starts setting following a trip</td>
</tr>
<tr>
<td>181</td>
<td>Hot Start Nb</td>
<td>Start Protection</td>
<td>Used to inhibit a motor start if Number of Hot Starts setting is exceeded</td>
</tr>
<tr>
<td>182</td>
<td>Cold Start Nb</td>
<td>Start Protection</td>
<td>Used to inhibit a motor start if Number of Cold Starts setting is exceeded</td>
</tr>
<tr>
<td>183</td>
<td>Man CB Trip Fail</td>
<td>CB Control</td>
<td>Circuit Breaker Failed to Trip (after a manual/operator trip command)</td>
</tr>
<tr>
<td>184</td>
<td>Man CB CIs Fail</td>
<td>CB Control</td>
<td>Circuit Breaker Failed to Close (after a manual/operator close command)</td>
</tr>
<tr>
<td>185</td>
<td>CB Status Alarm</td>
<td>CB Status</td>
<td>Indication of a fault with the Circuit Breaker state monitoring – example: defective auxiliary contacts</td>
</tr>
<tr>
<td>186</td>
<td>I^ Maint Alarm</td>
<td>CB Monitoring</td>
<td>Circuit Breaker cumulative broken current has exceeded the maintenance alarm setting</td>
</tr>
<tr>
<td>187</td>
<td>CB Ops Maint</td>
<td>CB Monitoring</td>
<td>Number of Circuit Breaker trips has exceeded maintenance alarm setting.</td>
</tr>
<tr>
<td>188</td>
<td>CB OP Time Maint</td>
<td>CB Monitoring</td>
<td>Circuit Breaker operating time has exceeded maintenance alarm setting (slow interruption time)</td>
</tr>
<tr>
<td>189</td>
<td>3 Ph W Alarm</td>
<td>Measurement setup</td>
<td>3 Phase Watts Alarm</td>
</tr>
<tr>
<td>190</td>
<td>3 Ph Var Alarm</td>
<td>Measurement setup</td>
<td>3 Phase Var Alarm</td>
</tr>
<tr>
<td>191</td>
<td>RTD 1 Alarm</td>
<td>RTD Protection</td>
<td>RTD 1 Alarm</td>
</tr>
<tr>
<td>200</td>
<td>RTD 10 Alarm</td>
<td>RTD Protection</td>
<td>RTD 10 Alarm</td>
</tr>
<tr>
<td>201</td>
<td>RTD Short Cct</td>
<td>RTD Protection</td>
<td>RTD Short Circuit circuit (the RTD Short Cct cell in Measurements 3 indicates which RTD is open circuit)</td>
</tr>
<tr>
<td>202</td>
<td>RTD Open Cct</td>
<td>RTD Protection</td>
<td>RTD Open Circuit (the RTD Open Cct cell in Measurements 3 indicates which RTD is open circuit)</td>
</tr>
<tr>
<td>203</td>
<td>RTD Data Error</td>
<td>RTD Protection</td>
<td>RTD Data inconsistency Error (the RTD Data Error cell in Measurements 3 indicates which RTD has a data error)</td>
</tr>
<tr>
<td>204</td>
<td>Invalid Set Grp</td>
<td>Group Selection</td>
<td>Invalid Setting Group</td>
</tr>
<tr>
<td>205</td>
<td>Dist Rec. Conf</td>
<td>Disturbance Recorder</td>
<td>Disturbance Recorder Configuration is not compliant with "connecting mode", for example if "VT connecting mode" = "2VT+antibackspin"</td>
</tr>
<tr>
<td>206</td>
<td>CB Fail Alarm</td>
<td>CB Fail</td>
<td>Circuit Breaker Fail Alarm</td>
</tr>
<tr>
<td>207</td>
<td>W Fwd Alarm</td>
<td>Measurement setup</td>
<td>Watt Forward Alarm</td>
</tr>
<tr>
<td>208</td>
<td>W Rev Alarm</td>
<td>Measurement setup</td>
<td>Watt Reverse Alarm</td>
</tr>
<tr>
<td>209</td>
<td>VAr Fwd Alarm</td>
<td>Measurement setup</td>
<td>Var Forward Alarm</td>
</tr>
<tr>
<td>210</td>
<td>VAr Rev Alarm</td>
<td>Measurement setup</td>
<td>Var Reverse Alarm</td>
</tr>
<tr>
<td>DDB no.</td>
<td>English text</td>
<td>Source</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>211</td>
<td>Analo Inp1 Alarm</td>
<td>Current Loop Inputs</td>
<td>Current Loop Input (Transducer input) 1 Alarm</td>
</tr>
<tr>
<td>214</td>
<td>Analo Inp4 Alarm</td>
<td>Current Loop Inputs</td>
<td>Current Loop Input (Transducer input) 4 Alarm</td>
</tr>
<tr>
<td>215</td>
<td>MR User Alarm 1</td>
<td>PSL</td>
<td>User Alarm 1 (Manual-Resetting)</td>
</tr>
<tr>
<td>221</td>
<td>MR User Alarm 7</td>
<td>PSL</td>
<td>User Alarm 7 (Manual-Resetting)</td>
</tr>
<tr>
<td>222</td>
<td>SR User Alarm 8</td>
<td>PSL</td>
<td>User Alarm 8 (Self-Resetting)</td>
</tr>
<tr>
<td>228</td>
<td>SR User Alarm 14</td>
<td>PSL</td>
<td>User Alarm 14 (Self-Resetting)</td>
</tr>
<tr>
<td>229</td>
<td>CT-1 Fail Alarm</td>
<td>CT Supervision</td>
<td>CTS Indication Alarm for IA/IB/IC (CT supervision alarm).</td>
</tr>
<tr>
<td>230</td>
<td>CT-2 Fail Alarm</td>
<td>CT Supervision</td>
<td>CTS Indication Alarm for IA-2/IB-2/IC-2 (CT supervision alarm). (P243)</td>
</tr>
<tr>
<td>223</td>
<td>MR User Alarm 9</td>
<td>PSL</td>
<td>User Alarm 9 (Manual-Resetting)</td>
</tr>
<tr>
<td>224</td>
<td>SR User Alarm 10</td>
<td>PSL</td>
<td>User Alarm 10 (Self-Resetting)</td>
</tr>
<tr>
<td>230</td>
<td>MR User Alarm 16</td>
<td>PSL</td>
<td>User Alarm 16 (Self-Resetting)</td>
</tr>
<tr>
<td>231</td>
<td>Hour Run Alarm 1</td>
<td>Measurement setup</td>
<td>Hour Run Alarm 1</td>
</tr>
<tr>
<td>232</td>
<td>Hour Run Alarm 2</td>
<td>Measurement setup</td>
<td>Hour Run Alarm 2</td>
</tr>
<tr>
<td>233</td>
<td>Anti-kbspin Alarm</td>
<td>Anti-Backspin</td>
<td>Anti-Backspin Alarm</td>
</tr>
<tr>
<td>234</td>
<td>Field Fail Alarm</td>
<td>Field Failure</td>
<td>Field Failure Alarm</td>
</tr>
<tr>
<td>235</td>
<td>VTS Block</td>
<td>VTS Supervision</td>
<td>Confirmed block</td>
</tr>
<tr>
<td>236</td>
<td>Thermal Trip</td>
<td>Thermal Overload</td>
<td>Thermal State has exceeded trip threshold</td>
</tr>
<tr>
<td>237</td>
<td>Trip I>1</td>
<td>Short Circuit</td>
<td>1st stage Short Circuit Trip, 3-phase</td>
</tr>
<tr>
<td>238</td>
<td>I>1 A Phase</td>
<td>Short Circuit</td>
<td>As per DDB#242</td>
</tr>
<tr>
<td>239</td>
<td>I>1 B Phase</td>
<td>Short Circuit</td>
<td>As per DDB#243</td>
</tr>
<tr>
<td>240</td>
<td>I>1 C Phase</td>
<td>Short Circuit</td>
<td>As per DDB#244</td>
</tr>
<tr>
<td>241</td>
<td>Start I>1</td>
<td>Short Circuit</td>
<td>1st stage Short Circuit Start, 3 Phase</td>
</tr>
<tr>
<td>242</td>
<td>Start I>1 A Ph</td>
<td>Short Circuit</td>
<td>1st stage Short Circuit Start, A Phase</td>
</tr>
<tr>
<td>243</td>
<td>Start I>1 B Ph</td>
<td>Short Circuit</td>
<td>1st stage Short Circuit Start, B Phase</td>
</tr>
<tr>
<td>244</td>
<td>Start I>1 C Ph</td>
<td>Short Circuit</td>
<td>1st stage Short Circuit Start, C Phase</td>
</tr>
<tr>
<td>245</td>
<td>Trip I>1 A Ph</td>
<td>Short Circuit</td>
<td>1st stage Short Circuit Trip, A Phase</td>
</tr>
<tr>
<td>246</td>
<td>Trip I>1 B Ph</td>
<td>Short Circuit</td>
<td>1st stage Short Circuit Trip, B Phase</td>
</tr>
<tr>
<td>247</td>
<td>Trip I>1 C Ph</td>
<td>Short Circuit</td>
<td>1st stage Short Circuit Trip, C Phase</td>
</tr>
<tr>
<td>248</td>
<td>Trip I>2</td>
<td>Short Circuit</td>
<td>2nd stage Short Circuit Trip, 3 Phase</td>
</tr>
<tr>
<td>249</td>
<td>I>2 A Phase</td>
<td>Short Circuit</td>
<td>As per DDB#253</td>
</tr>
<tr>
<td>250</td>
<td>I>2 B Phase</td>
<td>Short Circuit</td>
<td>As per DDB#254</td>
</tr>
<tr>
<td>251</td>
<td>I>2 C Phase</td>
<td>Short Circuit</td>
<td>As per DDB#255</td>
</tr>
<tr>
<td>252</td>
<td>Start I>2</td>
<td>Short Circuit</td>
<td>2nd stage Short Circuit start, 3 Phase</td>
</tr>
<tr>
<td>253</td>
<td>Start I>2 A Ph</td>
<td>Short Circuit</td>
<td>2nd stage Short Circuit start, A Phase</td>
</tr>
<tr>
<td>254</td>
<td>Start I>2 B Ph</td>
<td>Short Circuit</td>
<td>2nd stage Short Circuit start, B Phase</td>
</tr>
<tr>
<td>255</td>
<td>Start I>2 C Ph</td>
<td>Short Circuit</td>
<td>2nd stage Short Circuit start, C Phase</td>
</tr>
<tr>
<td>256</td>
<td>Trip I>2 A Ph</td>
<td>Short Circuit</td>
<td>2nd stage Short Circuit trip, A Phase</td>
</tr>
<tr>
<td>257</td>
<td>Trip I>2 B Ph</td>
<td>Short Circuit</td>
<td>2nd stage Short Circuit trip, B Phase</td>
</tr>
<tr>
<td>258</td>
<td>Trip I>2 C Ph</td>
<td>Short Circuit</td>
<td>2nd stage Short Circuit trip, C Phase</td>
</tr>
<tr>
<td>259</td>
<td>Trip F<1</td>
<td>Underfrequency</td>
<td>1st stage Underfrequency Trip</td>
</tr>
<tr>
<td>260</td>
<td>Trip F<2</td>
<td>Underfrequency</td>
<td>2nd stage Underfrequency Trip</td>
</tr>
<tr>
<td>261</td>
<td>Trip ISEF>1</td>
<td>Earth Fault</td>
<td>1st stage Sensitive Earth Fault Trip</td>
</tr>
<tr>
<td>262</td>
<td>Start ISEF>1</td>
<td>Earth Fault</td>
<td>1st stage Sensitive Earth Fault Start</td>
</tr>
<tr>
<td>263</td>
<td>Trip ISEF>2</td>
<td>Earth Fault</td>
<td>2nd stage Sensitive Earth Fault Trip</td>
</tr>
<tr>
<td>264</td>
<td>Start ISEF>2</td>
<td>Earth Fault</td>
<td>2nd stage Sensitive Earth Fault Start</td>
</tr>
<tr>
<td>DDB no.</td>
<td>English text</td>
<td>Source</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>265</td>
<td>Trip IN>1</td>
<td>Derived Earth Fault</td>
<td>1st stage Derived Earth Fault Trip</td>
</tr>
<tr>
<td>266</td>
<td>Start IN>1</td>
<td>Derived Earth Fault</td>
<td>1st stage Derived Earth Fault Start</td>
</tr>
<tr>
<td>267</td>
<td>Trip IN>2</td>
<td>Derived Earth Fault</td>
<td>2nd stage Derived Earth Fault Trip</td>
</tr>
<tr>
<td>268</td>
<td>Start IN>2</td>
<td>Derived Earth Fault</td>
<td>2nd stage Derived Earth Fault Start</td>
</tr>
<tr>
<td>269</td>
<td>Trip P<1</td>
<td>Loss of Load</td>
<td>1st stage Underpower Trip</td>
</tr>
<tr>
<td>270</td>
<td>Trip P<2</td>
<td>Loss of Load</td>
<td>2nd stage Underpower Trip</td>
</tr>
<tr>
<td>271</td>
<td>Trip PF< Lead</td>
<td>Under Power Factor</td>
<td>Out of Step Trip (leading power factor)</td>
</tr>
<tr>
<td>272</td>
<td>Trip PF< Lag</td>
<td>Under Power Factor</td>
<td>Out of Step Trip (lagging power factor)</td>
</tr>
<tr>
<td>273</td>
<td>Trip Rev Power</td>
<td>Reverse Power</td>
<td>Reverse Power Trip</td>
</tr>
<tr>
<td>274</td>
<td>Trip I2>1</td>
<td>Negative sequence O/C</td>
<td>1st stage NPS Trip</td>
</tr>
<tr>
<td>275</td>
<td>Tip I2>2</td>
<td>Negative sequence O/C</td>
<td>2nd stage NPS Trip</td>
</tr>
<tr>
<td>276</td>
<td>V<1 AB Phase</td>
<td>Volt Protection</td>
<td>1st stage Undervoltage Start, AB Phase</td>
</tr>
<tr>
<td>277</td>
<td>V<1 BC Phase</td>
<td>Volt Protection</td>
<td>1st stage Undervoltage Start, BC Phase</td>
</tr>
<tr>
<td>278</td>
<td>V<1 CA Phase</td>
<td>Volt Protection</td>
<td>1st stage Undervoltage Start, CA Phase</td>
</tr>
<tr>
<td>279</td>
<td>Trip V<1</td>
<td>Volt Protection</td>
<td>1st stage Undervoltage Trip, 3 Phase</td>
</tr>
<tr>
<td>280</td>
<td>V>1 AB Phase</td>
<td>Volt Protection</td>
<td>1st stage Overvoltage Start, AB Phase</td>
</tr>
<tr>
<td>281</td>
<td>V>1 BC Phase</td>
<td>Volt Protection</td>
<td>1st stage Overvoltage Start, BC Phase</td>
</tr>
<tr>
<td>282</td>
<td>V>1 CA Phase</td>
<td>Volt Protection</td>
<td>1st stage Overvoltage Start, CA Phase</td>
</tr>
<tr>
<td>283</td>
<td>Trip V>1</td>
<td>Volt Protection</td>
<td>1st stage Overvoltage Trip, 3 Phase</td>
</tr>
<tr>
<td>284</td>
<td>V<2 AB Phase</td>
<td>Volt Protection</td>
<td>2nd stage Undervoltage Start, AB Phase</td>
</tr>
<tr>
<td>285</td>
<td>V<2 BC Phase</td>
<td>Volt Protection</td>
<td>2nd stage Undervoltage Start, BC Phase</td>
</tr>
<tr>
<td>286</td>
<td>V<2 CA Phase</td>
<td>Volt Protection</td>
<td>2nd stage Undervoltage Start, CA Phase</td>
</tr>
<tr>
<td>287</td>
<td>Trip V<2</td>
<td>Volt Protection</td>
<td>2nd stage Undervoltage Trip, 3 Phase</td>
</tr>
<tr>
<td>288</td>
<td>V>2 AB Phase</td>
<td>Volt Protection</td>
<td>2nd stage Overvoltage Start, AB Phase</td>
</tr>
<tr>
<td>289</td>
<td>V>2 BC Phase</td>
<td>Volt Protection</td>
<td>2nd stage Overvoltage Start, BC Phase</td>
</tr>
<tr>
<td>290</td>
<td>V>2 CA Phase</td>
<td>Volt Protection</td>
<td>2nd stage Overvoltage Start, CA Phase</td>
</tr>
<tr>
<td>291</td>
<td>Trip V>2</td>
<td>Volt Protection</td>
<td>2nd stage Overvoltage Trip, 3 Phase</td>
</tr>
<tr>
<td>292</td>
<td>Trip NVD VN>1</td>
<td>Residual O/V NVD</td>
<td>1st stage Neutral Voltage Displacement/Residual Overvoltage Trip</td>
</tr>
<tr>
<td>293</td>
<td>Trip NVD VN>2</td>
<td>Residual O/V NVD</td>
<td>2nd stage Neutral Voltage Displacement/Residual Overvoltage Trip</td>
</tr>
<tr>
<td>294</td>
<td>Trip PO></td>
<td>Earth Fault</td>
<td>Wattmetric directional Earth Fault Trip</td>
</tr>
<tr>
<td>295</td>
<td>Start PO></td>
<td>Earth Fault</td>
<td>Wattmetric directional Earth Fault Start</td>
</tr>
<tr>
<td>296</td>
<td>Reacc Low Volt</td>
<td>Stalling</td>
<td>Voltage has dipped below ‘Reacc Low Voltage Setting’</td>
</tr>
<tr>
<td>297</td>
<td>Strt in Progress</td>
<td>Stalling</td>
<td>Start in Progress</td>
</tr>
<tr>
<td>298</td>
<td>Strt Successful</td>
<td>Stalling</td>
<td>Successful Start</td>
</tr>
<tr>
<td>299</td>
<td>Prolonged Start</td>
<td>Stalling</td>
<td>Prolonged Start – stall condition when the motor is starting (current > Starting Current setting for time > Prolonged Start Time)</td>
</tr>
<tr>
<td>300</td>
<td>Reac in Progress</td>
<td>Stalling</td>
<td>Reacceleration in Progress</td>
</tr>
<tr>
<td>301</td>
<td>Stall Rotor-run</td>
<td>Stalling</td>
<td>Stall Rotor condition when the motor is running</td>
</tr>
<tr>
<td>302</td>
<td>Stall Rotor-Strt</td>
<td>Stalling</td>
<td>Stall Rotor condition when the motor is starting (current > Starting Current setting and Speed Input is off for time > Stall Time)</td>
</tr>
<tr>
<td>303</td>
<td>Control Trip</td>
<td>CB Control</td>
<td>Manual Trip command</td>
</tr>
<tr>
<td>DDB no.</td>
<td>English text</td>
<td>Source</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>304</td>
<td>Control Close</td>
<td>CB Control</td>
<td>Manual Close command</td>
</tr>
<tr>
<td>305</td>
<td>Trip RTD 1</td>
<td>RTD Protection</td>
<td>RTD 1 Trip</td>
</tr>
<tr>
<td>314</td>
<td>Trip RTD 10</td>
<td>RTD Protection</td>
<td>RTD 10 Trip</td>
</tr>
<tr>
<td>315</td>
<td>Diff Trip A</td>
<td>Differential</td>
<td>Motor Differential Trip, A Phase. (P243)</td>
</tr>
<tr>
<td>316</td>
<td>Diff Trip B</td>
<td>Differential</td>
<td>Motor Differential Trip, B Phase. (P243)</td>
</tr>
<tr>
<td>317</td>
<td>Diff Trip C</td>
<td>Differential</td>
<td>Motor Differential Trip, C Phase. (P243)</td>
</tr>
<tr>
<td>318</td>
<td>Trip Diff</td>
<td>Differential</td>
<td>Motor Differential Trip (P243)</td>
</tr>
<tr>
<td>319</td>
<td>Trip CBF 1</td>
<td>CB Fail</td>
<td>CB Fail Timer 1 Trip</td>
</tr>
<tr>
<td>320</td>
<td>Trip CBF 2</td>
<td>CB Fail</td>
<td>CB Fail Timer 2 Trip</td>
</tr>
<tr>
<td>321</td>
<td>Trip Analog Inp 1</td>
<td>Current Loop Inputs</td>
<td>Current Loop Input (Analog/transducer input) 1 Trip</td>
</tr>
<tr>
<td>324</td>
<td>Trip Analog Inp 4</td>
<td>Current Loop Inputs</td>
<td>Current Loop Input (Analog/transducer input) 4 Trip</td>
</tr>
<tr>
<td>325</td>
<td>Pwd UI Level 0</td>
<td>System Data</td>
<td>Access Level 0 is enabled for the User Interface (HMI)</td>
</tr>
<tr>
<td>326</td>
<td>Pwd UI Level 1</td>
<td>System Data</td>
<td>Access Level 1 is enabled for the User Interface (HMI)</td>
</tr>
<tr>
<td>327</td>
<td>Pwd UI Level 2</td>
<td>System Data</td>
<td>Access Level 2 is enabled for the User Interface (HMI)</td>
</tr>
<tr>
<td>328</td>
<td>Pwd Front Level 0</td>
<td>System Data</td>
<td>Access Level 0 is enabled for the Front Comms Port</td>
</tr>
<tr>
<td>329</td>
<td>Pwd Front Level 1</td>
<td>System Data</td>
<td>Access Level 1 is enabled for the Front Comms Port</td>
</tr>
<tr>
<td>330</td>
<td>Pwd Front Level 2</td>
<td>System Data</td>
<td>Access Level 2 is enabled for the Front Comms Port</td>
</tr>
<tr>
<td>331</td>
<td>Pwd Rear Level 0</td>
<td>System Data</td>
<td>Access Level 0 is enabled for the Main Rear Comms Port</td>
</tr>
<tr>
<td>332</td>
<td>Pwd Rear Level 1</td>
<td>System Data</td>
<td>Access Level 1 is enabled for the Main Rear Comms Port</td>
</tr>
<tr>
<td>333</td>
<td>Pwd Rear Level 2</td>
<td>System Data</td>
<td>Access Level 2 is enabled for the Main Rear Comms Port</td>
</tr>
<tr>
<td>334</td>
<td>FFail1 Start</td>
<td>Field Failure</td>
<td>1st Stage Field Failure Start</td>
</tr>
<tr>
<td>335</td>
<td>FFail2 Start</td>
<td>Field Failure</td>
<td>2nd Stage Field Failure Start</td>
</tr>
<tr>
<td>336</td>
<td>FFail1 Trip</td>
<td>Field Failure</td>
<td>1st Stage Field Failure Trip</td>
</tr>
<tr>
<td>337</td>
<td>FFail2 Trip</td>
<td>Field Failure</td>
<td>2nd Stage Field Failure Trip</td>
</tr>
<tr>
<td>338</td>
<td>Trip I>3</td>
<td>Short Circuit</td>
<td>3rd stage Short Circuit Trip, 3-phase</td>
</tr>
<tr>
<td>339</td>
<td>$I_{>3}$ A Phase</td>
<td>Short Circuit</td>
<td>As per DDB#343</td>
</tr>
<tr>
<td>340</td>
<td>$I_{>3}$ B Phase</td>
<td>Short Circuit</td>
<td>As per DDB#344</td>
</tr>
<tr>
<td>341</td>
<td>$I_{>3}$ C Phase</td>
<td>Short Circuit</td>
<td>As per DDB#345</td>
</tr>
<tr>
<td>342</td>
<td>Start $I_{>3}$</td>
<td>Short Circuit</td>
<td>3rd stage Short Circuit Start, 3 Phase</td>
</tr>
<tr>
<td>343</td>
<td>Start $I_{>3}$ A Ph</td>
<td>Short Circuit</td>
<td>3rd stage Short Circuit Start, A Phase</td>
</tr>
<tr>
<td>344</td>
<td>Start $I_{>3}$ B Ph</td>
<td>Short Circuit</td>
<td>3rd stage Short Circuit Start, B Phase</td>
</tr>
<tr>
<td>345</td>
<td>Start $I_{>3}$ C Ph</td>
<td>Short Circuit</td>
<td>3rd stage Short Circuit Start, C Phase</td>
</tr>
<tr>
<td>346</td>
<td>Trip $I_{>3}$ A Ph</td>
<td>Short Circuit</td>
<td>3rd stage Short Circuit Trip, A Phase</td>
</tr>
<tr>
<td>347</td>
<td>Trip $I_{>3}$ B Ph</td>
<td>Short Circuit</td>
<td>3rd stage Short Circuit Trip, B Phase</td>
</tr>
<tr>
<td>348</td>
<td>Trip $I_{>3}$ C Ph</td>
<td>Short Circuit</td>
<td>3rd stage Short Circuit Trip, C Phase</td>
</tr>
<tr>
<td>349</td>
<td>Trip $I_{>4}$</td>
<td>Short Circuit</td>
<td>4th stage Short Circuit Trip, 3-phase</td>
</tr>
<tr>
<td>350</td>
<td>$I_{>4}$ A Phase</td>
<td>Short Circuit</td>
<td>As per DDB#354</td>
</tr>
<tr>
<td>351</td>
<td>$I_{>4}$ B Phase</td>
<td>Short Circuit</td>
<td>As per DDB#355</td>
</tr>
<tr>
<td>352</td>
<td>$I_{>4}$ C Phase</td>
<td>Short Circuit</td>
<td>As per DDB#356</td>
</tr>
<tr>
<td>353</td>
<td>Start $I_{>4}$</td>
<td>Short Circuit</td>
<td>4th stage Short Circuit Start, 3 Phase</td>
</tr>
<tr>
<td>DDB no.</td>
<td>English text</td>
<td>Source</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>354</td>
<td>Start I>4 A Ph</td>
<td>Short Circuit</td>
<td>4th stage Short Circuit Start, A Phase</td>
</tr>
<tr>
<td>355</td>
<td>Start I>4 B Ph</td>
<td>Short Circuit</td>
<td>4th stage Short Circuit Start, B Phase</td>
</tr>
<tr>
<td>356</td>
<td>Start I>4 C Ph</td>
<td>Short Circuit</td>
<td>4th stage Short Circuit Start, C Phase</td>
</tr>
<tr>
<td>357</td>
<td>Trip I>4 A Ph</td>
<td>Short Circuit</td>
<td>4th stage Short Circuit Trip, A Phase</td>
</tr>
<tr>
<td>358</td>
<td>Trip I>4 B Ph</td>
<td>Short Circuit</td>
<td>4th stage Short Circuit Trip, B Phase</td>
</tr>
<tr>
<td>359</td>
<td>Trip I>4 C Ph</td>
<td>Short Circuit</td>
<td>4th stage Short Circuit Trip, C Phase</td>
</tr>
<tr>
<td>360</td>
<td>CTS-1 Block</td>
<td>CT Supervision</td>
<td>CT Supervision Block for IA/IB/IC (current transformer supervision). CTS-1 Block and CTS-2 Block DDBs can be used to block protection functions.</td>
</tr>
<tr>
<td>361</td>
<td>CTS-2 BLOCK</td>
<td>CT Supervision</td>
<td>VT supervision input - signal from external Miniature Circuit Breaker showing MCB tripped</td>
</tr>
<tr>
<td>362</td>
<td>MCB/VTS</td>
<td>PSL</td>
<td>VT Supervision Fast Block - blocks elements which would otherwise mal-operate immediately after a fuse failure event occurs</td>
</tr>
<tr>
<td>363</td>
<td>VTS Confirmed Block</td>
<td>VT Supervision</td>
<td>VT Supervision Fast Block - blocks elements which would otherwise mal-operate immediately after a fuse failure event occurs</td>
</tr>
<tr>
<td>364</td>
<td>VTS Fast Block</td>
<td>VT Supervision</td>
<td>VT Supervision Fast Block - blocks elements which would otherwise mal-operate immediately after a fuse failure event occurs</td>
</tr>
<tr>
<td>365 to 368</td>
<td>Not Used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>369</td>
<td>Any Start</td>
<td>All Protection</td>
<td>Any Start</td>
</tr>
<tr>
<td>370</td>
<td>Protection Trip</td>
<td>All Protection</td>
<td>Any Protection Trip</td>
</tr>
<tr>
<td>371</td>
<td>Any Trip</td>
<td>All Protection</td>
<td>Any Trip</td>
</tr>
<tr>
<td>372</td>
<td>Start F<1</td>
<td>Underfrequency</td>
<td>1st Stage Under Frequency Start</td>
</tr>
<tr>
<td>373</td>
<td>Start F<2</td>
<td>Underfrequency</td>
<td>2nd Stage Under Frequency Start</td>
</tr>
<tr>
<td>374</td>
<td>Start P<1</td>
<td>Loss of Load</td>
<td>1st Stage Loss Of Load Start</td>
</tr>
<tr>
<td>375</td>
<td>Start P<2</td>
<td>Loss of Load</td>
<td>2nd Stage Loss Of Load Start</td>
</tr>
<tr>
<td>376</td>
<td>Start PF< Lead</td>
<td>Under Power Factor</td>
<td>Power Factor Lead Start</td>
</tr>
<tr>
<td>377</td>
<td>Start PF< Lag</td>
<td>Under Power Factor</td>
<td>Power Factor Lag Start</td>
</tr>
<tr>
<td>378</td>
<td>Start Rev Power</td>
<td>Reverse Power</td>
<td>Reverse Power Start</td>
</tr>
<tr>
<td>379</td>
<td>Start I2>2</td>
<td>Negative sequence O/C</td>
<td>1st stage Negative Sequence O/C Start</td>
</tr>
<tr>
<td>380</td>
<td>Start I2>2</td>
<td>Negative sequence O/C</td>
<td>2nd stage Negative Sequence O/C Start</td>
</tr>
<tr>
<td>381</td>
<td>Start NVD VN>1</td>
<td>Residual O/V NVD</td>
<td>1st stage Residual O/V Start</td>
</tr>
<tr>
<td>382</td>
<td>Start NVD VN>2</td>
<td>Residual O/V NVD</td>
<td>2nd stage Residual O/V Start</td>
</tr>
<tr>
<td>383</td>
<td>V<1 A Phase</td>
<td>Volt Protection</td>
<td>1st stage Undervoltage Start, A Phase</td>
</tr>
<tr>
<td>384</td>
<td>V<1 B Phase</td>
<td>Volt Protection</td>
<td>1st stage Undervoltage Start, B Phase</td>
</tr>
<tr>
<td>385</td>
<td>V<1 C Phase</td>
<td>Volt Protection</td>
<td>1st stage Undervoltage Start, C Phase</td>
</tr>
<tr>
<td>386</td>
<td>V>1 A Phase</td>
<td>Volt Protection</td>
<td>1st stage Overvoltage Start, A Phase</td>
</tr>
<tr>
<td>387</td>
<td>V>1 B Phase</td>
<td>Volt Protection</td>
<td>1st stage Overvoltage Start, B Phase</td>
</tr>
<tr>
<td>388</td>
<td>V>1 C Phase</td>
<td>Volt Protection</td>
<td>1st stage Overvoltage Start, C Phase</td>
</tr>
<tr>
<td>389</td>
<td>V<2 A Phase</td>
<td>Volt Protection</td>
<td>2nd stage Undervoltage Start, A Phase</td>
</tr>
<tr>
<td>390</td>
<td>V<2 B Phase</td>
<td>Volt Protection</td>
<td>2nd stage Undervoltage Start, B Phase</td>
</tr>
<tr>
<td>391</td>
<td>V<2 C Phase</td>
<td>Volt Protection</td>
<td>2nd stage Undervoltage Start, C Phase</td>
</tr>
<tr>
<td>392</td>
<td>V>2 A Phase</td>
<td>Volt Protection</td>
<td>2nd stage Overvoltage Start, A Phase</td>
</tr>
<tr>
<td>393</td>
<td>V>2 B Phase</td>
<td>Volt Protection</td>
<td>2nd stage Overvoltage Start, B Phase</td>
</tr>
<tr>
<td>394</td>
<td>V>2 C Phase</td>
<td>Volt Protection</td>
<td>2nd stage Overvoltage Start, C Phase</td>
</tr>
<tr>
<td>DDB no.</td>
<td>English text</td>
<td>Source</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>395</td>
<td>V2>1 Start</td>
<td>Neg Seq O/V</td>
<td>1st stage Negative Phase Sequence Overvoltage Start</td>
</tr>
<tr>
<td>396</td>
<td>V2>1 Trip</td>
<td>Neg Seq O/V</td>
<td>1st stage Negative Phase Sequence Overvoltage Trip</td>
</tr>
<tr>
<td>397</td>
<td>V2>2 Start</td>
<td>Neg Seq O/V</td>
<td>2nd stage Negative Phase Sequence Overvoltage Start</td>
</tr>
<tr>
<td>398</td>
<td>V2>2 Trip</td>
<td>Neg Seq O/V</td>
<td>2nd stage Negative Phase Sequence Overvoltage Trip</td>
</tr>
<tr>
<td>399</td>
<td>V<1 AB Phase</td>
<td>Stall Detection</td>
<td>Voltage is below ‘Reac Low V Set’ for re-acceleration function, AB phase</td>
</tr>
<tr>
<td>400</td>
<td>V<1 BC Phase</td>
<td>Stall Detection</td>
<td>Voltage is below ‘Reac Low V Set’ for re-acceleration function, BC phase</td>
</tr>
<tr>
<td>401</td>
<td>V<1 CA Phase</td>
<td>Stall Detection</td>
<td>Voltage is below ‘Reac Low V Set’ for re-acceleration function, CA phase</td>
</tr>
<tr>
<td>402</td>
<td>Trip V<1</td>
<td>Stall Detection</td>
<td>During a motor re-acceleration condition when the ‘Reac Time’ timer is timed out and the voltage has not been restored, the relay trips on “V<1 DDB#402”.</td>
</tr>
<tr>
<td>403</td>
<td>Auto Re-Start OK</td>
<td>Stall Detection</td>
<td>When the auto-restart logic is authorized, DDBs “Auto Re-Start #404” and “Auto Re-Start OK #403” are asserted</td>
</tr>
<tr>
<td>404</td>
<td>Auto Re-Start</td>
<td>Stall Detection</td>
<td>When the auto-restart logic is authorized, DDBs “Auto Re-Start #404” and “Auto Re-Start OK #403” are asserted</td>
</tr>
<tr>
<td>405</td>
<td>Auto Re-Start KO</td>
<td>Stall Detection</td>
<td>If voltage is not restored within “Reac Long Time” duration or falls below “High V Set” threshold before “Reac Shed Time” timer has timed out (in case where “Reac Shed Time” timer is set to a value other than zero for sequence start scheme), DDB “Auto Re-Start KO #405 becomes asserted.</td>
</tr>
<tr>
<td>406 to 427</td>
<td>Not Used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>428</td>
<td>LED 1 Con</td>
<td>PSL</td>
<td>Input signal driving LED 1 Red is on (P241 only)</td>
</tr>
<tr>
<td>435</td>
<td>LED 8 Con</td>
<td>PSL</td>
<td>Input signal driving LED 8 Red is on (P241 only)</td>
</tr>
<tr>
<td>436</td>
<td>Timer in 1</td>
<td>Auxiliary Timer In</td>
<td>Input to Auxiliary Timer 1 is on</td>
</tr>
<tr>
<td>451</td>
<td>Timer in 16</td>
<td>Auxiliary Timer In</td>
<td>Input to Auxiliary Timer 16 is on</td>
</tr>
<tr>
<td>452</td>
<td>Timer out 1</td>
<td>Auxiliary Timer out</td>
<td>Output from Auxiliary Timer 1 is on</td>
</tr>
<tr>
<td>467</td>
<td>Timer out 16</td>
<td>Auxiliary Timer out</td>
<td>Output from Auxiliary Timer 16 is on</td>
</tr>
<tr>
<td>468</td>
<td>Fault Recorder Trigger</td>
<td>PSL</td>
<td>Trigger for Fault Recorder</td>
</tr>
<tr>
<td>469</td>
<td>Battery Fail</td>
<td>PSL</td>
<td>Front panel miniature Battery Failure - either battery removed from slot, or low voltage.</td>
</tr>
<tr>
<td>470</td>
<td>Field Volt Fail</td>
<td>PSL</td>
<td>48 V Field Voltage Fail</td>
</tr>
<tr>
<td>471</td>
<td>Comm2 H/W FAIL</td>
<td>Communications</td>
<td>Second Rear Comms port failure</td>
</tr>
<tr>
<td>472</td>
<td>Goose IED Absent</td>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>473</td>
<td>NIC Not Fitted</td>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>474</td>
<td>NIC No Response</td>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>475</td>
<td>NIC Fatal Error</td>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>476</td>
<td>NIC Soft Reload</td>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>477</td>
<td>Bad TCP/IP Cfg</td>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>478</td>
<td>Bad OSI Config</td>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>479</td>
<td>NIC Link Fail</td>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>DDB no.</td>
<td>English text</td>
<td>Source</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------------</td>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>480</td>
<td>NIC SW Mis-Match</td>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>481</td>
<td>IP Addr Conflict</td>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>482-511</td>
<td>Not Used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>512</td>
<td>Virtual Output 1</td>
<td>PSL</td>
<td>Virtual Output 1 - output allows user to control a binary signal which can be mapped via SCADA protocol output to other devices</td>
</tr>
<tr>
<td>543</td>
<td>Virtual Output 32</td>
<td>PSL</td>
<td>Virtual Output 32 - output allows user to control a binary signal which can be mapped via SCADA protocol output to other devices</td>
</tr>
<tr>
<td>544</td>
<td>GOOSE VIP 1</td>
<td>GOOSE Input Command</td>
<td>Virtual Input 1 - allows binary signals that are mapped to virtual inputs to interface into PSL</td>
</tr>
<tr>
<td>575</td>
<td>GOOSE VIP 32</td>
<td>GOOSE Input Command</td>
<td>Virtual Input 32 - allows binary signals that are mapped to virtual inputs to interface into PSL</td>
</tr>
<tr>
<td>576 to 607</td>
<td>Not Used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>608</td>
<td>Control Input 1</td>
<td>Control Input Command</td>
<td>Control Input 1 - for SCADA and menu commands into PSL</td>
</tr>
<tr>
<td>639</td>
<td>Control Input 32</td>
<td>Control Input Command</td>
<td>Control Input 32 - for SCADA and menu commands into PSL</td>
</tr>
<tr>
<td>640</td>
<td>LED1 Red</td>
<td>PSL</td>
<td>Programmable LED 1 Red is on (P242/3 only)</td>
</tr>
<tr>
<td>641</td>
<td>LED1 Grn.</td>
<td>PSL</td>
<td>Programmable LED 1 Green is on (P242/3 only)</td>
</tr>
<tr>
<td>654</td>
<td>LED8 Red</td>
<td>PSL</td>
<td>Programmable LED 8 Red is on (P242/3 only)</td>
</tr>
<tr>
<td>655</td>
<td>LED8 Grn.</td>
<td>PSL</td>
<td>Programmable LED 8 Green is on (P242/3 only)</td>
</tr>
<tr>
<td>656</td>
<td>FnKey LED1 Red</td>
<td>PSL</td>
<td>Programmable Function Key LED 1 Red is on (P242/3 only)</td>
</tr>
<tr>
<td>657</td>
<td>FnKey LED1 Grn.</td>
<td>PSL</td>
<td>Programmable Function Key LED 1 Green is on (P242/3 only)</td>
</tr>
<tr>
<td>674</td>
<td>FnKey LED10 Red</td>
<td>PSL</td>
<td>Programmable Function Key LED 10 Red is on (P345)</td>
</tr>
<tr>
<td>675</td>
<td>FnKey LED10 Grn.</td>
<td>PSL</td>
<td>Programmable Function Key LED 10 Green is on (P242/3 only)</td>
</tr>
<tr>
<td>676</td>
<td>Function Key 1</td>
<td>User Control</td>
<td>Function Key 1 is on. In 'Normal' mode it is high on keypress and in 'Toggle' mode remains high/low on single keypress (P242/3 only)</td>
</tr>
<tr>
<td>685</td>
<td>Function Key 10</td>
<td>User Control</td>
<td>Function Key 10 is on. In 'Normal' mode it is high on keypress and in 'Toggle' mode remains high/low on single keypress (P242/3 only)</td>
</tr>
<tr>
<td>686 to 699</td>
<td>Not Used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>Output Con 1</td>
<td>PSL</td>
<td>Input signal driving Relay 1 is on</td>
</tr>
<tr>
<td>715</td>
<td>Output Con 16</td>
<td>PSL</td>
<td>Input signal driving Relay 16 is on</td>
</tr>
<tr>
<td>716 to 763</td>
<td>Not Used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>740</td>
<td>LED1 Con Red</td>
<td>PSL</td>
<td>Input signal driving LED 1 Red is on (P242/3 only)</td>
</tr>
<tr>
<td>745</td>
<td>LED1 Con Green</td>
<td>PSL</td>
<td>Input signal driving LED 1 Green is on. To make LED 1 Yellow DDB 640 and DDB 641 must on at the same time. (P242/3 only)</td>
</tr>
</tbody>
</table>
Table 1: Description of available logic nodes

1.8 Factory default programmable scheme logic

The following section details the default settings of the PSL.

The P241/2/3 model options are as follows:

<table>
<thead>
<tr>
<th>Model</th>
<th>Opto inputs</th>
<th>Relay outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>P241xxxxxxxxxJ</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>P242xxxxxxxxxK</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>P243xxxxxxxxxK</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

Table 2: Default settings

1.9 Logic input mapping

The default mappings for each of the opto-isolated inputs are as shown in the following tables:

<table>
<thead>
<tr>
<th>Opto-Input number</th>
<th>P241 relay text</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Input L1</td>
<td>L1 CB Closed 3-Ph (52a), LED #1</td>
</tr>
<tr>
<td>2</td>
<td>Input L2</td>
<td>L2 CB Open 3-Ph (52b), LED #2</td>
</tr>
<tr>
<td>3</td>
<td>Input L3</td>
<td>L3 Speed Input, LED #3</td>
</tr>
<tr>
<td>4</td>
<td>Input L4</td>
<td>L4 Emergency Restart</td>
</tr>
<tr>
<td>5</td>
<td>Input L5</td>
<td>L5 Reset Thermal</td>
</tr>
<tr>
<td>6</td>
<td>Input L6</td>
<td>L6 Reset Latches</td>
</tr>
</tbody>
</table>
Table 3: P241 opto inputs default mappings

<table>
<thead>
<tr>
<th>Opto-Input number</th>
<th>P241 relay text</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Input L7</td>
<td>L7 Close</td>
</tr>
<tr>
<td>8</td>
<td>Input L8</td>
<td>L8 Trip</td>
</tr>
</tbody>
</table>

Table 4: P242/3 opto inputs default mappings

<table>
<thead>
<tr>
<th>Opto-Input number</th>
<th>P242/3 relay text</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Input L1</td>
<td>L1 CB Closed 3-Ph (52a), LED #1 (Green)</td>
</tr>
<tr>
<td>2</td>
<td>Input L2</td>
<td>L2 CB Open 3-Ph (52b), LED #1 (Red)</td>
</tr>
<tr>
<td>3</td>
<td>Input L3</td>
<td>L3 Speed Input, LED #3 (Yellow)</td>
</tr>
<tr>
<td>4</td>
<td>Input L4</td>
<td>L4. Not Used</td>
</tr>
<tr>
<td>5</td>
<td>Input L5</td>
<td>L5 Not Used</td>
</tr>
<tr>
<td>6</td>
<td>Input L6</td>
<td>L6 Not Used</td>
</tr>
<tr>
<td>7</td>
<td>Input L7</td>
<td>L7 Not Used</td>
</tr>
<tr>
<td>8</td>
<td>Input L8</td>
<td>L8. Not Used</td>
</tr>
<tr>
<td>9</td>
<td>Input L9</td>
<td>L9 Not Used</td>
</tr>
<tr>
<td>10</td>
<td>Input L10</td>
<td>L10 Not Used</td>
</tr>
<tr>
<td>11</td>
<td>Input L11</td>
<td>L11 Not Used</td>
</tr>
<tr>
<td>12</td>
<td>Input L12</td>
<td>L12 Not Used</td>
</tr>
<tr>
<td>13</td>
<td>Input L13</td>
<td>L13 Not Used</td>
</tr>
<tr>
<td>14</td>
<td>Input L14</td>
<td>L14 Not Used</td>
</tr>
<tr>
<td>15</td>
<td>Input L15</td>
<td>L15 Not Used</td>
</tr>
<tr>
<td>16</td>
<td>Input L16</td>
<td>L16 Not Used</td>
</tr>
</tbody>
</table>

1.10 Relay output contact mapping

The default mappings for each of the relay output contacts are as shown in the following table:

<table>
<thead>
<tr>
<th>Relay contact number</th>
<th>P241 relay text</th>
<th>P241 relay conditioner</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Output R1</td>
<td>Straight Through</td>
<td>R1 Control Close and Auto-Restart</td>
</tr>
<tr>
<td>2</td>
<td>Output R2</td>
<td>Straight Through</td>
<td>R2 Any Protection Start</td>
</tr>
<tr>
<td>3</td>
<td>Output R3</td>
<td>Straight Through</td>
<td>R3 Any Protection Trip, Control Trip</td>
</tr>
<tr>
<td>4</td>
<td>Output R4</td>
<td>Straight Through</td>
<td>R4 Start Protection (Number of hot/cold starts, time between starts), Thermal Trip, 3Ph Volt Alarm</td>
</tr>
<tr>
<td>5</td>
<td>Output R5</td>
<td>N/A</td>
<td>R5 Not Used</td>
</tr>
<tr>
<td>6</td>
<td>Output R6</td>
<td>N/A</td>
<td>R6 Not Used</td>
</tr>
<tr>
<td>7</td>
<td>Output R7</td>
<td>N/A</td>
<td>R7 Not Used</td>
</tr>
</tbody>
</table>

Table 5: P241 relay output contacts default mappings

<table>
<thead>
<tr>
<th>Relay contact number</th>
<th>P242/3 relay text</th>
<th>P242/3 relay conditioner</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Output R1</td>
<td>Straight Through</td>
<td>R1 Control Close and Auto-Restart</td>
</tr>
<tr>
<td>2</td>
<td>Output R2</td>
<td>Straight Through</td>
<td>R2 Any Protection Start</td>
</tr>
<tr>
<td>3</td>
<td>Output R3</td>
<td>Straight Through</td>
<td>R3 Any Protection Trip, Control Trip</td>
</tr>
<tr>
<td>4</td>
<td>Output R4</td>
<td>Straight Through</td>
<td>R4 Start Protection (Number of hot/cold starts, time between starts), Thermal Trip, 3Ph Volt Alarm</td>
</tr>
</tbody>
</table>

Programmable Logic

PL

Table 6: P242/3 relay output contacts default mappings

<table>
<thead>
<tr>
<th>Relay contact number</th>
<th>P242/3 relay text</th>
<th>P242/3 relay conditioner</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Output R5</td>
<td>N/A</td>
<td>R5 Not Used</td>
</tr>
<tr>
<td>6</td>
<td>Output R6</td>
<td>N/A</td>
<td>R6 Not Used</td>
</tr>
<tr>
<td>7</td>
<td>Output R7</td>
<td>N/A</td>
<td>R7 Not Used</td>
</tr>
<tr>
<td>8</td>
<td>Output R8</td>
<td>N/A</td>
<td>R8 Not Used</td>
</tr>
<tr>
<td>9</td>
<td>Output R9</td>
<td>N/A</td>
<td>R9 Not Used</td>
</tr>
<tr>
<td>10</td>
<td>Output R10</td>
<td>N/A</td>
<td>R10 Not Used</td>
</tr>
<tr>
<td>11</td>
<td>Output R11</td>
<td>N/A</td>
<td>R11 Not Used</td>
</tr>
<tr>
<td>12</td>
<td>Output R12</td>
<td>N/A</td>
<td>R12 Not Used</td>
</tr>
<tr>
<td>13</td>
<td>Output R13</td>
<td>N/A</td>
<td>R13 Not Used</td>
</tr>
<tr>
<td>14</td>
<td>Output R14</td>
<td>N/A</td>
<td>R14 Not Used</td>
</tr>
<tr>
<td>15</td>
<td>Output R15</td>
<td>N/A</td>
<td>R15 Not Used</td>
</tr>
<tr>
<td>16</td>
<td>Output R16</td>
<td>N/A</td>
<td>R16 Not Used</td>
</tr>
</tbody>
</table>

Table 7: P241 programmable LED output default mappings

<table>
<thead>
<tr>
<th>LED number</th>
<th>LED input connection/text</th>
<th>Latched</th>
<th>P241 LED function indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LED 1 Red</td>
<td>No</td>
<td>Opto Input 1 (CB Closed, 52a)</td>
</tr>
<tr>
<td>2</td>
<td>LED 2 Red</td>
<td>No</td>
<td>Opto Input 2 (CB Open, 52b)</td>
</tr>
<tr>
<td>3</td>
<td>LED 3 Red</td>
<td>No</td>
<td>Opto Input 3 (Speed Switch)</td>
</tr>
<tr>
<td>4</td>
<td>LED 4 Red</td>
<td>No</td>
<td>Start in Progress</td>
</tr>
<tr>
<td>5</td>
<td>LED 5 Red</td>
<td>No</td>
<td>Re-acceleration in Progress</td>
</tr>
<tr>
<td>6</td>
<td>LED 6 Red</td>
<td>No</td>
<td>Start Successful</td>
</tr>
<tr>
<td>7</td>
<td>LED 7 Red</td>
<td>No</td>
<td>Re-acceleration Low Voltage Detected</td>
</tr>
<tr>
<td>8</td>
<td>LED 8 Red</td>
<td>No</td>
<td>Start Protection (Number of hot/cold starts, time between starts), Thermal Trip, 3Ph Volt Alarm</td>
</tr>
</tbody>
</table>

Note: A fault record can be generated by connecting one or a number of contacts to the “Fault Record Trigger” in PSL. It is recommended that the triggering contact be ‘self reset’ and not a latching. If a latching contact were chosen the fault record would not be generated until the contact had fully reset.

1.11 Programmable LED output mapping

The default mappings for each of the programmable LEDs are shown in the following table for the P241 which have red LEDs:

Table 8: P242/3 LED function indication

<table>
<thead>
<tr>
<th>LED number</th>
<th>LED input connection/text</th>
<th>Latched</th>
<th>P242/3 LED function indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LED 1 Green</td>
<td>No</td>
<td>Opto Input 1 (CB Closed, 52a)</td>
</tr>
<tr>
<td>1</td>
<td>LED 1 Red</td>
<td>No</td>
<td>Opto Input 2 (CB Open, 52b)</td>
</tr>
<tr>
<td>2</td>
<td>LED 2 Green</td>
<td>No</td>
<td>Auto Restart OK</td>
</tr>
<tr>
<td>2</td>
<td>LED 2 Red</td>
<td>No</td>
<td>Auto Restart Fail</td>
</tr>
<tr>
<td>2</td>
<td>LED2 Yellow</td>
<td>No</td>
<td>Auto Restart in progress</td>
</tr>
<tr>
<td>3</td>
<td>LED 3 Yellow</td>
<td>No</td>
<td>Opto Input 3 (Speed Switch)</td>
</tr>
<tr>
<td>4</td>
<td>LED 4 Yellow</td>
<td>No</td>
<td>Start in Progress</td>
</tr>
<tr>
<td>5</td>
<td>LED 5 Yellow</td>
<td>No</td>
<td>Re-acceleration in Progress</td>
</tr>
</tbody>
</table>
Table 8: P242/3 programmable LED default mappings

<table>
<thead>
<tr>
<th>LED number</th>
<th>LED input connection/text</th>
<th>Latched</th>
<th>P242/3 LED function indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>LED 6 Green</td>
<td>No</td>
<td>Start Successful</td>
</tr>
<tr>
<td>7</td>
<td>LED 7 Yellow</td>
<td>No</td>
<td>Re-acceleration Low Voltage Detected</td>
</tr>
<tr>
<td>8</td>
<td>LED 8 Red</td>
<td>No</td>
<td>Start Protection (Number of hot/cold starts, time between starts), Thermal Trip, 3Ph Volt Alarm</td>
</tr>
<tr>
<td>9</td>
<td>FnKey LED1 (Yellow)</td>
<td>N/A</td>
<td>Emergency Restart</td>
</tr>
<tr>
<td>10</td>
<td>FnKey LED2 (Yellow)</td>
<td>N/A</td>
<td>Trip</td>
</tr>
<tr>
<td>11</td>
<td>FnKey LED3 (Yellow)</td>
<td>N/A</td>
<td>Close</td>
</tr>
<tr>
<td>12</td>
<td>FnKey LED4</td>
<td>N/A</td>
<td>Not Used</td>
</tr>
<tr>
<td>13</td>
<td>FnKey LED5 (Red)</td>
<td>N/A</td>
<td>Setting Group</td>
</tr>
<tr>
<td>14</td>
<td>FnKey LED6</td>
<td>N/A</td>
<td>Not Used</td>
</tr>
<tr>
<td>15</td>
<td>FnKey LED7</td>
<td>N/A</td>
<td>Not Used</td>
</tr>
<tr>
<td>16</td>
<td>FnKey LED8 (Yellow)</td>
<td>N/A</td>
<td>Reset Thermal</td>
</tr>
<tr>
<td>17</td>
<td>FnKey LED9 (Yellow)</td>
<td>N/A</td>
<td>Reset Latches</td>
</tr>
<tr>
<td>18</td>
<td>FnKey LED10 (Yellow)</td>
<td>N/A</td>
<td>Disturbance Recorder Trigger</td>
</tr>
</tbody>
</table>

1.12 Fault recorder start mapping
The default mapping for the signal which initiates a fault record is shown in the following table:

<table>
<thead>
<tr>
<th>Initiating signal</th>
<th>Fault trigger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Trip (DDB 371)</td>
<td>Initiate fault recording from any protection trip</td>
</tr>
</tbody>
</table>

Table 9: Default fault record initiation
Figure 2: P241 Opto Input Mappings
Figure 3: P241 Output Relay Mappings
Figure 4: P241 LED Mappings
Figure 5: Fault Recorder Trigger Mapping

Figure 6: P242/3 Opto Input Mappings
Figure 7: P242/3 Output Relay Mappings
Figure 8: P242/3 LED Mappings
Figure 9: Fault Recorder Trigger Mapping

Figure 10: Function Key Mapping
MEASUREMENTS AND RECORDING
Measurements and Recording

(MR) 8-2

MiCOM P40 Agile P241, P242, P243
CONTENTS

1 MEASUREMENTS AND RECORDING 5

1.1 Introduction 5

1.2 Event & fault records 5

1.2.1 Types of event 8

1.2.1.1 Change of state of opto-isolated inputs 8

1.2.1.2 Change of state of one or more output relay contacts 8

1.2.1.3 Relay alarm conditions 8

1.2.1.4 Protection element starts and trips 10

1.2.1.5 General (platform) events 10

1.2.1.6 Fault records 10

1.2.1.7 Maintenance reports 10

1.2.1.8 Setting changes 10

1.2.2 Resetting of event/fault records 11

1.2.3 Viewing event records using MiCOM S1 Studio support software 11

1.2.4 Event filtering 12

1.3 Disturbance recorder 13

1.4 Measurements 15

1.4.1 Measured voltages and currents 15

1.4.2 Sequence voltages and currents 15

1.4.3 Power and energy quantities 15

1.4.4 Rms. voltages and currents 15

1.4.5 Demand values 15

1.4.6 Settings 16

1.4.7 Measurement display quantities 16

1.4.8 Measurements 1 17

1.4.9 Measurements 2 18

1.4.10 Measurements 3 (product specific measurements) 19

1.4.11 Measurements 4 (product specific measurements) 20

TABLES

Table 1: Local viewing of records 6

Table 2: Full list of available Start and Trip elements. 8

Table 3: Examples of some of the alarm conditions and how they appear in the event list 9

Table 4: An example of a general/platform event and how it appears 10
Table 5: Examples of how setting changes are logged 11
Table 6: Filtering of event logs 13
Table 7: Disturbance Record (DR) settings 14
Table 8: Available measurement entities and corresponding settings 17
Table 9: List of Measurement 1 menu 18
Table 10: List of Measurement 2 menu 19
Table 11: List of Measurement 3 menu 20
Table 12: List of Measurement 4 menu 21
1 MEASUREMENTS AND RECORDING

1.1 Introduction
The P24x is equipped with integral measurements, event, fault and disturbance recording facilities suitable for analysis of complex system disturbances.

The relay is flexible enough to allow for the programming of these facilities to specific user application requirements and are discussed below.

1.2 Event & fault records
The relay records and time tags up to 250 events and stores them in non-volatile (battery backed up) memory. This enables the system operator to establish the sequence of events that occurred within the relay following a particular power system condition, switching sequence. When the available space is used up, the oldest event is automatically overwritten by the new one.

The real time clock in the relay provides the time tag to each event, to a resolution of 1 ms.

The event records can be viewed either from the frontplate LCD or remotely using the communications ports.

For local viewing on the LCD event, fault and maintenance records, select the VIEW RECORDS menu column. See the following table:

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>View Records</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select Event</td>
<td>0</td>
<td>0</td>
<td>249</td>
</tr>
</tbody>
</table>

Setting range from 0 to 249. This selects the required event record from the possible 250 that may be stored. A value of 0 corresponds to the latest event and so on.

<table>
<thead>
<tr>
<th>Event Type</th>
<th>(From record)</th>
<th>Latched alarm active, Latched alarm inactive, Self reset alarm active, Self reset alarm inactive, Relay contact event, Opto-isolated input event, Protection event, General event, Fault record event, Maintenance record event</th>
</tr>
</thead>
</table>

Indicates the type of event.

Time and Date Data

Time & Date Stamp for the event given by the internal Real Time Clock.

Event text Data

Up to 32 Character description of the Event.

Event Value Data

32 bit binary string indicating ON or OFF (1 or 0) status of relay contact or opto input or alarm or protection event depending on event type. Unsigned integer is used for maintenance records.

<table>
<thead>
<tr>
<th>Select Fault</th>
<th>0</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
</table>

Setting range from 0 to 4. This selects the required fault record from the possible 5 that may be stored. A value of 0 corresponds to the latest fault and so on.

Start elements 00000000000000000000000000000000

32 bit binary string gives status of first 32 start signals. If more Start elements need to be viewed, extracted events (or DR if properly configured) show all Start elements. Refer to table 2 for the full list of available Start elements.

Trip elements 1 00000000000000000000000000000000

32 bit binary string gives status of first 32 trip signals. Refer to table 2 for the full list of available Start elements.

Trip elements 2 00000000000000000000000000000000

32 bit binary string gives status of second 32 trip signals. Refer to table 2 for the full list of available Start elements.

Faulted Phase 00000000
Measurements and Recording

Table 1: Local viewing of records

For extraction from a remote source using communications, see the SCADA Communications chapter (P24x/EN SC).

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays the faulted phase as a binary string, bits 0 – 8 = Start A/B/C/N Trip A/B/C/N.</td>
<td>00000000000000000000000000000000</td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>Fault Alarms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This menu cell displays the status of the 32 fault alarms as a binary string, a 1 indicating an ON state and 0 an OFF state.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active setting group 1-2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fault Time</td>
<td>Data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fault Time and Date</td>
<td>Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Frequency</td>
<td>Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Frequency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The following cells provide measurement information of the fault: IA, IB, IC, VAB, VBC, VCA, VAN, IN Derived, IN, Thermal State, I2, 3Ph Power Factor, IN>PO, VN, 3-Phase Active Power, RTD 1-10 Temperature, IA2, IB2, IC2, IA/IB/IC Differential, IA/IB/IC Bias, Analog Input 1-4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select Report</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Setting range from 0 to 4. This selects the required maintenance report from the possible 5 that may be stored. A value of 0 corresponds to the latest report and so on.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report Text</td>
<td>Data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up to 32 Character description of the occurrence.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance Type</td>
<td>Data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance record fault type. This will be a number defining the fault type.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance Data</td>
<td>Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error code associated with the failure found by the self monitoring. The Maint Type and Data cells are numbers representative of the occurrence. They form a specific error code which should be quoted in any related correspondence to Report Data.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset Indication</td>
<td>No</td>
<td>No/Yes</td>
<td>N/A</td>
</tr>
<tr>
<td>Resets latched LEDs and latched relay contacts provided the relevant protection element has reset.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Local viewing of records

For extraction from a remote source using communications, see the SCADA Communications chapter (P24x/EN SC).

<table>
<thead>
<tr>
<th>Started Elements(Product Specific)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Start</td>
</tr>
<tr>
<td>Start ICC>1</td>
</tr>
<tr>
<td>Start ICC>2</td>
</tr>
<tr>
<td>Start ISEF>1</td>
</tr>
<tr>
<td>Start ISEF>2</td>
</tr>
<tr>
<td>Start IN>1</td>
</tr>
<tr>
<td>Start IN>2</td>
</tr>
<tr>
<td>Start P0></td>
</tr>
<tr>
<td>Start FFail1</td>
</tr>
<tr>
<td>Start FFail2</td>
</tr>
<tr>
<td>Start ICC>3</td>
</tr>
<tr>
<td>Start ICC>4</td>
</tr>
<tr>
<td>Start V2>1</td>
</tr>
<tr>
<td>Start V2>2</td>
</tr>
<tr>
<td>Start Vdip</td>
</tr>
<tr>
<td>Start FFail2</td>
</tr>
<tr>
<td>Triped Elements [1] (Product Specific)</td>
</tr>
<tr>
<td>Event</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>Any Trip</td>
</tr>
<tr>
<td>Trip Short circuit > 1</td>
</tr>
<tr>
<td>Trip Short circuit > 2</td>
</tr>
<tr>
<td>Trip I2 > 1</td>
</tr>
<tr>
<td>Trip I2 > 2</td>
</tr>
<tr>
<td>Trip ISEF > 1</td>
</tr>
<tr>
<td>Trip ISEF > 2</td>
</tr>
<tr>
<td>Trip IN > 1</td>
</tr>
<tr>
<td>Trip IN > 2</td>
</tr>
<tr>
<td>Trip NVD VN > 1</td>
</tr>
<tr>
<td>Trip NVD VN > 2</td>
</tr>
<tr>
<td>Trip P0</td>
</tr>
<tr>
<td>Thermal Trip</td>
</tr>
<tr>
<td>Prolonged Start</td>
</tr>
<tr>
<td>Locked rotor - starting</td>
</tr>
<tr>
<td>Locked rotor - running</td>
</tr>
<tr>
<td>Loss of load - P < 1</td>
</tr>
<tr>
<td>Loss of load - P < 2</td>
</tr>
<tr>
<td>Under power factor - PF < Lead</td>
</tr>
<tr>
<td>Under power factor - PF < Lag</td>
</tr>
<tr>
<td>Reverse power</td>
</tr>
<tr>
<td>Trip V < 1</td>
</tr>
<tr>
<td>Trip V < 2</td>
</tr>
<tr>
<td>Trip V > 1</td>
</tr>
<tr>
<td>Trip V > 2</td>
</tr>
<tr>
<td>Trip F < 1</td>
</tr>
<tr>
<td>Trip F < 2</td>
</tr>
<tr>
<td>Trip differential</td>
</tr>
<tr>
<td>Trip CB Fail 1</td>
</tr>
<tr>
<td>Trip CB Fail 2</td>
</tr>
<tr>
<td>External trip</td>
</tr>
<tr>
<td>Tripped Elements [2]</td>
</tr>
<tr>
<td>(Product Specific)</td>
</tr>
<tr>
<td>Trip RTD 1</td>
</tr>
<tr>
<td>Trip RTD 2</td>
</tr>
<tr>
<td>Trip RTD 3</td>
</tr>
<tr>
<td>Trip RTD 4</td>
</tr>
<tr>
<td>Trip RTD 5</td>
</tr>
<tr>
<td>Trip RTD 6</td>
</tr>
<tr>
<td>Trip RTD 7</td>
</tr>
<tr>
<td>Trip RTD 8</td>
</tr>
<tr>
<td>Trip RTD 9</td>
</tr>
<tr>
<td>Trip RTD 10</td>
</tr>
<tr>
<td>Trip Clio 1</td>
</tr>
<tr>
<td>Trip Clio 2</td>
</tr>
<tr>
<td>Trip Clio 3</td>
</tr>
<tr>
<td>Trip Clio 4</td>
</tr>
<tr>
<td>Trip Ffail 1</td>
</tr>
<tr>
<td>Trip Ffail 2</td>
</tr>
</tbody>
</table>
1.2.1 Types of event
An event may be a change of state of a control input or output relay, an alarm condition, or a setting change. The following sections show the various items that constitute an event:

1.2.1.1 Change of state of opto-isolated inputs
If one or more of the opto (logic) inputs has changed state since the last time the protection algorithm ran, the new status is logged as an event. When this event is selected to be viewed on the LCD, three applicable cells appear, as shown below:

<table>
<thead>
<tr>
<th>Time & date of event</th>
<th>"LOGIC INPUTS"</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>"Event Value 0101010101010101"</td>
</tr>
</tbody>
</table>

The Event Value is an 8, or 16-bit word showing the status of the opto inputs, where the least significant bit (extreme right) corresponds to opto input 1. The same information is present if the event is extracted and viewed using a PC.

1.2.1.2 Change of state of one or more output relay contacts
If one or more of the output relay contacts have changed state since the last time the protection algorithm ran, the new status is logged as an event. When this event is selected to be viewed on the LCD, three cells appear, as shown below:

<table>
<thead>
<tr>
<th>Time & date of event</th>
<th>"OUTPUT CONTACTS"</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>"Event Value 010101010101010101010"</td>
</tr>
</tbody>
</table>

The Event Value is a 7 or 16 bit word showing the status of the output contacts, where the least significant bit (extreme right) corresponds to output contact 1. The same information is present if the event is extracted and viewed using a PC.

1.2.1.3 Relay alarm conditions
Any alarm conditions generated by the relays are logged as individual events. The following table shows examples of some of the alarm conditions and how they appear in the event list:

<table>
<thead>
<tr>
<th>Alarm condition</th>
<th>Resulting event</th>
<th>Event text</th>
<th>Event value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm Status 1 (Alarms 1 - 32)</td>
<td></td>
<td></td>
<td>Bit position 2 in 32 bit field</td>
</tr>
<tr>
<td>General Alarm</td>
<td>General Alarm ON/OFF</td>
<td></td>
<td>Bit position 3 in 32 bit field</td>
</tr>
<tr>
<td>Protection Disabled</td>
<td>Prot’n Disabled ON/OFF</td>
<td></td>
<td>Bit position 4 in 32 bit field</td>
</tr>
<tr>
<td>Frequency Out of Range</td>
<td>Freq out of Range ON/OFF</td>
<td></td>
<td>Bit position 5 in 32 bit field</td>
</tr>
<tr>
<td>3Phases Voltage Alarm</td>
<td>3Ph Volt. Alarm ON/OFF</td>
<td></td>
<td>Bit position 6 in 32 bit field</td>
</tr>
<tr>
<td>Thermal Alarm</td>
<td>Thermal Alarm ON/OFF</td>
<td></td>
<td>Bit position 7 in 32 bit field</td>
</tr>
<tr>
<td>Thermal Lockout</td>
<td>Thermal Lockout ON/OFF</td>
<td></td>
<td>Bit position 8 in 32 bit field</td>
</tr>
<tr>
<td>Time Between start</td>
<td>Time Between start ON/OFF</td>
<td></td>
<td>Bit position 9 in 32 bit field</td>
</tr>
<tr>
<td>Hot start Number</td>
<td>Hot start Number ON/OFF</td>
<td></td>
<td>Bit position 10 in 32 bit field</td>
</tr>
<tr>
<td>Cold start Number</td>
<td>Cold start Number ON/OFF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3: Examples of some of the alarm conditions and how they appear in the event list

Table 3 shows the abbreviated description given to the various alarm conditions and a corresponding value between 0 and 31. This value is appended to each alarm event in a similar way as for the input and output events previously described. It is used by the event extraction software, such as MiCOM S1 Studio, to identify the alarm and is therefore invisible if the event is viewed on the LCD. Either ON or OFF is shown after the description to signify whether the particular condition has become operated or has reset.

The User Alarms can be operated from an opto input or a control input using the PSL. They can be useful to give an alarm LED and message on the LCD and an alarm indication through the communications of an external condition, for example trip circuit supervision.
alarm, rotor earth fault alarm. Label the user alarm in the setting file in MiCOM S1 Studio to give a more meaningful description on the LCD.

1.2.1.4 Protection element starts and trips
Any operation of protection elements, (either a start or a trip condition) is logged as an event record, consisting of a text string indicating the operated element and an event value. Again, this value is intended for use by the event extraction software, such as MiCOM S1 Studio, rather than for the user, and is therefore invisible when the event is viewed on the LCD.

1.2.1.5 General (platform) events
Several events come under the heading of General Events. An example is shown in the following table.

<table>
<thead>
<tr>
<th>Nature of event</th>
<th>Displayed text in event record</th>
<th>Displayed value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1 password modified, either from user interface, front or rear port.</td>
<td>PW1 modified UI, F, R or R2</td>
<td>0 UI=6, F=11, R=16, R2=38</td>
</tr>
</tbody>
</table>

Table 4: An example of a general/platform event and how it appears

1.2.1.6 Fault records
Each time a fault record is generated an event is created. The event states that a fault record was generated with a corresponding time stamp.

You can view the fault record in the Select Fault cell further down the VIEW RECORDS column, which is selectable from up to 5 records. These records consist of fault flags, fault location, fault measurements etc.

Note: The time stamp given in the fault record itself will be more accurate than the corresponding stamp given in the event record as the event is logged some time after the actual fault record is generated.

The fault record is triggered from the Fault REC. TRIG. (DDB468) signal assigned in the default programmable scheme logic to Any Trip (DDB371) signal. The fault measurements in the fault record are given at the time of the protection start. The fault recorder does not stop recording until any start (DDB 369) or the any trip signals (DDB 371) resets to record all the protection flags during the fault.

Any signal connected to the Fault Record Trigger signal can be ‘self reset’ and not latching. If a latching contact/signal was connected to the trigger the fault record would not be generated until the contact/signal had fully reset.

1.2.1.7 Maintenance reports
Internal failures detected by the self-monitoring circuitry, such as watchdog failure and field voltage failure are logged in a maintenance report. The maintenance report holds up to 5 such ‘events’ and is accessed from the Select Report cell at the bottom of the VIEW RECORDS column.

Each entry consists of a self explanatory text string and a Type and Data cell, which is explained in the menu extract at the beginning of this section.

Each time a Maintenance report is generated an event is created. The event states that a report was generated with a corresponding time stamp.

1.2.1.8 Setting changes
Changes to any setting in the relay are logged as an event. Two examples are shown in the following table:

<table>
<thead>
<tr>
<th>Type of setting change</th>
<th>Displayed text in event record</th>
<th>Displayed value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control/Support Setting</td>
<td>C & S Changed</td>
<td>22</td>
</tr>
<tr>
<td>Group # Change</td>
<td>Group # Changed</td>
<td>#</td>
</tr>
</tbody>
</table>

Where # = 1 to 2
Measurements and Recording

MiCOM P40 Agile P241, P242, P243

Table 5: Examples of how setting changes are logged

Note: Control/Support settings are communications, measurement, CT/VT ratio settings etc, which are not duplicated within the two setting groups. When any of these settings are changed, the event record is created simultaneously. However, changes to protection or disturbance recorder settings will only generate an event once the settings have been confirmed at the 'setting trap'.

1.2.2 Resetting of event/fault records
Use the RECORD CONTROL column to delete the event, fault or maintenance reports.

1.2.3 Viewing event records using MiCOM S1 Studio support software
When the event records are extracted and viewed on a PC they look slightly different than when viewed on the LCD. The following shows an example of how various events appear when displayed using MiCOM S1 Studio:

- Thursday 23 August 2001 16:00:36.501 CB Status Aalarm ON

 ALSTOM: MiCOM P242
 Model Number: P242214C2M0600 K
 Address: 001 Column: 00 Row: 50
 Event Type: Alarm event
 Event Value: 00000000000000000001000000000000
 OFF 0 External Trip
 OFF 1 Field Volt Fail
 OFF 2 F Out of Range
 OFF 3 3 Ph Volt Alarm
 OFF 4 Thermal Alarm
 OFF 5 Thermal Lockout
 OFF 6 Time Between Start
 OFF 7 Hot Start Nb
 OFF 8 Cold Start Nb
 OFF 9 Man CB Trip Fail
 OFF 10 Man CB Cls Fail
 ON 11 CB Status Alarm
 OFF 12 I^ Maint Alarm
 OFF 13 CB Ops Maint
 OFF 14 CB Op Time Maint
 OFF 15 3 Ph Watt Alarm
 OFF 16 3 Ph Var Alarm
 OFF 17 Invalid Set. Grp
 OFF 18 Prot’n Disabled
 OFF 19 RTD 1 Alarm
 OFF 20 RTD 2 Alarm
OFF 21 RTD 3 Alarm
OFF 22 RTD 4 Alarm
OFF 23 RTD 5 Alarm
OFF 24 RTD 6 Alarm
OFF 25 RTD 7 Alarm
OFF 26 RTD 8 Alarm
OFF 27 RTD 9 Alarm
OFF 28 RTD 10 Alarm
OFF 29 RTD Short Cct
OFF 30 RTD Open Cct
OFF 31 RTD Data Error

- Friday 24 August 20011 07:32:28.634 Output Contacts

ALSTOM: MiCOM P242
Model Number: P242214C2M0600 K
Address: 001 Column: 00 Row: 21
Event Type: Device output changed state
Event Value: 0000000000000100

The first line gives the description and time stamp for the event, while the additional information that is displayed below may be collapsed using the +/- symbol.

1.2.4 Event filtering
Event reporting can be disabled from all interfaces that supports setting changes. The settings that control the various types of events are in the record control column. The effect of setting each to disabled is as follows:
Measurements and Recording

P24x/EN MR/I72

MiCOM P40 Agile P241, P242, P243

Table 6: Filtering of event logs

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Available settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECORD CONTROL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear Events</td>
<td>No</td>
<td>No or Yes</td>
</tr>
<tr>
<td>Selecting Yes will cause the existing event log to be cleared and an event will be generated indicating that the events have been erased.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear Faults</td>
<td>No</td>
<td>No or Yes</td>
</tr>
<tr>
<td>Selecting Yes will cause the existing fault records to be erased from the relay.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear Test Log</td>
<td>No</td>
<td>No or Yes</td>
</tr>
<tr>
<td>Selecting Yes will cause the existing maintenance records to be erased from the relay.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alarm Event</td>
<td>No</td>
<td>No/Yes</td>
</tr>
<tr>
<td>Disabling this setting means that no event will be generated for all alarms.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Event</td>
<td>No</td>
<td>No/Yes</td>
</tr>
<tr>
<td>Disabling this setting means that no event will be generated for any change in relay output contact state.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opto Input Event</td>
<td>No</td>
<td>No/Yes</td>
</tr>
<tr>
<td>Disabling this setting means that no event will be generated for any change in logic input state.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relay Sys Event</td>
<td>No</td>
<td>No/Yes</td>
</tr>
<tr>
<td>Disabling this setting means that no General Events will be generated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fault Rec Event</td>
<td>No</td>
<td>No/Yes</td>
</tr>
<tr>
<td>Disabling this setting means that no event will be generated for any fault that produces a fault record.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maint. Rec Event</td>
<td>No</td>
<td>No/Yes</td>
</tr>
<tr>
<td>Disabling this setting means that no event will be generated for any maintenance records.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protection Event</td>
<td>No</td>
<td>No/Yes</td>
</tr>
<tr>
<td>Disabling this setting means that no event will be generated for any operation of the protection elements.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDB 31 - 0</td>
<td>11111111111111111111111111111111</td>
<td></td>
</tr>
<tr>
<td>32 bit setting to enable or disable the event recording for DDBs 0-31. For each bit 1 = event recording Enabled, 0 = event recording Disabled.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDB 1022 - 992</td>
<td>11111111111111111111111111111111</td>
<td></td>
</tr>
<tr>
<td>32 bit setting to enable or disable the event recording for DDBs 1022 – 992. For each bit 1 = event recording Enabled, 0 = event recording Disabled. There are similar cells showing 32 bit binary strings for all DDBs from 0 – 1022. The first and last 32 bit binary strings only are shown here.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear Dist Recs</td>
<td>No</td>
<td>No/Yes</td>
</tr>
<tr>
<td>Clears all stored disturbance records from the relay</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Some occurrences will result in more than one type of event, for example a battery failure will produce an alarm event and a maintenance record event.

If the Protection Event setting is Enabled a further set of settings is revealed which allow the event generation by individual DDB signals to be enabled or disabled.

1.3 Disturbance recorder

The integral disturbance recorder has an area of memory specifically set aside for record storage. The number of records that may be stored by the relay is dependent on the selected recording duration. The relay can typically store a minimum of 50 records, each of 1.5 seconds duration (8 analogue channels and 32 digital channels). However, VDEW relays have the same total record length but the VDEW protocol dictates that only 8 records can be extracted through the rear port. Disturbance records continue to record until the available memory is exhausted. The oldest record(s) are then overwritten to make space for the newest ones.

The recorder stores actual samples that are taken at a rate of 24 samples per cycle.
Each disturbance record consists of a maximum of 8 analog data channels for P241/2/3 and thirty-two digital data channels. The relevant CT and VT ratios for the analog channels are also extracted to enable scaling to primary quantities.

Note: If a CT ratio is set less than unity the relay will choose a scaling factor of zero for the appropriate channel.

The **DISTURBANCE RECORDER** menu column is shown in the following table:

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTURB RECORDER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td>1.5 s</td>
<td>0.1 s</td>
<td>10.5 s</td>
</tr>
<tr>
<td>Overall recording time setting.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigger Position</td>
<td>30%</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>Trigger Mode</td>
<td>Single</td>
<td>Single or Extended</td>
<td></td>
</tr>
<tr>
<td>Analog. Channel 1</td>
<td>VAN</td>
<td>VA, VB, VC, IA, IB, IC, IN, IA-2, IB-2, IC-2, VAB, VBC, VN, VAN</td>
<td></td>
</tr>
<tr>
<td>Analog. Channel 2</td>
<td>VBN</td>
<td>As above</td>
<td></td>
</tr>
<tr>
<td>Analog. Channel 3</td>
<td>VCN</td>
<td>As above</td>
<td></td>
</tr>
<tr>
<td>Analog. Channel 4</td>
<td>IA</td>
<td>As above</td>
<td></td>
</tr>
<tr>
<td>Analog. Channel 5</td>
<td>IB</td>
<td>As above</td>
<td></td>
</tr>
<tr>
<td>Analog. Channel 6</td>
<td>IC</td>
<td>As above</td>
<td></td>
</tr>
<tr>
<td>Analog. Channel 7</td>
<td>IN</td>
<td>As above</td>
<td></td>
</tr>
<tr>
<td>Analog. Channel 8</td>
<td>IN</td>
<td>As above</td>
<td></td>
</tr>
<tr>
<td>Digital Input 1 to 32</td>
<td>Relays 1 to 12 and Opto’s 1 to 12</td>
<td>Any of 16 O/P Contacts or Any of 16 Opto Inputs or Internal Digital Signals</td>
<td></td>
</tr>
</tbody>
</table>

The pre and post fault recording times are set by a combination of the **Duration** and **Trigger Position** cells. **Duration** sets the overall recording time and the **Trigger Position** sets the trigger point as a percentage of the duration. For example, the default settings show that the overall recording time is set to 1.5 s with the trigger point being at 33.3% of this, giving 0.5 s pre-fault and 1 s post-fault recording times.

If a further trigger occurs while a recording is taking place, the recorder will ignore the trigger if the **Trigger Mode** is set to **Single**. However, if this has been set to **Extended** the post trigger timer will be reset to zero, extending the recording time.

The menu shows each of the analog channels is selectable from the available analog inputs to the relay. The digital channels may be mapped to any of the opto isolated inputs or output contacts, in addition to a number of internal relay digital signals, such as protection starts, LEDs etc.

| Input 1 to 32 Trigger | No Trigger except Dedicated Trip Relay O/P’s which are set to Trigger Edge +/- | No Trigger, Trigger Edge +/-, Trigger Edge +/- |

Any of the digital channels may be selected to trigger the disturbance recorder on either a low to high (+/-) or a high to low (+/-) transition.

Table 7: Disturbance Record (DR) settings
selected to trigger the disturbance recorder on either a low to high (-/+ or a high to low (+/-) transition, via the Input Trigger cell. The default trigger settings are that any dedicated trip output contacts, such as relay 3, trigger the recorder.

It is not possible to view the disturbance records locally using the LCD; they must be extracted using suitable software such as MiCOM S1 Studio. This process is fully explained in the SCADA Communications chapter, *P24x/EN SC*.

1.4 Measurements

The relay produces a variety of both directly measured and calculated power system quantities. These measurement values are updated each second basis and can be viewed in the Measurements columns (up to four) of the relay or through MiCOM S1 Studio Measurement viewer. The P24x relay is able to measure and display the following quantities as summarized.

- Phase Voltages and Currents
- Phase to Phase Voltage and Currents
- Sequence Voltages and Currents
- Power and Energy Quantities
- Rms. Voltages and Currents
- Peak and Fixed Demand Values

There are also measured values from the protection functions, which are also displayed under the measurement columns of the menu; these are described in the section on the relevant protection function.

1.4.1 Measured voltages and currents

The relay produces both phase-to-ground and phase-to-phase voltage and current values. They are produced directly from the DFT (Discrete Fourier Transform) used by the relay protection functions and present both magnitude and phase angle measurement.

1.4.2 Sequence voltages and currents

Sequence quantities are produced by the relay from the measured Fourier values; these are displayed as magnitude values.

1.4.3 Power and energy quantities

Using the measured voltages and currents the relay calculates the apparent, real and reactive power quantities. These are produced as three-phase values based on the sum of the three individual phase values. In addition to the measured power quantities the relay calculates a three-phase power factor.

These power values are also used to increment the total real and reactive energy measurements. Separate energy measurements are maintained for the total exported and imported energy. The energy measurements are incremented up to maximum values of 1000 GWhr or 1000 GVARhr at which point they will reset to zero, it is also possible to reset these values using the menu or remote interfaces using the reset demand cell.

1.4.4 Rms. voltages and currents

Rms. phase voltage and current values are calculated by the relay using the sum of the samples squared over a cycle of sampled data.

1.4.5 Demand values

The relay produces fixed, rolling and peak demand values. Using the reset demand menu cell it is possible to reset these quantities from the user interface or the remote communications.

Fixed demand values

The fixed demand value is the average value of a quantity over the specified interval; values are produced for each phase current and for three phase real and reactive power. The fixed
demand values displayed by the relay are those for the previous interval, the values are
updated at the end of the fixed demand period.

Peak demand values

Peak demand values are produced for each phase current and the real and reactive power
quantities. These display the maximum value of the measured quantity since the last reset
of the demand values.

1.4.6 Settings

The following settings under the heading MEASUREMENT SETUP can be used to configure
the relay measurement function.

1.4.7 Measurement display quantities

There are three Measurement columns available in the relay for viewing of measurement
quantities. These can also be viewed with MiCOM S1 Studio (see MiCOM Px40 –
Monitoring section of the MiCOM S1 Studio User Manual) and are shown below:

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default settings</th>
<th>Available settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEASUREMENT SETUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default Display</td>
<td>Description</td>
<td>3Ph + N Current/3Ph Voltage/Power/Date and Time/Description/Plant Reference/Frequency/Thermal State</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This setting can be used to select the default display from a range of options, note that it is also
possible to view the other default displays whilst at the default level using the and keys.
However once the 15 minute timeout elapses the default display will revert to that selected by this
setting.

Local Values	Primary	Primary/Secondary
This setting controls whether measured values via the front panel user interface and the front courier		
 port are displayed as primary or secondary quantities. |

Remote Values	Primary	Primary/Secondary
This setting controls whether measured values via the rear communication port are displayed as		
 primary or secondary quantities. |

Measurement Ref. | VA | VA/ VB/ VC/ IA/ IB/ IC |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Using this setting the phase reference for all angular measurements by the relay can be selected.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fix Dem Period | 30 minutes | 1 to 99 minutes step 1 minute |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>This setting defines the length of the fixed demand window.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alarm Fix Dem | Invisible | Invisible/Visible |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sets the Alarm Fix Demand Status menu visible in the relay settings.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3Ph W Thresh | 50 Vn*In | 1 Vn*In | 120 Vn*In |
| 3 phase watt alarm setting. |

3Ph VArS Thresh | 50 Vn*In | 1 Vn*In | 120 Vn*In |
| 3 phase VArS alarm setting. |

Alarm Energies | Invisible | Invisible/Visible |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sets the Alarm Energies Status menu visible in the relay settings.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

W Fwd Thresh | 50 V1*I1 | 1 Vn*In | 1000 Vn*In |
| 3 phase Watt Hour Forward alarm setting. |

W Rev Thresh | 50 V1*I1 | 1 Vn*In | 1000 Vn*In |
| 3 phase Watt Hour Reverse alarm setting. |

VAr Fwd Thresh | 50 V1*I1 | 1 Vn*In | 1000 Vn*In |
| 3 phase VAr Hour Forward alarm setting. |

VAr Rev Thresh | 50 V1*I1 | 1 Vn*In | 1000 Vn*In |
| 3 phase VAr Hour Reverse alarm setting. |

Motor Hour Run > 1 | Disabled | Disabled/Enabled |
Measurements and Recording

Menu text	Default settings	Available settings
MEASURE'T SETUP
Enables or disables the first stage Hour Run Meter element.
Motor Hour Run > 1 | 500 hours | 1 Hour 9999 Hours
Hour Run Meter stage 1 setting.
Motor Hour Run > 2 | Disabled | Disabled/Enabled
Enables or disables the second stage Hour Run Meter element.
Motor Hour Run > 2 | 500 Hours | 1 Hour 9999 Hours
Hour Run Meter stage 2 setting.
Remote 2 Values | Primary | Primary/Secondary
This setting controls whether measured values via the second rear communication port are displayed as primary or secondary quantities.

Table 8: Available measurement entities and corresponding settings

1.4.8 Measurements 1
This menu provides measurement information.

Menu text	Default setting	Setting range	Step size
MEASUREMENTS 1
IA Magnitude Data |
IA Phase Angle Data |
IB Magnitude Data |
IB Phase Angle Data |
IC Magnitude Data |
IC Phase Angle Data |
IN Derived Mag Data |
IN Derived Angle Data |
I SEF Magnitude Data |
I SEF Angle Data |
I1 Magnitude Data Positive sequence current |
I2 magnitude Data Negative sequence current |
I0 Magnitude Data Zero sequence current |
IA RMS Data |
IB RMS Data |
IC RMS Data |
IN RMS Data |
VAB Magnitude Data |
VAB Phase Angle Data |
VBC Magnitude Data |
VBC Phase Angle Data |
VCA Magnitude Data |
VCA Phase Angle Data |
VAN Magnitude Data If Anti-backspin function is disabled |
VAN Phase Angle Data If Anti-backspin function is disabled |
VBN Magnitude Data If Anti-backspin function is disabled |
VBN Phase Angle Data If Anti-backspin function is disabled |
VCN Magnitude Data If Anti-backspin function is disabled |
VCN Phase Angle Data If Anti-backspin function is disabled |
Table 9: List of Measurement 1 menu

1.4.9 Measurements 2

This menu provides measurement information.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>3 Phase Watts</td>
<td>Data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Phase VARs</td>
<td>Data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Phase VA</td>
<td>Data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero Seq power</td>
<td>Data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3Ph Power Factor</td>
<td>Data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3Ph WHours Fwd</td>
<td>Data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3Ph WHours Rev</td>
<td>Data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3Ph VAhours Fwd</td>
<td>Data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3Ph VAhours Rev</td>
<td>Data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset Energies</td>
<td>No</td>
<td>Yes/No</td>
<td></td>
</tr>
<tr>
<td>3Ph W Fix Demand</td>
<td>Data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3Ph VA Fix Demand</td>
<td>Data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3Ph W Peak Dem</td>
<td>Data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3Ph VA Peak Dem</td>
<td>Data.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Measurements and Recording

MiCOM P40 Agile P241, P242, P243

Table 10: List of Measurement 2 menu

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset Demand</td>
<td>No</td>
<td>No, Yes</td>
<td></td>
</tr>
</tbody>
</table>
| | Reset demand measurements command. Can be used to reset the fixed and peak demand value measurements to 0.

3 Ph I Maximum	Data		
3Ph V Maximum	Data		
Reset Max I/V	No	No, Yes	

1.4.10 Measurements 3 (product specific measurements)

This menu provides measurement information.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Load</td>
<td>Data: - If Thermal Function is enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal State</td>
<td>Data: - If Thermal Function is enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time to Th Trip</td>
<td>Data: - If Thermal Function is enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset Th State</td>
<td>No</td>
<td>No/Yes</td>
<td>N/A</td>
</tr>
<tr>
<td>RTD#1 Temperature</td>
<td>Data: - If RTD#1 is enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD#2-#10 Temperature</td>
<td>Data: - If RTD#2- #10 is enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Hot St. Allow</td>
<td>Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Cold St Allow</td>
<td>Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time to Next St</td>
<td>Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Rest</td>
<td>Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last Start Time</td>
<td>Data: - If Function Prolonged Starts is enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last St Current</td>
<td>Data: - If Function Prolonged Starts is enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of starts</td>
<td>Data: - If Function Prolonged Starts is enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset Nb of St</td>
<td>No</td>
<td>No/Yes</td>
<td>N/A</td>
</tr>
<tr>
<td>Reset Nb Em Rst</td>
<td>Data: - If Function Prolonged Starts is enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset Nb Reacc</td>
<td>No</td>
<td>No/Yes</td>
<td>N/A</td>
</tr>
<tr>
<td>Reset number of reacceleration command. Resets state to 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Run Time</td>
<td>Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset Motor Run T</td>
<td>No</td>
<td>No/Yes</td>
<td>N/A</td>
</tr>
<tr>
<td>Motor Run T</td>
<td>000000000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD Open Cct</td>
<td>This menu cell displays the status of the ten RTDs as a binary string, 0 = No Open Circuit, 1 = Open Circuit. The Open Cct alarms are latched.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD Short Cct</td>
<td>000000000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD Data Error</td>
<td>000000000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset RTD flags</td>
<td>No</td>
<td>No, Yes</td>
<td>N/A</td>
</tr>
<tr>
<td>Reset RTD alarms command. Resets latched RTD Open Cct, Short Cct, Data Error alarms.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Hottest RTD</td>
<td>Data</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Measurements and Recording

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>Hottest RTD Temp</td>
<td>Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset Max RTD Temp</td>
<td>No</td>
<td>No, Yes</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Reset hottest RTD measurement command. Resets thermal state to 0.

Analog Input 1 | Data. Analog (Current loop/transducer) input 1. | | |
Analog Input 2 | Data. Analog (Current loop/transducer) input 2. | | |
Analog Input 3 | Data. Analog (Current loop/transducer) input 3. | | |
Analog Input 4 | Data. Analog (Current loop/transducer) input 4. | | |

Table 11: List of Measurement 3 menu

1.4.11 Measurements 4 (product specific measurements)

This menu provides measurement information.

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>MEASUREMENTS 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Control Trips</td>
<td>Data: - If CB control is enabled.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Thermal Trip</td>
<td>Data: - If Thermal Function is enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip I> 1</td>
<td>Data: - If Short Circuit Protection is Enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip I> 2</td>
<td>Data: - If Short Circuit Protection is Enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip ISEF> 1</td>
<td>Data: - If Earth Fault Protection is Enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip ISEF> 2</td>
<td>Data: - If Earth Fault Protection is Enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip IN> 1</td>
<td>Data: - If Derived Earth Fault Protection is Enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip IN> 2</td>
<td>Data: - If Derived Earth Fault Protection is Enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip I2>1</td>
<td>Data: - If NPS Protection is enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip I2>2</td>
<td>Data: - If NPS Protection is enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip PO></td>
<td>Data: - If Derived Earth Fault Wattmetric Protection is Enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip V< 1</td>
<td>Data: - If Undervoltage Protection is enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip V< 2</td>
<td>Data: - If Undervoltage Protection is enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip F< 1</td>
<td>Data: - If Underfrequency Protection is enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip F< 2</td>
<td>Data: - If Underfrequency Protection is enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip P< 1</td>
<td>Data: - If Loss of Load Protection is enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip P< 2</td>
<td>Data: - If Loss of Load Protection is enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip PF< Lead</td>
<td>Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip PF< Lag</td>
<td>Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip Rev P</td>
<td>Data: - If Reverse Power Protection is enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip V> 1</td>
<td>Data: - If Overvoltage Protection is enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip V> 2</td>
<td>Data: - If Overvoltage Protection is enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip NVD VN> 1</td>
<td>Data: - If NVD Protection is enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip NVD VN> 2</td>
<td>Data: - If NVD Protection is enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Prolong St</td>
<td>Data: - If Prolonged Start Status enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Lock Rot-sta</td>
<td>Data: - If Locked Rotor Start<Stall and Prolonged Start enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Lock Rot-run</td>
<td>Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip RTD#1</td>
<td>Data: - If RTD#1 is enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip RTD#2-10</td>
<td>Data: - If RTD#2 - #10 is enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip Diff</td>
<td>Data: - If Differential Protection is enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb A Input 1 Trip</td>
<td>Data: - If Analogue input 1 enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb A Input 2 Trip</td>
<td>Data: - If Analogue input 2 enabled</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 12: List of Measurement 4 menu

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Setting range</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb A Input 3 Trip</td>
<td>Data: - If Analogue input 3 enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb A Input 4 Trip</td>
<td>Data: - If Analogue input 4 enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb FFail1 Trip</td>
<td>Data: - If Field Failure 1 function enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb FFail2 Trip</td>
<td>Data: - If Field Failure 2 function enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip I> 3</td>
<td>Data: - if I>3 enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip I> 4</td>
<td>Data: - if I>4 enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip V2> 1</td>
<td>Data: - if V2>1 enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip V2> 2</td>
<td>Data: - if V2>2 enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip I> Vdip</td>
<td>Data: - if LV Ride Thru enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset Trip Stat</td>
<td>No</td>
<td>No, Yes</td>
<td></td>
</tr>
</tbody>
</table>

Reset Trip counter statistics command. Resets all counters to 0.
Measurements and Recording

(MR) 8-22

MiCOM P40 Agile P241, P242, P243
FIRMWARE DESIGN
MiCOM P40 Agile P241, P242, P243
CONTENTS

1 RELAY SYSTEM OVERVIEW 5
1.1 Hardware overview 5
1.1.1 Processor board 5
1.1.2 Input module 5
1.1.3 Power supply module 5
1.1.4 RTD board 5
1.1.5 IRIG-B modulated or unmodulated board 5
1.1.6 Second rear comms. board 5
1.1.7 Ethernet board 5
1.2 Software overview 6
1.2.1 Real-time operating system 7
1.2.2 System services software 7
1.2.3 Platform software 7
1.2.4 Protection & control software 7
1.2.5 Disturbance recorder 7

2 HARDWARE MODULES 8
2.1 Processor board 8
2.2 Internal communication buses 8
2.3 Input module 8
2.3.1 Transformer board 8
2.3.2 Input board 9
2.3.3 Universal opto isolated logic inputs 9
2.4 Power supply module (including output relays) 10
2.4.1 Power supply board (including EIA(RS)485 communication interface) 10
2.4.2 Output relay board 11
2.5 RTD board 11
2.6 IRIG-B board 11
2.7 Second rear communications board 11
2.8 Ethernet board 12
2.9 Redundant Ethernet board 13
2.10 Current loop input output board (CLIO) 15
2.11 Mechanical layout 16

3 RELAY SOFTWARE 18
3.1 Real-time operating system 18
3.2 System services software 18
3.3 Platform software 19
3.3.1 Record logging 19
3.3.2 Settings database 19

3.3.3 Database interface 19

3.4 Protection and control software 19
3.4.1 Overview - protection and control scheduling 20
3.4.2 Signal processing 20
3.4.3 Frequency response 20
3.4.4 Programmable scheme logic 21
3.4.5 Function key interface (P242/3 only) 22
3.4.6 Event, fault & maintenance recording 22
3.4.7 Disturbance recorder 22

4 SELF TESTING & DIAGNOSTICS 23
4.1 Start-up self-testing 23
4.1.1 System boot 23
4.1.2 Initialization software 23
4.1.3 Platform software initialization & monitoring 23
4.2 Continuous self-testing 24

FIGURES

Figure 1: Relay modules and information flow 6
Figure 2: Main input board 9
Figure 3: Second rear comms. port 12
Figure 4: Ethernet board 12
Figure 5: Redundant Ethernet board 13
Figure 6: Current loop input output board 16
Figure 7: Relay software structure 18
Figure 8: Frequency response 21
Figure 9: Start-up self-testing logic 25
Figure 10: Continuous self-testing logic 26

TABLES

Table 1: Threshold levels 10
Table 2: Power supply options 10
1 RELAY SYSTEM OVERVIEW

1.1 Hardware overview
The relay hardware is made up of several modules from a standard range. Some modules are essential while others are optional depending on the user’s requirements.

The different modules that can be present in the relay are as follows:

1.1.1 Processor board
The processor board performs all calculations for the relay and controls the operation of all other modules within the relay. The processor board also contains and controls the user interfaces (LCD, LEDs, keypad and communication interfaces).

1.1.2 Input module
The input module converts the data in the analog and digital input signals into a format suitable for processing by the processor board. The standard input module consists of two boards; a transformer board to provide electrical isolation and a main input board which provides analog to digital conversion and the isolated digital inputs.

1.1.3 Power supply module
The power supply module provides power to all of the other modules in the relay, at three different voltage levels. It also provides the EIA(RS)485 electrical connection for the rear communication port. The second board of the power supply module contains the relays that provide the output contacts.

1.1.4 RTD board
This optional board can be used to process the signals from up to 10 resistance temperature detectors (RTDs) to measure the winding and ambient temperatures.

1.1.5 IRIG-B modulated or unmodulated board
This board, which is optional, can be used where an IRIG-B signal is available to provide an accurate time reference for the relay. There is also an option on this board to specify a fiber optic or Ethernet rear communication port.

All modules are connected by a parallel data and address bus that allows the processor board to send and receive information to and from the other modules as required. There is also a separate serial data bus for conveying sample data from the input module to the processor. Figure 1 shows the modules of the relay and the flow of information between them.

1.1.6 Second rear comms. board
The optional second rear port is designed typically for dial-up modem access by protection engineers/operators, when the main port is reserved for SCADA traffic. Communication is through one of three physical links; K-Bus, EIA(RS)485 or EIA(RS)232. The port supports full local or remote protection and control access by MiCOM S1 Studio software. The second rear port is also available with an on board IRIG-B input.

1.1.7 Ethernet board
This is a mandatory board for IEC 61850 enabled relays. It provides network connectivity through either copper or fiber media at rates of 10 Mb/s (copper only) or 100 Mb/s. There is also an option on this board to specify IRIG-B port (modulated or un-modulated). This board, the IRIG-B board mentioned in section 1.1.5 and second rear comms board mentioned in section 1.1.6 are mutually exclusive as they all utilize slot A within the relay case.

All modules are connected by a parallel data and address bus which allows the processor board to send and receive information to and from the other modules as required.

There is also a separate serial data bus for conveying sample data from the input module to the processor. Figure 1 shows the modules of the relay and the flow of information between them.
1.2 Software overview

The software for the relay can be split into four elements: the real-time operating system, the system services software, the platform software and the protection and control software. These four elements are not distinguishable to the user, and are all processed by the same processor board.
1.2.1 Real-time operating system

The real time operating system provides a framework for the different parts of the relay's software to operate in. The software is split into tasks. The real-time operating system schedules the processing of these tasks so they are carried out at the correct time and in the correct priority. The operating system also exchanges information between tasks in the form of messages.

1.2.2 System services software

The system services software provides the low-level control of the relay hardware. For example, the system services software controls the boot of the relay's software from the non-volatile flash EPROM memory at power-on, and provides driver software for the user interface via the LCD and keypad, and via the serial communication ports. The system services software provides an interface layer between the control of the relay's hardware and the rest of the relay software.

1.2.3 Platform software

The platform software deals with the management of the relay settings, the user interfaces and logging of event, alarm, fault and maintenance records. All of the relay settings are stored in a database within the relay that provides direct compatibility with Courier communications. For all other interfaces (i.e. the front panel keypad and LCD interface, MODBUS and IEC 60870-5-103 and IEC 61850) the platform software converts the information from the database into the format required. The platform software notifies the protection & control software of all settings changes and logs data as specified by the protection & control software.

1.2.4 Protection & control software

The protection and control software performs the calculations for all of the protection algorithms of the relay. This includes digital signal processing such as Fourier filtering and ancillary tasks such as the disturbance recorder. The protection & control software interfaces with the platform software for settings changes and logging of records, and with the system services software for acquisition of sample data and access to output relays and digital opto-isolated inputs.

1.2.5 Disturbance recorder

The analog values and logic signals are routed from the protection and control software to the disturbance recorder software. The platform software interfaces to the disturbance recorder to allow extraction of the stored records.
2 HARDWARE MODULES

The relay is based on a modular hardware design where each module performs a separate function. This section describes the functional operation of the various hardware modules.

2.1 Processor board

The relay is based around a TMS320VC33-150MHz (peak speed), floating point, 32-bit digital signal processor (DSP) operating at a clock frequency of half this speed. This processor performs all of the calculations for the relay, including the protection functions, control of the data communication and user interfaces including the operation of the LCD, keypad and LEDs.

The processor board is located directly behind the relay's front panel that allows the LCD and LEDs to be mounted on the processor board along with the front panel communication ports. These comprise the 9-pin D-connector for EIA(RS)232 serial communications (e.g. using MiCOM S1 Studio and Courier communications) and the 25-pin D-connector relay test port for parallel communication. All serial communication is handled using a field programmable gate array (FPGA).

The memory provided on the main processor board is split into two categories, volatile and non-volatile; the volatile memory is fast access (zero wait state) SRAM which is used for the storage and execution of the processor software, and data storage as required during the processor's calculations. The non-volatile memory is sub-divided into 3 groups; 4 MB of flash memory for non-volatile storage of software code and text, together with default settings; 4 MB of battery backed-up SRAM for the storage of disturbance, event, fault and maintenance record data; and 64 kB of E2PROM memory for the storage of configuration data, including the present setting values.

2.2 Internal communication buses

The relay has two internal buses for the communication of data between different modules. The main bus is a parallel link that is part of a 64-way ribbon cable. The ribbon cable carries the data and address bus signals in addition to control signals and all power supply lines. Operation of the bus is driven by the main processor board that operates as a master while all other modules within the relay are slaves.

The second bus is a serial link that is used exclusively for communicating the digital sample values from the input module to the main processor board. The DSP processor has a built-in serial port that is used to read the sample data from the serial bus. The serial bus is also carried on the 64-way ribbon cable.

2.3 Input module

The input module provides the interface between the relay processor board(s) and the analog and digital signals coming into the relay. The input module of P241/2 consists of two PCBs; the main input board and the transformer board. This relay provides three voltage inputs and four current inputs. The P243 input module contains an additional transformer board, providing a total of 3 voltage inputs and 7 current inputs.

2.3.1 Transformer board

The standard transformer board holds up to four voltage transformers (VTs) and up to five current transformers (CTs). The auxiliary transformer board adds up to four more CTs. The current inputs will accept either 1 A or 5 A nominal current (menu and wiring options) and the voltage inputs are 110 V nominal voltage. The transformers are used both to step-down the currents and voltages to levels appropriate to the relay's electronic circuitry and to provide effective isolation between the relay and the power system. The connection arrangements of both the current and voltage transformer secondaries provide differential input signals to the main input board to reduce noise.
2.3.2 Input board

The main input board is shown as a block diagram in Figure 2. It provides the circuitry for the digital input signals and the analog-to-digital conversion for the analog signals. It takes the differential analog signals from the CTs and VTs on the transformer board(s), converts these to digital samples and transmits the samples to the main processor board via the serial data bus. On the input board the analog signals are passed through an anti-alias filter before being multiplexed into a single analog to digital converter chip. The A-D converter provides 16-bit resolution and a serial data stream output. The digital input signals are opto isolated on this board to prevent excessive voltages on these inputs causing damage to the relay's internal circuitry.

![Figure 2: Main input board](image)

The signal multiplexing allows 16 analog channels to be sampled with up to nine current inputs and four voltage inputs. The three spare channels are used to sample three different reference voltages for continually checking the multiplexer operation and the A-D converter accuracy. The sample rate is kept at 24 samples per cycle of the power waveform by a logic control circuit that is driven by the frequency tracking function on the main processor board. The calibration non-volatile memory holds the calibration coefficients that are used by the processor board to correct for any amplitude or phase error introduced by the transformers and analog circuitry.

The other function of the input board is to read the signals on the digital inputs and send them through the parallel data bus for processing. The input board holds 8 optical isolators for the connection of up to eight digital input signals. Opto-isolators are used with the digital signals for the same reason as the transformers with the analog signals; to isolate the relay's electronics from the power system environment. A 48 V 'field voltage' supply at the back of the relay is used in driving the digital opto-inputs. The input board has hardware filters to remove noise from the digital signals. The digital signals are then buffered so they can be read on the parallel data bus. Depending on the relay model, more than eight digital input signals can be accepted by the relay. This is done using an additional opto-board that contains the same provision for eight isolated digital inputs as the main input board, but does not contain any of the circuits for analog signals which are provided on the main input board.

2.3.3 Universal opto isolated logic inputs

The P24x series relays have universal opto isolated logic inputs that can be programmed for the nominal battery voltage of the circuit of which they are a part. This allows different
voltages for different circuits such as signaling and tripping. From software version C1.0 (40) onwards they can also be programmed as Standard 60% - 80% or 50% - 70% to satisfy different operating constraints.

The threshold levels are as follows:

<table>
<thead>
<tr>
<th>Nominal battery voltage (Vdc)</th>
<th>Standard 60% - 80%</th>
<th>50% - 70%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No operation</td>
<td>Operation</td>
</tr>
<tr>
<td></td>
<td>(logic 0) Vdc</td>
<td>(logic 1) Vdc</td>
</tr>
<tr>
<td>24/27</td>
<td><16.2</td>
<td>>19.2</td>
</tr>
<tr>
<td>30/34</td>
<td><20.4</td>
<td>>24.0</td>
</tr>
<tr>
<td>48/54</td>
<td><32.4</td>
<td>>38.4</td>
</tr>
<tr>
<td>110/125</td>
<td><75.0</td>
<td>>88.0</td>
</tr>
<tr>
<td>220/250</td>
<td><150.0</td>
<td>>176.0</td>
</tr>
</tbody>
</table>

Table 1: Threshold levels

This lower value eliminates fleeting pick-ups that may occur during a battery earth fault, when stray capacitance may present up to 50% of battery voltage across an input.

Each input has selectable filtering. This allows a pre-set ½ cycle filter to be used to prevent induced noise on the wiring. However, although the ½ cycle filter is secure it can be slow, particularly for intertripping. If the ½ cycle filter is switched off to improve speed, double pole switching or screened twisted cable may be needed on the input to reduce as noise.

2.4 Power supply module (including output relays)

The power supply module contains two PCBs, one for the power supply unit itself and the other for the output relays. The power supply board contains the input and output hardware for the rear communication port which provides an EIA(RS)485 communication interface.

2.4.1 Power supply board (including EIA(RS)485 communication interface)

One of three different configurations of the power supply board can be fitted to the relay. This will be specified at the time of order and depends on the nature of the supply voltage that will be connected to the relay. The three options are shown in table 1 below:

<table>
<thead>
<tr>
<th>Nominal dc range</th>
<th>Nominal ac range</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/48 V</td>
<td>DC only</td>
</tr>
<tr>
<td>48/110 V</td>
<td>30/100 Vrms</td>
</tr>
<tr>
<td>110/250 V</td>
<td>100/240 Vrms</td>
</tr>
</tbody>
</table>

Table 2: Power supply options

The output from all versions of the power supply module are used to provide isolated power supply rails to all of the other modules in the relay. Three voltage levels are used in the relay, 5.1 V for all of the digital circuits, ±16 V for the analog electronics such as on the input board, and 22 V for driving the output relay coils and the RTD board if fitted. All power supply voltages including the 0 V earth line are distributed around the relay through the 64-way ribbon cable. The power supply board also provides the 48 V field voltage. This is brought out to terminals on the back of the relay so that it can be used to drive the optically isolated digital inputs.
The two other functions provided by the power supply board are the EIA(RS)485 communications interface and the watchdog contacts for the relay. The EIA(RS)485 interface is used with the relay’s rear communication port to provide communication using one of either Courier, MODBUS, or IEC 60870-5-103 protocols. The EIA(RS)485 hardware supports half-duplex communication and provides optical isolation of the serial data that is transmitted and received. All internal communication of data from the power supply board is through the output relay board connected to the parallel bus.

The watchdog facility has two output relay contacts, one normally open and one normally closed. These are driven by the main processor board and indicate that the relay is in a healthy state.

The power supply board incorporates inrush current limiting. This limits the peak inrush current, during energization, to approximately 10 A.

2.4.2 Output relay board

There are 2 versions of the output relay board:

- Seven relays, three normally open contacts and four changeover contacts
- Eight relays, six normally open contacts and two changeover contacts.

For relay models with suffix A hardware, only 7 output relay boards are available. For relay models with suffix C hardware or greater the base numbers of output contacts, using the 7 output relay boards, is maintained for compatibility. The 8 output relay board is used for new relay models or existing relay models available in new case sizes or to provide additional output contacts to existing models for suffix issue C or greater hardware.

Note: The model number suffix letter refers to the hardware version.

The relays are driven from the 22 V power supply line. The relays’ state is written to or read from using the parallel data bus. Depending on the relay model, more than seven output contacts may be provided, through the use of up to three extra relay boards. Each additional relay board provides a further seven or eight output relays.

2.5 RTD board

The RTD (Resistance Temperature Detector) board is an order option. It is used to monitor the temperature readings from up to ten PT100 RTDs that are each connected using a 3-wire connection. The board is powered from the 22 V power rail that is used to drive the output relays. The RTD board includes two redundant channels that are connected to high stability resistors to provide reference readings. These are used to check the operation of the RTD board. The temperature data is read by the processor through the parallel data bus, and is used to provide thermal protection of the generator windings.

2.6 IRIG-B board

The IRIG-B board can be fitted to provide an accurate timing reference for the device. The IRIG-B signal is connected to the board via a BNC connector. The timing information is used to synchronise the IED’s internal real-time clock to an accuracy of 1 ms. The internal clock is then used for time tagging events, fault, maintenance and disturbance records.

IRIG-B interface is available in modulated or demodulated formats.

The IRIG-B facility is provided in combination with other functionality on a number of additional boards, such as:

- Fibre board with IRIG-B
- Second rear communications board with IRIG-B
- Ethernet board with IRIG-B
- Redundant Ethernet board with IRIG-B

2.7 Second rear communications board

For relays with Courier, MODBUS, or IEC 60870-5-103 protocol on the first rear communications port there is the hardware option of a second rear communications port, which runs the Courier language. This can be used over one of three physical links: twisted...
pair K-Bus (non-polarity sensitive), twisted pair EIA(RS)485 (connection polarity sensitive) or EIA(RS)232.

The second rear comms. board Ethernet and IRIG-B boards are mutually exclusive since they use the same hardware slot. For this reason two versions of second rear comms. and Ethernet boards are available; one with an IRIG-B input and one without. The physical layout of the second rear comms. board is shown in Figure 3.

![Figure 3: Second rear comms. port](image1)

2.8 Ethernet board

![Figure 4: Ethernet board](image2)

This is a communications board that provides a standard 100-Base Ethernet interface. This board supports one electrical copper connection and one fibre-pair connection.
There are several variants for this board as follows:

- 100 Mbps Ethernet board
- 100 Mbps Ethernet with on-board modulated IRIG-B input
- 100 Mbps Ethernet with on-board unmodulated IRIG-B input
- 100 Mbps Ethernet with on-board universal IRIG-B input

Three of the variants provide an IRIG-B interface. IRIG-B provides a timing reference for the unit – one board for modulated IRIG-B, one for demodulated and one board for universal IRIG-B, which includes modulated and demodulated IRIG-B. The IRIG B signal is connected to the board with a BNC connector.

The Ethernet and other connection details are described below:

IRIG-B Connector
- Centre connection: Signal
- Outer connection: Earth

LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>Function</th>
<th>On</th>
<th>Off</th>
<th>Flashing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Link</td>
<td>Link ok</td>
<td>Link broken</td>
<td></td>
</tr>
<tr>
<td>Yellow</td>
<td>Activity</td>
<td></td>
<td></td>
<td>Traffic</td>
</tr>
</tbody>
</table>

Optical Fibre Connectors

<table>
<thead>
<tr>
<th>Connector</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rx</td>
<td>Receive</td>
</tr>
<tr>
<td>Tx</td>
<td>Transmit</td>
</tr>
</tbody>
</table>

RJ45 Connector

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal name</th>
<th>Signal definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TXP</td>
<td>Transmit (positive)</td>
</tr>
<tr>
<td>2</td>
<td>TXN</td>
<td>Transmit (negative)</td>
</tr>
<tr>
<td>3</td>
<td>RXP</td>
<td>Receive (positive)</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>Not used</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>Not used</td>
</tr>
<tr>
<td>6</td>
<td>RXN</td>
<td>Receive (negative)</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>Not used</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>Not used</td>
</tr>
</tbody>
</table>

2.9 **Redundant Ethernet board**

![Redundant Ethernet board](image)
This board provides dual redundant Ethernet (supported by two fibre pairs) together with an IRIG-B interface for timing.

Different board variants are available, depending on the redundancy protocol and the type of IRIG-B signal (unmodulated or modulated). The available redundancy protocols are:

- SHP (Self-Healing Protocol)
- RSTP (Rapid Spanning Tree Protocol)
- DHP (Dual Homing Protocol)
- PRP (Parallel Redundancy Protocol)
- HSR (High-availability Seamless Redundancy)

There are several variants for this board as follows:

- 100 Mbps redundant Ethernet running RSTP, with on-board modulated IRIG-B
- 100 Mbps redundant Ethernet running RSTP, with on-board unmodulated IRIG-B
- 100 Mbps redundant Ethernet running SHP, with on-board modulated IRIG-B
- 100 Mbps redundant Ethernet running SHP, with on-board unmodulated IRIG-B
- 100 Mbps redundant Ethernet running DHP, with on-board modulated IRIG-B
- 100 Mbps redundant Ethernet running DHP, with on-board unmodulated IRIG-B
- 100 Mbps redundant Ethernet running PRP + HSR, with on-board modulated IRIG-B
- 100 Mbps redundant Ethernet running PRP + HSR, with on-board demodulated IRIG-B
- 100 Mbps redundant Ethernet running RSTP + PRP + HSR (two fibre pairs), with on-board universal IRIG-B
- 100 Mbps redundant Ethernet running RSTP + PRP + HSR (two copper pairs), with on-board universal IRIG-B

The Ethernet and other connection details are described below:

IRIG-B Connector
- Centre connection: Signal
- Outer connection: Earth

Link Fail Connector (Ethernet Board Watchdog Relay)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Closed</th>
<th>Open</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Link fail Channel 1 (A)</td>
<td>Link ok Channel 1 (A)</td>
</tr>
<tr>
<td>2-3</td>
<td>Link fail Channel 2 (B)</td>
<td>Link ok Channel 2 (B)</td>
</tr>
</tbody>
</table>

LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>Function</th>
<th>On</th>
<th>Off</th>
<th>Flashing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Link</td>
<td>Link ok</td>
<td>Link broken</td>
<td>PRP, RSTP or DHP traffic</td>
</tr>
<tr>
<td>Yellow</td>
<td>Activity</td>
<td>SHP running</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Optical Fibre Connectors (ST)

<table>
<thead>
<tr>
<th>Connector</th>
<th>DHP</th>
<th>RSTP</th>
<th>SHP</th>
<th>PRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>RXA</td>
<td>RX1</td>
<td>RS</td>
<td>RXA</td>
</tr>
<tr>
<td>B</td>
<td>TXA</td>
<td>TX1</td>
<td>ES</td>
<td>TXA</td>
</tr>
<tr>
<td>C</td>
<td>RXB</td>
<td>RX2</td>
<td>RP</td>
<td>RXB</td>
</tr>
<tr>
<td>D</td>
<td>TXB</td>
<td>TX2</td>
<td>EP</td>
<td>TXB</td>
</tr>
</tbody>
</table>

RJ45 Connector

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal name</th>
<th>Signal definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TXP</td>
<td>Transmit (positive)</td>
</tr>
<tr>
<td>2</td>
<td>TXN</td>
<td>Transmit (negative)</td>
</tr>
<tr>
<td>3</td>
<td>RXP</td>
<td>Receive (positive)</td>
</tr>
</tbody>
</table>
2.10 Current loop input output board (CLIO)

The current loop input output (CLIO) board is an order option. The CLIO board is powered from the 22 V power rail that is used to drive the output relays.

Four analog (or current loop) inputs are provided for transducers with ranges of 0 - 1 mA, 0 - 10 mA, 0 - 20 mA or 4 - 20 mA. The input current data is read by the processor through the parallel data bus, and is used to provide measurements from various transducers such as vibration monitors, tachometers and pressure transducers.

For each of the four current loop inputs there are two separate input circuits, 0 - 1 mA and 0 - 20 mA. The latter is also used for 0 - 10 mA and 4 - 20 mA transducer inputs. The anti-alias filters have a nominal cut-off frequency (3 dB point) of 23 Hz to reduce power system interference from the incoming signals. Four analog current outputs are provided with ranges of 0 - 1 mA, 0 - 10 mA, 0 - 20 mA or 4 - 20 mA which can alleviate the need for separate transducers. These may be used to feed standard moving coil ammeters for analog indication of certain measured quantities or into a SCADA using an existing analog RTU.

Each of the four current loop outputs provides one 0 - 1 mA output, one 0 - 20 mA output and one common return. Suitable software scaling of the value written to the board allows the 0 - 20 mA output to also provide 0 - 10 mA and 4 - 20 mA. Screened leads are recommended for use on the current loop output circuits. The refresh interval for the outputs is nominally 200 ms.

All external connections to the current loop I/O board are made using the same 15 way light duty I/O connector SL3.5/15/90F used on the RTD board. Two such connectors are used, one for the current loop outputs and one for the current loop inputs.

The I/O connectors accommodate wire sizes in the range 1/0.85 mm (0.57 mm²) to 1/1.38 mm (1.5 mm²) and their multiple conductor equivalents. The use of screened cable is recommended. The screen terminations should be connected to the case earth of the relay.

Basic Insulation (300 V) is provided between analog inputs or outputs and earth and between analog inputs and outputs. However, there is no insulation between one input and another or one output and another.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal name</th>
<th>Signal definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-</td>
<td>Not used</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>Not used</td>
</tr>
<tr>
<td>6</td>
<td>RXN</td>
<td>Receive (negative)</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>Not used</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>Not used</td>
</tr>
</tbody>
</table>
Mechanical layout

The relay case is pre-finished steel with a conductive covering of aluminum and zinc. This provides good earthing at all joints giving a low impedance path to earth that is essential for shielding from external noise. The boards and modules use a multi-point earthing to improve immunity to external noise and minimize the effect of circuit noise. Ground planes are used on boards to reduce impedance paths and spring clips are used to ground the module metalwork.

<table>
<thead>
<tr>
<th>Connection</th>
<th>IO blocks</th>
<th>Connection</th>
</tr>
</thead>
</table>
| **Outputs** | ![IO blocks](image) | 0 - 10/0 - 20/4 - 20 mA channel 1
0 - 1 mA channel 1
Common return channel 1 |
| Screen channel 1 | ![Screen channel 1](image) | 0 - 10/0 - 20/4 - 20 mA channel 2
0 - 1 mA channel 2
Common return channel 2 |
| Screen channel 2 | ![Screen channel 2](image) | 0 - 10/0 - 20/4 - 20 mA channel 3
0 - 1 mA channel 3
Common return channel 3 |
| Screen channel 3 | ![Screen channel 3](image) | 0 - 10/0 - 20/4 - 20 mA channel 4
0 - 1 mA channel 4
Common return channel 4 |
| **Inputs** | ![Inputs](image) | 0 - 10/0 - 20/4 - 20 mA channel 1
0 - 1 mA channel 1
Common channel 1 |
| Screen channel 1 | ![Screen channel 1](image) | 0 - 10/0 - 20/4 - 20 mA channel 2
0 - 1 mA channel 2
Common channel 2 |
| Screen channel 2 | ![Screen channel 2](image) | 0 - 10/0 - 20/4 - 20 mA channel 3
0 - 1 mA channel 3
Common channel 3 |
| Screen channel 3 | ![Screen channel 3](image) | 0 - 10/0 - 20/4 - 20 mA channel 4
0 - 1 mA channel 4
Common channel 4 |
| Screen channel 4 | ![Screen channel 4](image) | 0 - 10/0 - 20/4 - 20 mA channel 4
0 - 1 mA channel 4
Common channel 4 |

Figure 6: Current loop input output board
Heavy duty terminal blocks are used at the rear of the relay for the current and voltage signal connections. Medium duty terminal blocks are used for the digital logic input signals, output relay contacts, power supply and rear communication port. A BNC connector is used for the optional IRIG-B signal. 9-pin and 25-pin female D-connectors are used at the front of the relay for data communication.

Inside the relay the PCBs plug into the connector blocks at the rear, and can be removed from the front of the relay only. The connector blocks to the relay’s CT inputs have internal shorting links inside the relay. These automatically short the current transformer circuits before they are broken when the board is removed.

The front panel consists of a membrane keypad with tactile dome keys, an LCD and 12 LEDs mounted on an aluminum backing plate.
3 RELAY SOFTWARE

The relay software was introduced in the overview of the relay at the start of this section. The software can be considered to be made up of four sections:

- The real-time operating system
- The system services software
- The platform software
- The protection & control software

This section describes in detail the latter two of these, the platform software and the protection & control software, which between them control the functional behavior of the relay. Figure 7 shows the structure of the relay software.

3.1 Real-time operating system

The software is split into tasks; the real-time operating system is used to schedule the processing of the tasks to ensure that they are processed in the time available and in the desired order of priority. The operating system is also responsible in part for controlling the communication between the software tasks through the use of operating system messages.

3.2 System services software

In Figure 7 the system services software provides the interface between the relay’s hardware and the higher-level functionality of the platform software and the protection & control software. For example, the system services software provides drivers for items such as the LCD display, the keypad and the remote communication ports, and controls the boot of the processor and downloading of the processor code into SRAM from non-volatile flash EPROM at power up.
3.3 **Platform software**

The platform software has three main functions:

- To control the logging of all records that are generated by the protection software, including alarms and event, fault, disturbance and maintenance records.
- To store and maintain a database of all of the relay’s settings in non-volatile memory.
- To provide the internal interface between the settings database and each of the relay’s user interfaces, i.e. the front panel interface and the front and rear communication ports, using whichever communication protocol has been specified (Courier, MODBUS and IEC 60870-5-103).

3.3.1 **Record logging**

The logging function is provided to store all alarms, events, faults and maintenance records. The records for all of these incidents are logged in battery backed-up SRAM to provide a non-volatile log of what has happened. The relay maintains four logs: one each for up to 32 alarms, 250 event records, 5 fault records and 5 maintenance records. The logs are maintained such that the oldest record is overwritten with the newest record. The logging function can be initiated from the protection software or the platform software.

The logging function can be initiated from the protection software or the platform software is responsible for logging of a maintenance record in the event of a relay failure. This includes errors that have been detected by the platform software itself or error that are detected by either the system services or the protection software functions. See also the section on supervision and diagnostics later in this chapter.

3.3.2 **Settings database**

The settings database contains all of the settings and data for the relay, including the protection, disturbance recorder and control & support settings. The settings are maintained in non-volatile memory. The platform software’s management of the settings database includes the responsibility of ensuring that only one user interface modifies the settings of the database at any one time. This feature is employed to avoid confusion between different parts of the software during a setting change. For changes to protection settings and disturbance recorder settings, the platform software operates a ‘scratchpad’ in SRAM memory. This allows a number of setting changes to be made in any order but applied to the protection elements, disturbance recorder and saved in the database in non-volatile memory, at the same time. If a setting change affects the protection & control task, the database advises it of the new values.

3.3.3 **Database interface**

The other function of the platform software is to implement the relay’s internal interface between the database and each of the relay’s user interfaces. The database of settings and measurements must be accessible from all of the relay’s user interfaces to allow read and modify operations. The platform software presents the data in the appropriate format for each user interface.

3.4 **Protection and control software**

The protection and control software task processes all of the protection elements and measurement functions of the relay. It has to communicate with both the system services software and the platform software as well as organize its own operations. The protection software has the highest priority of any of the software tasks in the relay to provide the fastest possible protection response. The protection & control software has a supervisor task that controls the start-up of the task and deals with the exchange of messages between the task and the platform software.
3.4.1 Overview - protection and control scheduling

After initialization at start-up, the protection & control task waits until there are enough samples to process. The sampling function is called by the system services software and takes each set of new samples from the input module and stores them in a two-cycle buffer. The protection & control software resumes execution when the number of unprocessed samples in the buffer reaches a certain number. For the P24x motor protection relays, the protection task is executed four times per cycle, i.e. after every 2 samples for the sample rate of 24 samples per power cycle used by the relay. The protection elements are split into groups so that different elements are processed each time, and every element is processed at least once per cycle. The protection and control software is suspended again when all of its processing on a set of samples is complete. This allows operations by other software tasks to take place.

3.4.2 Signal processing

The sampling function filters the digital input signals from the opto-isolators and tracks the frequency of the analog signals. The digital inputs are checked against their previous value over a period of half a cycle. Therefore, a change in the state of one of the inputs must be maintained over at least half a cycle before it is registered with the protection & control software.

The frequency tracking of the analog input signals is achieved by a recursive Fourier algorithm which is applied to one of the input signals, and works by detecting a change in the measured signal’s phase angle. The calculated value of the frequency is used to modify the sample rate being used by the input module so as to achieve a constant sample rate of 24 samples per cycle of the power waveform. The value of the frequency is also stored for use by the protection & control task.

When the protection & control task is re-started by the sampling function, it calculates the Fourier components for the analog signals. The Fourier components are calculated using a one-cycle, 24-sample Discrete Fourier Transform (DFT). The DFT is always calculated using the last cycle of samples from the 2-cycle buffer, i.e. the most recent data is used. The DFT used in this way extracts the power frequency fundamental component from the signal and produces the magnitude and phase angle of the fundamental in rectangular component format. The DFT provides an accurate measurement of the fundamental frequency component, and effective filtering of harmonic frequencies and noise. This performance is achieved in conjunction with the relay input module which provides hardware anti-alias filtering to attenuate frequencies above the half sample rate, and frequency tracking to maintain a sample rate of 24 samples per cycle. The Fourier components of the input current and voltage signals are stored in memory so that they can be accessed by all of the protection elements’ algorithms. The samples from the input module are also used in an unprocessed form by the disturbance recorder for waveform recording and to calculate true rms values of current, voltage and power for metering purposes.

3.4.3 Frequency response

With the exception of the RMS measurements all other measurements and protection functions are based on the Fourier derived fundamental component. The fundamental component is extracted by using a 24 sample Discrete Fourier Transform (DFT). This gives good harmonic rejection for frequencies up to the 23rd harmonic. The 23rd is the first predominant harmonic that is not attenuated by the Fourier filter and this is known as an ‘Alias’. However, the Alias is attenuated by approximately 85% by an additional, analog, ‘anti-aliasing’ filter (low pass filter). The combined affect of the anti-aliasing and Fourier filters is shown below:
For power frequencies that are not equal to the selected rated frequency the harmonics are attenuated to zero amplitude. For small deviations of ±1 Hz, this is not a problem but to allow for larger deviations, frequency tracking is used.

Frequency tracking automatically adjusts the sampling rate of the analog to digital conversion to match the applied signal. In the absence of a suitable signal to amplitude track, the sample rate defaults to the selected rated frequency (Fn). In the presence of a signal within the tracking range (40 to 70 Hz), the relay will lock on to the signal and the measured frequency will coincide with the power frequency as labeled in the diagram above. The resulting outputs for harmonics up to the 23rd will be zero. The relay frequency tracks off any voltage or current in the order VA/VB/VC/IA/IB/IC down to 10% Vn for voltage and 5%In for current.

3.4.4 Programmable scheme logic

The purpose of the programmable scheme logic (PSL) allows the relay user to configure an individual protection scheme to suit their own particular application. This is done with programmable logic gates and delay timers.

The input to the PSL is any combination of the status of the digital input signals from the opto-isolators on the input board, the outputs of the protection elements, e.g. protection starts and trips, and the outputs of the fixed protection scheme logic. The fixed scheme logic provides the relay’s standard protection schemes. The PSL itself consists of software logic gates and timers. The logic gates can be programmed to perform a range of different logic functions and can accept any number of inputs. The timers are used either to create a programmable delay, and/or to condition the logic outputs, e.g. to create a pulse of fixed duration on the output regardless of the length of the pulse on the input. The outputs of the PSL are the LEDs on the front panel of the relay and the output contacts at the rear.

The execution of the PSL logic is event driven; the logic is processed whenever any of its inputs change, for example as a result of a change in one of the digital input signals or a trip output from a protection element. Also, only the part of the PSL logic that is affected by the particular input change that has occurred is processed. This reduces the amount of processing time that is used by the PSL. The protection & control software updates the logic delay timers and checks for a change in the PSL input signals every time it runs.

This system provides flexibility for the user to create their own scheme logic design. However, it also means that the PSL can be configured into a very complex system, and because of this setting of the PSL is implemented through the PC support package MiCOM S1 Studio.
3.4.5 Function key interface (P242/3 only)

The ten function keys interface directly into the PSL as digital input signals and are processed based on the PSL’s event driven execution. However, a change of state is only recognized when a key press is executed on average for longer than 200 ms. The time to register a change of state depends on whether the function key press is executed at the start or the end of a protection task cycle, with the additional hardware and software scan time included. A function key press can provide a latched (toggled mode) or output on key press only (normal mode) depending on how it is programmed and can be configured to individual protection scheme requirements. The latched state signal for each function key is written to non-volatile memory and read from non-volatile memory during relay power up, allowing the function key state to be reinstated after power-up if the relay power is lost.

3.4.6 Event, fault & maintenance recording

A change in any digital input signal or protection element output signal is used to indicate that an event has taken place. When this happens, the protection & control task sends a message to the supervisor task to indicate that an event is available to be processed and writes the event data to a fast buffer in SRAM that is controlled by the supervisor task. When the supervisor task receives either an event or fault record message, it instructs the platform software to create the appropriate log in battery backed-up SRAM. The operation of the record logging to battery backed-up SRAM is slower than the supervisor’s buffer. This means that the protection software is not delayed waiting for the records to be logged by the platform software. However, in the rare case when a large number of records to be logged are created in a short period of time, it is possible that some will be lost, if the supervisor’s buffer is full before the platform software is able to create a new log in battery backed-up SRAM. If this occurs then an event is logged to indicate this loss of information.

Maintenance records are created in a similar manner with the supervisor task instructing the platform software to log a record when it receives a maintenance record message. However, it is possible that a maintenance record may be triggered by a fatal error in the relay in which case it may not be possible to successfully store a maintenance record, depending on the nature of the problem. See self supervision & diagnostics later in this chapter.

3.4.7 Disturbance recorder

The disturbance recorder operates as a separate task from the protection and control task. It can record the waveforms for up to 8 analog channels and the values of up to 32 digital signals. The recording time is user selectable up to a maximum of 10 seconds. The disturbance recorder is supplied with data by the protection and control task once per cycle. The disturbance recorder collates the data that it receives into the required length disturbance record. The disturbance records can be extracted by MiCOM S1 Studio that can also store the data in COMTRADE format, therefore allowing the use of other packages to view the recorded data.
4 SELF TESTING & DIAGNOSTICS

The relay includes several self-monitoring functions to check the operation of its hardware and software when it is in service. These are included so that if an error or fault occurs in the relay's hardware or software, the relay is able to detect and report the problem and attempt to resolve it by performing a re-boot. The relay must therefore be out of service for a short time, during which the Healthy LED on the front of the relay is OFF and, the watchdog contact at the rear is ON. If the reboot fails to resolve the problem, the relay takes itself permanently out of service; the Healthy LED stays OFF and watchdog contact stays ON.

If a problem is detected by the self-monitoring functions, the relay stores a maintenance record in battery backed-up SRAM.

The self-monitoring is implemented in two stages: firstly a thorough diagnostic check that is performed when the relay is booted-up and secondly a continuous self-checking operation that checks the operation of the relay’s critical functions while it is in service.

4.1 Start-up self-testing

The self-testing that is carried out when the relay is started takes a few seconds to complete, during which time the relay’s protection is unavailable. This is shown by the Healthy LED on the front of the relay which is ON when the relay has passed all tests and entered operation. If the tests detect a problem, the relay remains out of service until it is manually restored to working order.

The operations that are performed at start-up are as follows:

4.1.1 System boot

The integrity of the flash EPROM memory is verified using a checksum before the program code and data stored in it is copied into SRAM to be used for execution by the processor. When the copy is complete the data then held in SRAM is checked against that in flash EPROM to ensure they are the same and that no errors have occurred in the transfer of data from flash EPROM to SRAM. The entry point of the software code in SRAM is then called which is the relay initialization code.

4.1.2 Initialization software

The initialization process includes the operations of initializing the processor registers and interrupts, starting the watchdog timers (used by the hardware to determine whether the software is still running), starting the real-time operating system and creating and starting the supervisor task. In the course of the initialization process the relay checks:

- The status of the battery
- The integrity of the battery backed-up SRAM that is used to store event, fault and disturbance records
- The voltage level of the field voltage supply that is used to drive the opto-isolated inputs
- The operation of the LCD controller
- The watchdog operation

At the conclusion of the initialization software the supervisor task begins the process of starting the platform software.

4.1.3 Platform software initialization & monitoring

In starting the platform software, the relay checks the integrity of the data held in non-volatile memory with a checksum, the operation of the real-time clock, and the IRIG-B, RTD and CLIO board if fitted. The final test that is made concerns the input and output of data; the presence and healthy condition of the input board is checked and the analog data acquisition system is checked through sampling the reference voltage.

At the successful conclusion of all of these tests the relay is entered into service and the protection started-up.
4.2 Continuous self-testing

When the relay is in service, it continually checks the operation of the critical parts of its hardware and software. The checking is carried out by the system services software (see section on relay software earlier in this section) and the results reported to the platform software. The functions that are checked are as follows:

- The flash EPROM containing all program code and language text is verified by a checksum
- The code and constant data held in SRAM is checked against the corresponding data in flash EPROM to check for data corruption
- The SRAM containing all data other than the code and constant data is verified with a checksum
- The non-volatile memory containing setting values is verified by a checksum, whenever its data is accessed
- The battery status
- The level of the field voltage
- The integrity of the digital signal I/O data from the opto-isolated inputs and the relay contacts, is checked by the data acquisition function every time it is executed. The operation of the analog data acquisition system is continuously checked by the acquisition function every time it is executed, by means of sampling the reference voltage on a spare multiplexed channel
- The operation of the RTD board is checked by reading the temperature indicated by the reference resistors on the two spare RTD channels
- The operation of the IRIG-B board is checked, where it is fitted, by the software that reads the time and date from the board
- The correct operation of the CLIO board is checked, where it is fitted
- The operation of the Ethernet board is checked, where it is fitted, by the software on the main processor card. If the Ethernet board fails to respond an alarm is raised and the card is reset in an attempt to resolve the problem

In the unlikely event that one of the checks detects an error in the relay’s subsystems, the platform software is notified and it will attempt to log a maintenance record in battery backed-up SRAM. If the problem is with the battery status, the RTD board, CLIO board or the IRIG-B board, the relay continues in operation. However, for problems detected in any other area the relay shuts down and reboots. This result in a period of up to 5 seconds when protection is unavailable, but the complete restart of the relay including all initializations should clear most problems that could occur. An integral part of the start-up procedure is a thorough diagnostic self-check. If this detects the same problem that caused the relay to restart, the restart has not cleared the problem, and the relay takes itself permanently out of service. This is indicated by the Healthy LED on the front of the relay, which goes OFF, and the watchdog contact that goes ON.
Primary Self Tests
- User Boot
- Bus Integrity SRAM Test
- Data SRAM Test
- Watchdog Self Test
 - System Initialization
- Flash Checksum Test
- Code Verify Test Between Flash and SRAM

Secondary Self Tests
- BBRAM Self Test
- Bus Reset Test
- Battery Self Test

Field Voltage Status

1) Critical, Primary Self Test Error Messages

<table>
<thead>
<tr>
<th>Error Message on User Interface</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus Fail</td>
<td>Integrity Bus Test Error</td>
</tr>
<tr>
<td>SRAM Fail</td>
<td>SRAM Test Error</td>
</tr>
<tr>
<td>Flash Fail (Checksum)</td>
<td>Flash test error detected in the flash structure</td>
</tr>
<tr>
<td>Code Verify Fail</td>
<td>Error in code comparison test flash</td>
</tr>
<tr>
<td>Watchdog Fail</td>
<td>Watching circuit fails to operate</td>
</tr>
</tbody>
</table>

2) Critical, Secondary Self Test Error Messages

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xDC170AF9</td>
<td>The secondary self tests detected an error in the Battery Backup SRAM (BBRAM)</td>
</tr>
<tr>
<td>0xDC170816</td>
<td>The secondary self tests detected an error in the Bus Circuit</td>
</tr>
</tbody>
</table>

3) Trivial, Secondary Power on Self Tests Alarm Indications

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery Failure</td>
<td>The secondary self tests detected battery source failure</td>
</tr>
<tr>
<td>Field Volt Fail</td>
<td>The secondary self tests detected Field Voltage failure</td>
</tr>
</tbody>
</table>
Figure 10: Continuous self-testing logic
COMMISSIONING
Commissioning

MiCOM P40 Agile P241, P242, P243
CONTENTS

1 INTRODUCTION 7
2 SETTING FAMILIARIZATION 8
3 COMMISSIONING TEST MENU 9
3.1 Opto I/P status 10
3.2 Relay O/P status 10
3.3 Test port status 10
3.4 LED status 10
3.5 Monitor bits 1 to 8 10
3.6 Test mode 11
3.7 Test pattern 11
3.8 Contact test 11
3.9 Test LEDs 11
3.10 Red LED status and green LED status (P242/3) 11
3.11 Using a monitor/download port test box 11
4 EQUIPMENT REQUIRED FOR COMMISSIONING 12
4.1 Minimum equipment required 12
4.2 Optional equipment 12
5 PRODUCT CHECKS 13
5.1 With the relay re-energized 13
5.1.1 Visual inspection 14
5.1.2 Current transformer shorting contacts 14
5.1.3 Insulation 15
5.1.4 External wiring 16
5.1.5 Watchdog contacts 16
5.1.6 Auxiliary supply 16
5.2 With the relay energized 17
5.2.1 Watchdog contacts 17
5.2.2 LCD front panel display 17
5.2.3 Date and time 17
5.2.3.1 With an IRIG-B signal 17
5.2.3.2 Without an IRIG-B signal 18
5.2.4 Light emitting diodes (LEDs) 18
5.2.4.1 Testing the alarm and out of service LEDs 18
5.2.4.2 Testing the trip LED 18
5.2.4.3 Testing the user-programmable LEDs 18
5.2.5 Field voltage supply 18
5.2.6 Input opto-isolators 19
5.2.7 Output relays 19
5.2.8 RTD inputs
5.2.9 Current loop inputs
5.2.10 Current loop (analog) outputs
5.2.11 First rear communications port
5.2.11.1 Courier communications
5.2.11.2 MODBUS communications
5.2.11.3 IEC 60870-5-103 (VDEW) communications
5.2.11.4 IEC 61850 communications
5.2.12 Second rear communications port
5.2.12.1 K-Bus configuration
5.2.12.2 EIA(RS)485 configuration
5.2.12.3 EIA(RS)232 configuration
5.2.13 Current inputs
5.2.14 Voltage inputs

6 SETTING CHECKS

6.1 Apply application-specific settings
6.2 Check application-specific settings
6.3 Demonstrate correct relay operation
6.3.1 Motor differential protection (P243)
6.3.1.1 Connect the test circuit
6.3.1.2 Biased differential protection lower slope
6.3.1.3 Biased differential protection upper slope
6.3.2 Motor differential operation and contact assignment
6.3.2.1 Phase A
6.3.2.2 Phase B
6.3.2.3 Phase C
6.3.3 Sensitive earth fault protection
6.3.3.1 Connect the test circuit
6.3.3.2 Perform the test
6.3.3.3 Check the operating time
6.3.4 Thermal overload protection
6.3.4.1 Connect the test circuit
6.3.4.2 Perform the test
6.3.4.3 Verify the operating time

7 ON-LOAD CHECKS

7.1 Voltage connections
7.2 Current connections

8 FINAL CHECKS

9 COMMISSIONING TEST RECORD

10 SETTING RECORD
TABLES

Table 1: List of test facilities within COMMISSION TESTS menu 9
Table 2: Current transformer shorting contact locations 14
Table 3: Watchdog contact status 16
Table 4: Operational range of auxiliary supply Vx 16
Table 5: Field voltage terminals 19
Table 6: RTD input terminals 20
Table 7: EIA(RS)485 terminals 21
Table 8: Signals on the Ethernet connector 23
Table 9: Second rear communications port K-Bus terminals 23
Table 10: Second rear communications port EIA(RS)232 terminals 24
Table 11: Current input terminals 25
Table 12: CT ratio settings 25
Table 13: Voltage input terminals 26
Table 14: VT ratio settings 26
Table 15: Characteristic operating times for I>1 31
Table 16: Measured voltages and VT ratio settings 35
Commissioning

(CM) 10-6

MiCOM P40 Agile P241, P242, P243
1 INTRODUCTION

The MiCOM P24x motor protection relays are fully numerical in their design, implementing all protection and non-protection functions in software. The relays use a high degree of self-checking and give an alarm in the unlikely event of a failure. Therefore, the commissioning tests do not need to be as extensive as with non-numeric electronic or electro-mechanical relays.

To commission numeric relays, it is only necessary to verify that the hardware is functioning correctly and the application-specific software settings have been applied to the relay. It is considered unnecessary to test every function of the relay if the settings have been verified by one of the following methods:

- Extracting the settings applied to the relay using appropriate setting software, which is the preferred method
- Using the operator interface

To confirm that the product is operating correctly once the application-specific settings have been applied, a test should be performed on a single protection element.

Unless previously agreed, the customer is responsible for determining the application-specific settings to be applied to the relay and for testing of any scheme logic applied by external wiring and/or configuration of the relay’s internal programmable scheme logic.

Blank commissioning test and setting records are provided at the end of this chapter for completion as required.

As the relays menu language is user-selectable, it is acceptable for the Commissioning Engineer to change it to allow accurate testing as long as the menu is restored to the customer’s preferred language on completion.

To simplify the specifying of menu cell locations in these Commissioning Instructions, they are given in the form [courier reference: COLUMN HEADING, Cell Text]. For example, the cell for selecting the menu language (first cell under the column heading) is located in the System Data column (column 00) so it would be given as [0001: SYSTEM DATA, Language].

⚠️ Before carrying out any work on the equipment the user should be familiar with the contents of the Safety Section/Safety Guide Pxxx-SG-4LM-2 or later issue and the ratings on the equipment’s rating label.
2 SETTING FAMILIARIZATION

When commissioning a MiCOM P24x relay for the first time, sufficient time should be allowed to become familiar with the method by which the settings are applied.

The Settings chapter (P24x/EN ST) contains a detailed description of the menu structure of P24x relays.

With the secondary front cover in place all keys except the key are accessible. All menu cells can be read. LEDs and alarms can be reset. However, no protection or configuration settings can be changed, or fault and event records cleared.

Removing the secondary front cover allows access to all keys so that settings can be changed, LEDs and alarms reset, and fault and event records cleared. However, menu cells that have access levels higher than the default level requires the appropriate password to be entered before changes can be made.

Alternatively, if a portable PC is available together with suitable setting software (such as MiCOM S1 Studio), the menu can be viewed a page at a time to display a full column of data and text. This PC software also allows settings to be entered more easily, saved to a file on disk for future reference or printed to produce a setting record. Refer to the PC software user manual for details. If the software is being used for the first time, allow sufficient time to become familiar with its operation.
COMMISSIONING TEST MENU

To help minimize the time required to test MiCOM relays, the relay provides several test facilities under the **COMMISSION TESTS** menu heading. There are menu cells which allow the status of the opto-isolated inputs, output relay contacts, internal digital data bus (DDB) signals, and user-programmable LEDs to be monitored. Additionally, there are cells to test the operation of the output contacts and user-programmable LEDs.

The following table shows the relay menu of commissioning tests, including the available setting ranges and factory defaults:

<table>
<thead>
<tr>
<th>Menu text</th>
<th>Default setting</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMISSION TESTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opto I/P Status</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Relay O/P Status</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Test Port Status</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>LED Status</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Monitor Bit 1</td>
<td>96 (LED1) P241</td>
<td>640 (LED1(red)) P242/3</td>
</tr>
<tr>
<td>Monitor Bit 2</td>
<td>97 (LED2) P241</td>
<td>642 (LED2(red)) P242/3</td>
</tr>
<tr>
<td>Monitor Bit 3</td>
<td>98 (LED3) P241</td>
<td>644 (LED3(red)) P242/3</td>
</tr>
<tr>
<td>Monitor Bit 4</td>
<td>99 (LED4) P241</td>
<td>646 (LED4(red)) P242/3</td>
</tr>
<tr>
<td>Monitor Bit 5</td>
<td>100 (LED5) P241</td>
<td>648 (LED5(red)) P242/3</td>
</tr>
<tr>
<td>Monitor Bit 6</td>
<td>101 (LED6) P241</td>
<td>650 (LED6(red)) P242/3</td>
</tr>
<tr>
<td>Monitor Bit 7</td>
<td>102 (LED7) P241</td>
<td>652 (LED7(red)) P242/3</td>
</tr>
<tr>
<td>Monitor Bit 8</td>
<td>103 (LED8) P241</td>
<td>654 (LED8(red)) P242/3</td>
</tr>
<tr>
<td>Test Mode</td>
<td>Disabled</td>
<td>Disabled Test Mode Contacts Blocked</td>
</tr>
<tr>
<td>Test Pattern</td>
<td>All bits set to 0</td>
<td>0 = Not Operated 1 = Operated</td>
</tr>
<tr>
<td>Contact Test</td>
<td>No Operation</td>
<td>No Operation Apply Test Remove Test</td>
</tr>
<tr>
<td>Test LEDs</td>
<td>No Operation</td>
<td>No Operation Apply Test</td>
</tr>
</tbody>
</table>

See P24x/EN MD for details of Digital Data Bus signals

Table 1: List of test facilities within COMMISSION TESTS menu
3.1 Opto I/P status
This menu cell displays the status of the relays opto-isolated inputs as a binary string, a 1 indicating an energized opto-isolated input and a 0 a de-energized one. If the cursor is moved along the binary numbers the corresponding label text is displayed for each logic input.

It can be used during commissioning or routine testing to monitor the status of the opto-isolated inputs while they are sequentially energized with a suitable dc voltage.

3.2 Relay O/P status
This menu cell displays the status of the digital data bus (DDB) signals that result in energization of the output relays as a binary string, a 1 indicating an operated state and 0 a non-operated state. If the cursor is moved along the binary numbers the corresponding label text is displayed for each relay output.

The information displayed can be used during commissioning or routine testing to indicate the status of the output relays when the relay is ‘in service’. Additionally fault finding for output relay damage can be performed by comparing the status of the output contact under investigation with its associated bit.

Note: When the Test Mode cell is set to Enabled this cell continues to indicate which contacts would operate if the relay was in-service, it does not show the actual status of the output relays.

3.3 Test port status
This menu cell displays the status of the eight digital data bus (DDB) signals that have been allocated in the Monitor Bit cells. If the cursor is moved along the binary numbers the corresponding DDB signal text string is displayed for each monitor bit.

By using this cell with suitable monitor bit settings, the state of the DDB signals can be displayed as various operating conditions or sequences are applied to the relay. Therefore the programmable scheme logic can be tested.

Alternatively, the optional monitor/download port test box can be plugged into the monitor/download port located behind the bottom access cover. Details of the monitor/download port test box can be found in section 3.10 of this chapter.

3.4 LED status
The LED Status cell is an eight bit binary string that indicates which of the user-programmable LEDs on the relay are illuminated when accessing the relay from a remote location, a 1 indicating a particular LED is lit and a 0 not lit.

3.5 Monitor bits 1 to 8
The eight Monitor Bit cells allow the user to select the status of which digital data bus signals can be observed in the Test Port Status cell or using the monitor or download port.

Each Monitor Bit is set by entering the required digital data bus (DDB) signal number (0 - 1022) from the list of available DDB signals. The pins of the monitor or download port used for monitor bits are given in the table below. The signal ground is available on pins 18, 19, 22 and 25.

<table>
<thead>
<tr>
<th>Monitor bit</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor/download port pin</td>
<td>11</td>
<td>12</td>
<td>15</td>
<td>13</td>
<td>20</td>
<td>21</td>
<td>23</td>
<td>24</td>
</tr>
</tbody>
</table>

The monitor/download port does not have electrical isolation against induced voltages on the communications channel. It should only be used for local communications.
3.6 Test mode
The Test Mode menu cell is used to allow secondary injection testing to be performed on the relay without operation of the trip contacts. The Test Mode is also used in the IEC 60870-5-103 protocol, see section 5.8 of P24x/EN SC. It also enables a facility to directly test the output contacts by applying menu controlled test signals. To select test mode the Test Mode menu cell should be set to Test Mode which takes the relay out of service and blocks the maintenance counters. It also causes an alarm condition to be recorded and the yellow Out of Service LED to illuminate and an alarm message Prot’n. Disabled is given. To enable testing of output contacts the Test Mode cell should be set to Contacts Blocked. This blocks the protection from operating the contacts and enables the test pattern and contact test functions which can be used to manually operate the output contacts. Once testing is complete the cell must be set back to Disabled to restore the relay back to service.

When the ‘test mode’ cell is set to contacts blocked’ the relay scheme logic does not drive the output relays. Therefore, the protection will not trip the associated circuit breaker if a fault occurs.

3.7 Test pattern
The Test Pattern cell is used to select the output relay contacts that are tested when the Contact Test cell is set to Apply Test. The cell has a binary string with one bit for each user-configurable output contact which can be set to 1 to operate the output under test conditions and 0 to not operate it.

3.8 Contact test
When the Apply Test command in this cell is issued the contacts set for operation (set to 1) in the Test Pattern cell change state. After the test has been applied the command text on the LCD changes to No Operation and the contacts remain in the Test State until reset issuing the Remove Test command. The command text on the LCD reverts to No Operation after the Remove Test command has been issued.

Note: When the Test Mode cell is set to Enabled the Relay O/P Status cell does not show the current status of the output relays and so can not be used to confirm operation of the output relays. Therefore it is necessary to monitor the state of each contact in turn.

3.9 Test LEDs
When the Apply Test command in this cell is issued the eight user-programmable LEDs switch ON for approximately 2 seconds before they Switch OFF and the command text on the LCD changes to No Operation.

3.10 Red LED status and green LED status (P242/3)
The Red LED Status and Green LED Status cells are eighteen bit binary strings that show which of the user-programmable LEDs on the relay are switched ON when accessing the relay from a remote location, a 1 indicating a particular LED is lit and a 0 not lit. When the status of a particular LED in both cells is 1, this means the LEDs is yellow.

3.11 Using a monitor/download port test box
A monitor/download port test box containing 8 LED’s and a switchable audible indicator is available from General Electric, or one of their regional sales offices. It is housed in a small plastic box with a 25-pin male D-connector that plugs directly into the relay’s monitor/download port. There is also a 25-pin female D-connector which allows other connections to be made to the monitor/download port while the monitor/download port test box is in place.

Each LED corresponds to one of the monitor bit pins on the monitor/download port with Monitor Bit 1 being on the left hand side when viewing from the front of the relay. The audible indicator can either be selected to sound if a voltage appears any of the eight monitor pins or remain silent so that indication of state is by LED alone.
4 EQUIPMENT REQUIRED FOR COMMISSIONING

4.1 Minimum equipment required

Overcurrent test set with interval timer

110 V ac voltage supply (if stage 1 of the overcurrent function is set directional)

Multimeter with suitable ac current range, and ac and dc voltage ranges of 0 - 440 V and
0 - 250 V respectively

Continuity tester (if not included in multimeter)

Phase angle meter

Phase rotation meter

100 Ω precision wire wound or metal film resistor, 0.1% tolerance (0°C±2°C)

Note: Modern test equipment may contain many of the above features in one unit.

4.2 Optional equipment

Multi-finger test plug type MMLB01 or P992 (if test block type MMLG or P991 installed).

An electronic or brushless insulation tester with a dc output not exceeding 500 V (For insulation resistance testing when required).

A portable PC, with appropriate software (This enables the rear communications port to be
tested if this is to be used and saves considerable time during commissioning).

KITZ K-Bus to EIA(RS)232 protocol converter (if first rear EIA(RS)485 K-Bus port or second
rear port configured for K-Bus is being tested and one is not already installed).

EIA(RS)485 to EIA(RS)232 converter (if first rear EIA(RS)485 port or second rear port
configured for EIA(RS)485 is being tested).

A printer (for printing a setting record from the portable PC).
5 PRODUCT CHECKS

These product checks cover all aspects of the relay that need to be checked to ensure that it has not been physically damaged prior to commissioning, is functioning correctly and all input quantity measurements are within the stated tolerances.

If the application-specific settings have been applied to the relay prior to commissioning, it is advisable to make a copy of the settings so as to allow their restoration later. If programmable scheme logic other than the default settings with which the relay is supplied have been applied the default settings should be restored prior to commissioning. This could be done by:

- Obtaining a setting file on a diskette from the customer. (This requires a portable PC with appropriate setting software for transferring the settings from the PC to the relay).
- Extracting the settings from the relay itself. (This again requires a portable PC with appropriate setting software).
- Manually creating a setting record. This could be done using a copy of the setting record located at the end of this sub-document to record the settings as the relay’s menu is sequentially stepped through via the front panel user interface.

If password protection is enabled and the customer has changed password 2 that prevents unauthorized changes to some of the settings, either the revised password 2 should be provided, or the customer should restore the original password prior to commencement of testing.

Note: If the password is lost, a recovery password can be obtained from General Electric by quoting the serial number of the relay. The recovery password is unique to that relay and is unlikely to work on any other relay.

Before carrying out any work on the equipment the user should be familiar with the contents of the Safety Section/Safety Guide Pxxy-SG-4LM-2 or later issue and the ratings on the equipment’s rating label.

5.1 With the relay re-energized

The following group of tests should be carried out without the auxiliary supply being applied to the relay and with the trip circuit isolated.

The current and voltage transformer connections must be isolated from the relay for these checks. If a P991 or MMLG test block is provided, the required isolation can easily be achieved by inserting test plug type P992 or MMLB01 which effectively open-circuits all wiring routed through the test block.

Before inserting the test plug, check the scheme (wiring) diagram to make sure it does not potentially cause damage or a safety hazard. For example, the test block may be associated with protection current transformer circuits. It is essential that the sockets in the test plug which correspond to the current transformer secondary windings are linked before the test plug is inserted into the test block.

DANGER: Never open circuit the secondary circuit of a current transformer since the high voltage produced may be lethal and could damage insulation.

If a test block is not provided, the voltage transformer supply to the relay should be isolated by using the panel links or connecting blocks. The line current transformers should be short-circuited and disconnected from the relay terminals. Where means of isolating the auxiliary supply and trip circuit (isolation links, fuses and MCB) are provided, these should be used. If this is not possible, the wiring to these circuits needs to be disconnected and the exposed ends suitably terminated to prevent them from being a safety hazard.
5.1.1 Visual inspection

The rating information given under the top access cover on the front of the relay should be checked. Check that the relay being tested is correct for the protected line/circuit. Ensure that the circuit reference and system details are entered onto the setting record sheet. Double-check the CT secondary current rating, and be sure to record the actual CT tap which is in use.

Carefully examine the relay to see that no physical damage has occurred since installation.

Make sure the case earthing connections, bottom left-hand corner at the rear of the relay case, are used to connect the relay to a local earth bar using an adequate conductor.

![Figure 1: Rear terminal blocks on size 40TE case](image)

5.1.2 Current transformer shorting contacts

If required, the current transformer shorting contacts can be checked to ensure they close when the heavy duty terminal block (block reference C in 01) is disconnected from the current input PCB. For P241 relays block reference C (40TE case) are heavy duty terminal blocks. In the case of P242/3 relays they are located at block references D (60TE case) and D and F (80TE case).

<table>
<thead>
<tr>
<th>Current input</th>
<th>Shorting contact between terminals</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>C3 - C2 C1 - C2 D3 - D2 D1 - D2</td>
</tr>
<tr>
<td>IB</td>
<td>C6 - C5 C4 - C5 D6 - D5 D4 - D5</td>
</tr>
<tr>
<td>IC</td>
<td>C9 - C8 C7 - C8 D9 - D8 D7 - D8</td>
</tr>
<tr>
<td>IN SENSITIVE</td>
<td>C15 - C14 C13 - C14 D15 - D14 D13 - D14</td>
</tr>
<tr>
<td>IA(2) (P243 only)</td>
<td>F3 - F2 F1 - F2</td>
</tr>
<tr>
<td>IB(2) (P243 only)</td>
<td>F6 - F5 F4 - F5</td>
</tr>
<tr>
<td>IC(2) (P243 only)</td>
<td>F9 - F8 F7 - F8</td>
</tr>
</tbody>
</table>

Table 2: Current transformer shorting contact locations

Heavy duty terminal block are fastened to the rear panel using four crosshead screws. These are located top and bottom between the first and second, and third and fourth, columns of terminals (see Figure 2).
Note: The use of a magnetic bladed screwdriver is recommended to minimize the risk of the screws being left in the terminal block or lost.

Pull the terminal block away from the rear of the case and check with a continuity tester that all the shorting switches being used are closed. Table 2 shows the terminals between which shorting contacts are fitted.

If external test blocks are connected to the relay, great care should be taken when using the associated test plugs such as MMLB and MiCOM P992 since their use may make hazardous voltages accessible. *CT shorting links must be in place before the insertion or removal of MMLB test plugs, to avoid potentially lethal voltages.

NOTE: When a MiCOM P992 Test Plug is inserted into the MiCOM P991 Test Block, the secondaries of the line CTs are automatically shorted, making them safe.

![Figure 2: Location of securing screws for heavy duty terminal blocks](image)

5.1.3 Insulation

Insulation resistance tests are only necessary during commissioning if it is required for them to be done and they haven’t been performed during installation.

Isolate all wiring from the earth and test the insulation with an electronic or brushless insulation tester at a dc voltage not exceeding 500 V. Terminals of the same circuits should be temporarily connected together.

The main groups of relay terminals are:

1. Voltage transformer circuits
2. Current transformer circuits
3. Auxiliary voltage supply
4. Field voltage output and opto-isolated control inputs
5. Relay contacts
6. First rear EIA(RS)485 communication port
7. RTD inputs
8. Current loop (analog) inputs and outputs (CLIO)
9. Case earth

The insulation resistance should be greater than 100 MΩ at 500 V.

On completion of the insulation resistance tests, ensure all external wiring is correctly reconnected to the unit.

5.1.4 External wiring

Check that the external wiring is correct to the relevant relay diagram or scheme diagram. The relay diagram number appears on the rating label under the top access cover on the front of the relay. The corresponding connection diagram is supplied with the General Electric order acknowledgement for the relay.

If a P991 or MMLG test block is provided, the connections should be checked against the scheme (wiring) diagram. It is recommended that the supply connections are to the live side of the test block (colored orange with the odd numbered terminals (1, 3, 5, 7 etc.)). The auxiliary supply is normally routed via terminals 13 (supply positive) and 15 (supply negative), with terminals 14 and 16 connected to the relay’s positive and negative auxiliary supply terminals respectively. However, check the wiring against the schematic diagram for the installation to ensure compliance with the customer’s normal practice.

5.1.5 Watchdog contacts

Using a continuity tester, check that the watchdog contacts are in the states given in Table 3 for a de-energized relay.

<table>
<thead>
<tr>
<th>Terminals</th>
<th>Contact state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay de-energized</td>
<td>Relay energized</td>
</tr>
<tr>
<td>F11 - F12</td>
<td>(P241 40TE)</td>
</tr>
<tr>
<td>J11 - J12</td>
<td>(P242 60TE)</td>
</tr>
<tr>
<td>M11 - M12</td>
<td>(P243 80TE)</td>
</tr>
<tr>
<td>F13 - F14</td>
<td>(P241 40TE)</td>
</tr>
<tr>
<td>J13 - J14</td>
<td>(P242 60TE)</td>
</tr>
<tr>
<td>M13 - M14</td>
<td>(P243 80TE)</td>
</tr>
</tbody>
</table>

Table 3: Watchdog contact status

5.1.6 Auxiliary supply

The relay can be operated from either a dc only or an ac/dc auxiliary supply depending on the relay’s nominal supply rating. The incoming voltage must be within the operating range specified in Table 4.

Without energizing the relay, measure the auxiliary supply to ensure it is within the operating range.

<table>
<thead>
<tr>
<th>Nominal supply rating DC [AC rms]</th>
<th>DC operating range</th>
<th>AC operating range</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 - 48 V [-]</td>
<td>19 - 65 V</td>
<td>-</td>
</tr>
<tr>
<td>48 - 110 V [30 - 100 V]</td>
<td>37 - 150 V</td>
<td>24 - 110 V</td>
</tr>
<tr>
<td>110 - 240 V [100 - 240 V]</td>
<td>87 - 300 V</td>
<td>80 - 265 V</td>
</tr>
</tbody>
</table>

Table 4: Operational range of auxiliary supply Vx

Note: The relay can withstand an ac ripple of up to 12% of the upper rated voltage on the dc auxiliary supply.
Do not energize the relay using the battery charger with the battery disconnected as this can irreparably damage the relay’s power supply circuitry.

Energize the relay only if the auxiliary supply is within the operating range. If test block is provided, it may be necessary to link across the front of the test plug to connect the auxiliary supply to the relay.

5.2 With the relay energized

The following group of tests verify that the relay hardware and software is functioning correctly and should be carried out with the auxiliary supply applied to the relay.

The current and voltage transformer connections must remain isolated from the relay for these checks. The trip circuit should also remain isolated to prevent accidental operation of the associated circuit breaker.

5.2.1 Watchdog contacts

Using a continuity tester, check the watchdog contacts are in the states given in Table 2 for an energized relay.

5.2.2 LCD front panel display

The liquid crystal display is designed to operate in a wide range of substation ambient temperatures. For this purpose, the Px40 relays have an LCD Contrast setting. This allows the user to adjust how light or dark the characters are displayed. The contrast is factory preset to account for a standard room temperature, however it may be necessary to adjust the contrast to give the best in-service display. To change the contrast, cell [09FF: LCD Contrast] at the bottom of the CONFIGURATION column can be incremented (darker) or decremented (lighter), as required.

Care: Before applying a contrast setting, make sure the display is not too light or dark so that the menu text becomes unreadable. To restore a visible display download the MiCOM S1 Studio setting file, with the LCD Contrast set in the typical range of 7 - 11.

5.2.3 Date and time

Before setting the date and time, ensure that the factory-fitted battery isolation strip that prevents battery drain during transportation and storage has been removed. With the lower access cover open, presence of the battery isolation strip can be checked by a red tab protruding from the positive side of the battery compartment. Lightly pressing the battery to prevent it falling out of the battery compartment, pull the red tab to remove the isolation strip.

The data and time should now be set to the correct values. The method of setting depends on whether accuracy is being maintained via the optional inter-range instrumentation group standard B (IRIG-B) port on the rear of the relay.

5.2.3.1 With an IRIG-B signal

If a satellite time clock signal conforming to IRIG-B is provided and the relay has the optional IRIG-B port fitted, the satellite clock equipment should be energized.

To allow the relays time and date to be maintained from an external IRIG-B source cell [0804: DATE and TIME, IRIG-B Sync.] must be set to Enabled.

Ensure the relay is receiving the IRIG-B signal by checking that cell [0805: DATE and TIME, IRIG-B Status] reads Active.

Once the IRIG-B signal is active, adjust the time offset of the universal co-ordinated time (satellite clock time) on the satellite clock equipment so that local time is displayed.
Check the time, date and month are correct in cell [0801: DATE and TIME, Date/Time]. The IRIG-B signal does not contain the current year so it needs to be set manually in this cell.

If the auxiliary supply fails, with a battery fitted in the compartment behind the bottom access cover, the time and date is maintained. Therefore, when the auxiliary supply is restored, the time and date are correct and not need to be set again.

To test this, remove the IRIG-B signal, then remove the auxiliary supply from the relay. Leave the relay de-energized for approximately 30 seconds. On re-energization, the time in cell [0801: DATE and TIME, Date/Time] should be correct.

Reconnect the IRIG-B signal.

5.2.3.2 Without an IRIG-B signal

If the time and date is not being maintained by an IRIG-B signal, ensure that cell [0804: DATE and TIME, IRIG-B Sync.] is set to **Disabled**.

Set the date and time to the correct local time and date using cell [0801: DATE and TIME, Date/Time].

If the auxiliary supply fails, with a battery fitted in the compartment behind the bottom access cover, the time and date is maintained. Therefore when the auxiliary supply is restored the time and date are correct and not need to be set again.

To test this, remove the auxiliary supply from the relay for approximately 30 seconds. On re-energization, the time in cell [0801: DATE and TIME, Date/Time] should be correct.

5.2.4 Light emitting diodes (LEDs)

On power up the green LED should have switch on and stay on indicating that the relay is healthy. The relay has non-volatile memory which remembers the state (on or off) of the alarm, trip and, if configured to latch, user-programmable LED indicators when the relay was last energized from an auxiliary supply. Therefore these indicators may also switch on when the auxiliary supply is applied.

If any of these LEDs are on, then they should be reset before proceeding with further testing. If the LED’s successfully reset (the LED goes out), there is no testing required for that LED because it is known to be operational.

5.2.4.1 Testing the alarm and out of service LEDs

The alarm and out of service LEDs can be tested using the COMMISSIONING TESTS menu column. Set cell [0F0D: COMMISSIONING TESTS, Test Mode] to **Contacts Blocked**. Check that the out of service LED illuminates continuously and the alarm LED flashes.

It is not necessary to return cell [0F0D: COMMISSIONING TESTS, Test Mode] to **Disabled** at this stage because the test mode will be required for later tests.

5.2.4.2 Testing the trip LED

The trip LED can be tested by initiating a manual circuit breaker trip from the relay. However, the trip LED operates during the setting checks performed later. Therefore no further testing of the trip LED is required at this stage.

5.2.4.3 Testing the user-programmable LEDs

To test the user-programmable LEDs set cell [0F10: COMMISSIONING TESTS, Test LEDs] to **Apply Test**. Check that all 8 (P241) or 18 (P242/3) programmable LEDs on the relay illuminate.

5.2.5 Field voltage supply

The relay generates a field voltage of nominally 48 V that can be used to energize the opto-isolated inputs (alternatively the substation battery may be used).

Measure the field voltage across terminals 7 and 9 on the terminal block given in Table 5. Check that the field voltage is within the range 40 V to 60 V when no load is connected and that the polarity is correct.
Repeat for terminals 8 and 10.

<table>
<thead>
<tr>
<th>Supply rail</th>
<th>Terminals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P241 (40TE)</td>
</tr>
<tr>
<td>+ve</td>
<td>F7 & F8</td>
</tr>
<tr>
<td>-ve</td>
<td>F9 & F10</td>
</tr>
</tbody>
</table>

Table 5: Field voltage terminals

5.2.6 Input opto-isolators

This test checks that all the opto-isolated inputs are functioning correctly. The P241 relay has 8 opto-isolated inputs in the 40TE case. The P242 relay has 16 opto-isolated inputs in the 60TE case and the P243 has 16 opto-isolated inputs in the 80TE case.

Energize the opto-isolated inputs one at a time, see the Installation chapter (P24x/EN IN) for the terminal numbers. Ensure that the correct opto input nominal voltage is set in the Opto Config Menu. Ensure correct polarity and connect the field supply voltage to the appropriate terminals for the input being tested. Each opto input also has selectable filtering. This allows use of a pre-set filter of ½ cycle that renders the input immune to induced noise on the wiring.

Note: The opto-isolated inputs may be energized from an external dc auxiliary supply (such as the station battery) in some installations. Check that this is not the case before connecting the field voltage otherwise damage to the relay may result. If an external 24/27 V, 30/34 V, 48/54 V, 110/125 V, 220/250 V supply is being used it will be connected to the relay's optically isolated inputs directly. If an external supply is being used then it must be energized for this test but only if it has been confirmed that it is suitably rated with less than 12% ac ripple.

The status of each opto-isolated input can be viewed using either cell [0020: SYSTEM DATA, Opto Ι/P Status] or [0F01: COMMISSIONING TESTS, Opto Ι/P Status], a 1 indicating an energized input and a 0 indicating a de-energized input. When each opto-isolated input is energized one of the characters on the bottom line of the display changes to indicate the new state of the inputs.

5.2.7 Output relays

This test checks that all the output relays are functioning correctly. The P241 relay has 7 output relays in the 40TE case. The P242 relay has 16 output relays in the 60TE case and the P243 has 16 output relays in the 80TE case.

Ensure that the cell [0F0D: COMMISSIONING TESTS, Test Mode] is set to Contacts Blocked.

The output relays should be energized one at a time. To select output relay 1 for testing, set cell [0F0E: COMMISSIONING TESTS, Test Pattern] 00000000000000000000000000000001.

Connect a continuity tester across the terminals corresponding to output relay 1 as given in the external connection diagram (P24x/EN IN).

To operate the output relay, set cell [0F0F: COMMISSIONING TESTS, Contact Test] to Apply Test. Operation is confirmed by the continuity tester operating for a normally open contact and ceasing to operate for a normally closed contact. Measure the resistance of the contacts in the closed state.

Reset the output relay by setting cell [0F0F: COMMISSIONING TESTS, Contact Test] to Remove Test.

Note: Make sure that thermal ratings of anything connected to the output relays during the contact test procedure is not exceeded by the associated output relay being operated for too long. It is therefore advised that the time between application and removal of contact test is kept to the minimum.
Repeat the test for the rest of the relays.

Return the relay to service by setting cell [0F0D: COMMISSIONING TESTS, Test Mode] to Disabled.

5.2.8 RTD inputs
This test checks that all the RTD inputs are functioning correctly and is only performed on relays with the RTD board fitted.

A 100 \(\Omega \) resistor, preferably with a tolerance of 0.1\%, should be connected across each RTD in turn for PT100 and Ni100 RTDs and a 120 \(\Omega \) resistor for Ni120 RTDs. The resistor needs to have a very small tolerance as RTDs complying to BS EN 60751: 1995 typically have a change of resistance of 0.39 \(\Omega \) per °C, therefore the use of a precision wire wound or metal film resistor is recommended. It is essential to connect the RTD common return terminal to the appropriate RTD input otherwise the relay reports an RTD error as it assumes that the RTD wiring has been damaged. The connections required for testing each RTD input are given in Table 6.

Check that the corresponding temperature displayed in the MEASUREMENTS 3 column of the menu is 0°C ±2°C. This range takes into account the 0.1% resistor tolerance and relay accuracy of ±1°C. If a resistor of lower accuracy is used during testing the acceptable setting range needs to be increased.

<table>
<thead>
<tr>
<th>RTD</th>
<th>Terminal connections</th>
<th>Measurement cell (in ‘measurements 3’ column (04) of menu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B1 and B2</td>
<td>B2 and B3 [0405: RTD 1 Label]</td>
</tr>
<tr>
<td>2</td>
<td>B4 and B5</td>
<td>B5 and B6 [0406: RTD 2 Label]</td>
</tr>
<tr>
<td>3</td>
<td>B7 and B8</td>
<td>B8 and B9 [0407: RTD 3 Label]</td>
</tr>
<tr>
<td>4</td>
<td>B10 and B11</td>
<td>B11 and B12 [0408: RTD 4 Label]</td>
</tr>
<tr>
<td>5</td>
<td>B13 and B14</td>
<td>B14 and B15 [0409: RTD 5 Label]</td>
</tr>
<tr>
<td>6</td>
<td>B16 and B17</td>
<td>B17 and B18 [040A: RTD 6 Label]</td>
</tr>
<tr>
<td>7</td>
<td>B19 and B20</td>
<td>B20 and B21 [040B: RTD 7 Label]</td>
</tr>
<tr>
<td>8</td>
<td>B22 and B23</td>
<td>B23 and B24 [040C: RTD 8 Label]</td>
</tr>
<tr>
<td>9</td>
<td>B25 and B26</td>
<td>B26 and B27 [040D: RTD 9 Label]</td>
</tr>
<tr>
<td>10</td>
<td>B28 and B29</td>
<td>B29 and B30 [040E: RTD 10 Label]</td>
</tr>
</tbody>
</table>

Table 6: RTD input terminals

5.2.9 Current loop inputs
This test checks that all the current loop (analog) inputs are functioning correctly and is only performed on relays with the CLIO (current loop input output) board fitted.

Relay terminal connections can be found by referring to the connection diagrams in the Installation chapter, P24x/EN IN.

Note: The current loop inputs the physical connection of the 0 - 1 mA input is different from that of the 0 - 10, 0 - 20 and 4 - 20 mA inputs, as shown in the connection diagrams.

An accurate dc current source can be used to apply various current levels to the current loop inputs. Another approach is to use the current loop output as a convenient and flexible dc current source to test the input protection functionality. Externally the current loop outputs can be fed into their corresponding current loop inputs. Then by applying a certain level of analog signal, such as VA, to the relay the required dc output level can be obtained from the current loop output which is feeding the current loop input.
Enable the current loop input to be tested. Set the CLIx minimum and maximum settings and the CLIx Input type for the application.

Apply a dc current to the relay current loop input at 50% of the CLI input maximum range, 0.5 mA (0 - 1 mA CLI), 5 mA (0 - 10 mA CLI) or 10 mA (0 - 20, 4 - 20 mA CLI).

Check the accuracy of the current loop input using the MEASUREMENTS 3 - ANALOG Input 1/2/3/4 column of the menu. The display should show (CLIx maximum + CLIx minimum)/2 ±1% full scale accuracy.

5.2.10 Current loop (analog) outputs
This test checks that all the current loop (analog) outputs are functioning correctly and is only performed on relays with the CLIO board fitted.

Relay terminal connections can be found by referring to the connection diagrams in P24x/EN IN.

Note: For the current loop outputs the physical connection of the 0 - 1 mA output is different from that of the 0 - 10, 0 - 20 and 4 - 20 mA outputs, as shown in the connection diagrams.

Enable the current loop output to be tested. Set the Analog Output parameter, Analog Outputx minimum and maximum settings and the Analogx Output type (range) for the application. Apply the appropriate analog input parameter to the relay equals to (Analogx maximum + Analogx minimum)/2. The current loop output should be at 50% of its maximum rated output. Using a precision resistive current shunt together with a high-resolution voltmeter, check that the analog (current loop) output is at 50% of its maximum rated output, 0.5 mA (0 - 1 mA CLO), 5 mA (0 - 10 mA CLO) or 10 mA (0 - 20, 4 – 20 mA CLO). The accuracy should be within ±0.5% of full scale + meter accuracy.

5.2.11 First rear communications port
This test should only be performed where the relay is to be accessed from a remote location and varies depending on the communications standard being adopted.

It is not the intention of the test to verify the operation of the complete system from the relay to the remote location, just the relay’s rear communications port and any protocol converter necessary.

5.2.11.1 Courier communications
If a K-Bus to EIA(RS)232 KITZ protocol converter is installed, connect a portable PC running the appropriate software (such as MiCOM S1 Studio or PAS&T) to the incoming (remote from relay) side of the protocol converter.

If a KITZ protocol converter is not installed, it may not be possible to connect the PC to the relay installed. In this case a KITZ protocol converter and portable PC running appropriate software should be temporarily connected to the relay’s first rear K-Bus port. The terminal numbers for the relays first rear K-Bus port are given in Table 7. However, as the installed protocol converter is not being used in the test, only the correct operation of the relays K-Bus port will be confirmed.

<table>
<thead>
<tr>
<th>Connection</th>
<th>Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-Bus MODBUS or VDEW</td>
<td>P241 (40TE)</td>
</tr>
<tr>
<td>Screen</td>
<td>Screen</td>
</tr>
<tr>
<td>1 +ve</td>
<td>F17</td>
</tr>
<tr>
<td>2 -ve</td>
<td>F18</td>
</tr>
</tbody>
</table>

Table 7: EIA(RS)485 terminals

Ensure that the communications baud rate and parity settings in the application software are set the same as those on the protocol converter (usually a KITZ but could be a SCADA RTU). The relays Courier address in cell [0E02: COMMUNICATIONS, Remote Address] must be set to a value between 1 and 254.
Check that communications can be established with this relay using the portable PC.

If the relay has the optional fiber optic communications port fitted, the port to be used should be selected by setting cell [0E07: COMMUNICATIONS, Physical Link] to Fiber Optic. Ensure that the relay address and baud rate settings in the application software are set the same as those in cell [0E04 COMMUNICATIONS, Baud Rate] of the relay. Check that, using the Master Station, communications with the relay can be established.

5.2.11.2 MODBUS communications

Connect a portable PC running the appropriate MODBUS Master Station software to the relay’s first rear EIA(RS)485 port via an EIA(RS)485 to EIA(RS)232 interface converter. The terminal numbers for the relay’s EIA(RS)485 port are given in Table 6.

Ensure that the relay address, baud rate and parity settings in the application software are set the same as those in cells [0E02: COMMUNICATIONS, Remote Address], [0E04: COMMUNICATIONS, Baud Rate] and [0E05: COMMUNICATIONS, Parity] of the relay.

Check that communications with this relay can be established.

If the relay has the optional fiber optic communications port fitted, the port to be used should be selected by setting cell [0E07: COMMUNICATIONS, Physical Link] to Fiber Optic. Ensure that the relay address and baud rate settings in the application software are set the same as those in cell [0E04 COMMUNICATIONS, Baud Rate] of the relay. Check that, using the Master Station, communications with the relay can be established.

5.2.11.3 IEC 60870-5-103 (VDEW) communications

If the relay has the optional fiber optic communications port fitted, the port to be used should be selected by setting cell [0E07: COMMUNICATIONS, Physical Link] to Fiber Optic or EIA(RS)485.

IEC 60870-5-103/VDEW communication systems are designed to have a local Master Station and this should be used to verify that the relay’s rear fiber optic or EIA(RS)485 port, as appropriate, is working.

Ensure that the relay address and baud rate settings in the application software are set the same as those in cells [0E02: COMMUNICATIONS, Remote Address] and [0E04: COMMUNICATIONS, Baud Rate] of the relay.

Check that, using the Master Station, communications with the relay can be established.

5.2.11.4 IEC 61850 communications

Connect a portable PC running the appropriate IEC 61850 Master Station Software or MMS browser to the relays Ethernet port (RJ45 or ST fiber optic connection). The terminal numbers for the relays Ethernet port are given in Table 8.

Configuration of the relay IP parameters (IP Address, Subnet Mask, Gateway) and SNTP time synchronization parameters (SNTP Server 1, SNTP Server 2) is performed by the IED Configurator tool. If these parameters are not available from an SCL file, they must be configured manually.

If the assigned IP address is duplicated elsewhere on the same network, the remote communications operates in an indeterminate way. However, the relay checks for a conflict on every IP configuration change and at power up. An alarm is raised if an IP conflict is detected. The relay can be configured to accept data from networks other than the local network by using the Gateway setting.

Check that communications with this relay can be established.

To communicate with an IEC 61850 IED on Ethernet, it is necessary only to know its IP address. This can then be configured into either:

- An IEC 61850 client (or master), for example a PACiS computer (MiCOM C264) or HMI, or
- An MMS browser, with which the full data model can be retrieved from the IED, without any prior knowledge
Setting changes such as protection settings are not supported in the current IEC 61850 implementation. Such setting changes are done using MiCOM S1 Studio using the front port serial connection of the relay, or over the Ethernet link if preferred. This is known as tunneling. See SCADA Communications chapter, P24x/EN SC for more information on IEC 61850.

The connector for the Ethernet port is a shielded RJ-45. The table below shows the signals and pins on the connector.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal name</th>
<th>Signal definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TXP</td>
<td>Transmit (positive)</td>
</tr>
<tr>
<td>2</td>
<td>TXN</td>
<td>Transmit (negative)</td>
</tr>
<tr>
<td>3</td>
<td>RXP</td>
<td>Receive (positive)</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>Not used</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>Not used</td>
</tr>
<tr>
<td>6</td>
<td>RXN</td>
<td>Receive (negative)</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>Not used</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>Not used</td>
</tr>
</tbody>
</table>

Table 8: Signals on the Ethernet connector

5.2.12 Second rear communications port

This test should only be performed where the relay is to be accessed from a remote location and varies depending on the communications standard being adopted.

It is not the intention of the test to verify the operation of the complete system from the relay to the remote location, just the relays rear communications port and any protocol converter necessary.

5.2.12.1 K-Bus configuration

If a K-Bus to EIA(RS)232 KITZ protocol converter is installed, connect a portable PC running the appropriate software (MiCOM S1 Studio or PAS&T) to the incoming (remote from relay) side of the protocol converter.

If a KITZ protocol converter is not installed, it may not be possible to connect the PC to the relay installed. In this case a KITZ protocol converter and portable PC running appropriate software should be temporarily connected to the relay’s second rear communications port configured for K-Bus. The terminal numbers for the relay’s K-Bus port are given in Table 9. However, as the installed protocol converter is not being used in the test, only the correct operation of the relay’s K-Bus port is confirmed.

<table>
<thead>
<tr>
<th>Pin*</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>EIA(RS)485 - 1 (+ ve)</td>
</tr>
<tr>
<td>7</td>
<td>EIA(RS)485 - 2 (- ve)</td>
</tr>
</tbody>
</table>

Table 9: Second rear communications port K-Bus terminals

* - All other pins unconnected.

Ensure that the communications baud rate and parity settings in the application software are set the same as those on the protocol converter (usually a KITZ but could be a SCADA RTU). The relay’s Courier address in cell [0E90: COMMUNICATIONS, RP2 Address] must be set to a value between 1 and 254. The second rear communication’s port configuration [0E88: COMMUNICATIONS RP2 Port Config.] must be set to K-Bus.

Check that communications can be established with this relay using the portable PC.
5.2.12.2 EIA(RS)485 configuration

If an EIA(RS)485 to EIA(RS)232 converter (CK222) is installed, connect a portable PC running the appropriate software (MiCOM S1 Studio) to the EIA(RS)232 side of the converter and the second rear communications port of the relay to the EIA(RS)485 side of the converter.

The terminal numbers for the relay’s EIA(RS)485 port are given in Table 6.

Ensure that the communications baud rate and parity settings in the application software are set the same as those in the relay. The relays Courier address in cell [0E90: COMMUNICATIONS, RP2 Address] must be set to a value between 1 and 254. The second rear communication’s port configuration [0E88: COMMUNICATIONS RP2 Port Config.] must be set to EIA(RS)485.

Check that communications can be established with this relay using the portable PC.

5.2.12.3 EIA(RS)232 configuration

Connect a portable PC running the appropriate software (MiCOM S1 Studio) to the rear EIA(RS)232 \(^1\) port of the relay.

The second rear communications port connects via the 9-way female D-type connector (SK4). The connection is compliant to EIA(RS)574.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No Connection</td>
</tr>
<tr>
<td>2</td>
<td>RxD</td>
</tr>
<tr>
<td>3</td>
<td>TxD</td>
</tr>
<tr>
<td>4</td>
<td>DTR#</td>
</tr>
<tr>
<td>5</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>No Connection</td>
</tr>
<tr>
<td>7</td>
<td>RTS#</td>
</tr>
<tr>
<td>8</td>
<td>CTS#</td>
</tr>
<tr>
<td>9</td>
<td>No Connection</td>
</tr>
</tbody>
</table>

Table 10: Second rear communications port EIA(RS)232 terminals

- These pins are control lines for use with a modem.

Connections to the second rear port configured for EIA(RS)232 operation can be made using a screened multi-core communication cable up to 15 m long, or a total capacitance of 2500 pF. The cable should be terminated at the relay end with a 9-way, metal shelled, D-type male plug. The terminal numbers for the relay’s EIA(RS)232 port are given in Table 8.

Ensure that the communications baud rate and parity settings in the application software are set the same as those in the relay. The relays Courier address in cell [0E90: COMMUNICATIONS, RP2 Address] must be set to a value between 1 and 254. The second rear communication’s port configuration [0E88: COMMUNICATIONS RP2 Port Config.] must be set to EIA(RS)232.

Check that communications can be established with this relay using the portable PC.

5.2.13 Current inputs

This test verifies that the accuracy of current measurement is within the acceptable tolerances.

All relays leave the factory set for operation at a system frequency of 50 Hz. If operation at 60 Hz is required, this must be set in cell [0009: SYSTEM DATA, Frequency].

Apply current equal to the line current transformer secondary winding rating to each current transformer input of the corresponding rating in turn, checking its magnitude using a

\(^1\) This port is actually compliant to EIA(RS)574; the 9-pin version of EIA(RS)232, see www.tiaonline.org.
multimeter. Refer to Table 11 for the corresponding reading in the relays MEASUREMENTS 1 or MEASUREMENTS 3 columns, as appropriate, and record the value displayed.

<table>
<thead>
<tr>
<th>Menu cell</th>
<th>Apply current to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P241 (40TE)</td>
</tr>
<tr>
<td></td>
<td>1 A CTs</td>
</tr>
<tr>
<td>[0201: MEASUREMENTS 1, IA Magnitude]</td>
<td>C3 - C2</td>
</tr>
<tr>
<td>[0203: MEASUREMENTS 1, IB Magnitude]</td>
<td>C6 - C5</td>
</tr>
<tr>
<td>[0205: MEASUREMENTS 1, IC Magnitude]</td>
<td>C9 - C8</td>
</tr>
<tr>
<td>[0230: MEASUREMENTS 1, IA-2 Magnitude] (P243 only)</td>
<td>F3 - F2</td>
</tr>
<tr>
<td>[0232: MEASUREMENTS 1, IB-2 Magnitude] (P243 only)</td>
<td>F6 - F5</td>
</tr>
<tr>
<td>[0234: MEASUREMENTS 1, IC-2 Magnitude] (P243 only)</td>
<td>F9 - F8</td>
</tr>
</tbody>
</table>

Table 11: Current input terminals

The measured current values displayed on the relay LCD or a portable PC connected to the front communication port, are either be in primary or secondary Amperes. If cell [0D02: MEASURE'T SETUP, Local Values] is set to **Primary**, the values displayed should be equal to the applied current multiplied by the corresponding current transformer ratio set in the **CT and VT RATIOS** menu column (see Table 12). If cell [0D02: MEASURE'T SETUP, Local Values] is set to **Secondary**, the value displayed should be equal to the applied current.

Note: If a PC connected to the relay’s rear communications port is used to display the measured current, the process is similar. However, the setting of cell [0D03: MEASURE'T SETUP, Remote Values] determines whether the displayed values are in primary or secondary Amperes.

The measurement accuracy of the relay is ±1%. However, an additional allowance must be made for the accuracy of the test equipment being used.

<table>
<thead>
<tr>
<th>Menu cell</th>
<th>Corresponding CT ratio (in ‘VT and CT RATIO column (0A) of menu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0201: MEASUREMENTS 1, IA Magnitude]</td>
<td>IA</td>
</tr>
<tr>
<td>[0203: MEASUREMENTS 1, IB Magnitude]</td>
<td>IB</td>
</tr>
<tr>
<td>[0205: MEASUREMENTS 1, IC Magnitude]</td>
<td>IC</td>
</tr>
<tr>
<td>[0230: MEASUREMENTS 1, IA-2 Magnitude] (P243 only)</td>
<td>IA-2</td>
</tr>
<tr>
<td>[0232: MEASUREMENTS 1, IB-2 Magnitude] (P243 only)</td>
<td>IB-2</td>
</tr>
<tr>
<td>[0234: MEASUREMENTS 1, IC-2 Magnitude] (P243 only)</td>
<td>IC-2</td>
</tr>
<tr>
<td>[020B: MEASUREMENTS 1, ISEF Magnitude]</td>
<td>ISEF</td>
</tr>
</tbody>
</table>

Table 12: CT ratio settings
5.2.14 Voltage inputs

This test verifies the accuracy of voltage measurement is within the acceptable tolerances.

Three modes of connection are available on the P24x relay: either 3VTs connection, or 2VTs plus residual VT connection or 2VTs plus remanent voltage VT connection (see Installation Chapter, P24x/EN IN for detailed information).

The following tests will be realized with the VT Connecting Mode set to 3 VT which is the most used configuration.

Apply rated voltage to each voltage transformer input in turn, checking its magnitude using a multimeter. Refer to Table 13 for the corresponding reading in the relays MEASUREMENTS 1 column and record the value displayed.

<table>
<thead>
<tr>
<th>Menu cell</th>
<th>Voltage applied to</th>
</tr>
</thead>
<tbody>
<tr>
<td>[021A: MEASUREMENTS 1, VAN Magnitude]</td>
<td>P241 (40TE) C19 - C22 D19 - D22</td>
</tr>
<tr>
<td>[021C: MEASUREMENTS 1, VBN Magnitude]</td>
<td>P242 (60TE), P243 (80TE) C20 - C22 D20 - D22</td>
</tr>
<tr>
<td>[021E: MEASUREMENTS 1, VCN Magnitude]</td>
<td></td>
</tr>
<tr>
<td>[0220: MEASUREMENTS 1, VN Measured Mag]</td>
<td></td>
</tr>
</tbody>
</table>

Table 13: Voltage input terminals

The measured voltage values displayed on the relay LCD or a portable PC connected to the front communication port will either be in primary or secondary volts. If cell [0D02: MEASURE’T SETUP, Local Values] is set to Primary, the values displayed should be equal to the applied voltage multiplied by the corresponding voltage transformer ratio set in the VT and CT RATIOS menu column (see Table 14). If cell [0D02: MEASURE’T SETUP, Local Values] is set to Secondary, the value displayed should be equal to the applied voltage.

Note: If a PC connected to the relay’s rear communications port is used to display the measured voltage, the process is similar. However, the setting of cell [0D03: MEASURE’T SETUP, Remote Values] determines whether the displayed values are in primary or secondary volts.

The measurement accuracy of the relay is ±1%. However, an additional allowance must be made for the accuracy of the test equipment being used.

<table>
<thead>
<tr>
<th>Menu cell</th>
<th>Corresponding VT ratio (in ‘VT and CT RATIO column (0A) of menu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[021A: MEASUREMENTS 1, VAN Magnitude]</td>
<td>[0A01: Main VT Primary]</td>
</tr>
<tr>
<td>[021C: MEASUREMENTS 1, VBN Magnitude]</td>
<td>[0A02: Main VT Sec’y]</td>
</tr>
<tr>
<td>[021E: MEASUREMENTS 1, VCN Magnitude]</td>
<td></td>
</tr>
</tbody>
</table>

Table 14: VT ratio settings
6 SETTING CHECKS

The setting checks ensure that all of the application-specific relay settings (that is both the relays function and programmable scheme logic settings) for the particular installation have been correctly applied to the relay.

If the application-specific settings are not available, ignore sections 6.1 and 6.2

Note: The trip circuit should remain isolated during these checks to prevent accidental operation of the associated circuit breaker.

6.1 Apply application-specific settings

There are two methods of applying the settings:

- Transferring them from a pre-prepared setting file to the relay using a portable PC running the appropriate software (MiCOM S1 Studio) using the relays front EIA(RS)232 port, located under the bottom access cover, or the first rear communications port (Courier protocol with a KITZ protocol converter connected), or the second rear communications port. This method is preferred for transferring function settings as it is much faster and there is less margin for error. If programmable scheme logic other than the default settings with which the relay is supplied is to be used then this is the only way of changing the settings.

- If a setting file has been created for the particular application and provided on a diskette, the commissioning time is further reduced, especially if application-specific programmable scheme logic is applied to the relay.

- Enter the settings manually using the relay’s operator interface. This method is not suitable for changing the programmable scheme logic.

When the installation needs application-specific Programmable Scheme Logic it is essential that the appropriate .psl file is downloaded (sent) to the relay, for each and every setting group that will be used. If the user fails to download the required .psl file to any setting group that may be brought into service, the factory default PSL will still be resident. This may have severe operational and safety consequences.

6.2 Check application-specific settings

The settings applied should be carefully checked against the required application-specific settings to ensure they have been entered correctly. However, this is not considered essential if a customer-prepared setting file on diskette has been transferred to the relay using a portable PC.

There are two methods of checking the settings:

- Extract the settings from the relay using a portable PC running the appropriate software (MiCOM S1 Studio) using the front EIA(RS)232 port, located under the bottom access cover, or the first rear communications port (Courier protocol with a KITZ protocol converter connected), or the second rear communications port. Compare the settings transferred from the relay with the original written application-specific setting record. (For cases where the customer has only provided a printed copy of the required settings but a portable PC is available).

- Step through the settings using the relays operator interface and compare them with the original application-specific setting record.

Unless previously agreed, the application-specific programmable scheme logic is not checked as part of the commissioning tests.

Due to the versatility and possible complexity of the programmable scheme logic, it is beyond the scope of these commissioning instructions to detail suitable test procedures. Therefore, when programmable scheme logic tests must be performed, written tests which will satisfactorily demonstrate the correct operation of the application-specific scheme logic should be devised by the Engineer who created it. These should be provided to the Commissioning Engineer together with the diskette containing the programmable scheme logic setting file.
6.3 Demonstrate correct relay operation

Tests 5.2.9 and 5.2.10 have already demonstrated that the relay is within calibration; therefore the purpose of these tests is as follows:

- To determine that the primary protection function of the P241/2/3 relay, the thermal protection, can trip according to the correct application settings.
- To determine that the differential protection function of the P243 relay can trip according to the correct application settings.
- To verify correct setting of the sensitive earth fault protection (P241/2/3).
- To verify correct assignment of the trip contacts, by monitoring the response to a selection of fault injections.

6.3.1 Motor differential protection (P243)

To avoid spurious operation of any other protection elements all protection elements except the motor differential protection should be disabled for the duration of the differential element tests. This is done in the relay’s CONFIGURATION column. Make a note of which elements need to be re-enabled after testing.

For testing the biased differential protection select the Percentage Bias setting in the Diff Function, Differential menu and perform the tests described in section 6.3.1.2, 6.3.1.3 and 6.3.2. For testing the high impedance differential protection select the High Impedance setting in the Diff Function, Differential menu and perform the tests described in section 6.3.2.

The P243 motor differential protection has three elements, one for each phase. The biased differential protection uses the maximum bias current in the three phases to bias the elements. The detailed bias characteristic is described in sub-document - Installation. The following instructions are for testing the bias characteristic of the B phase element. The bias current is applied to the A phase element.

6.3.1.1 Connect the test circuit

The following tests require a variable transformer and two resistors connected as shown in Figure 3. Alternatively an injection test set can be used to supply Ia and Ib currents.

![Figure 3: Connection for testing](image)

For the biased differential protection a current is injected into the A phase \(I_{A-2} \) input, \(F_3 - F_2 \) (1A), \(F_1 - F_2 \) (5A), which is used as the bias current, \(I_{Bias} = (I_A + I_{A-2})/2 = I_{A-2}/2 \) as \(I_A = 0 \). Another current is injected into the B phase \(I_{B-2} \) input \(F_6 - F_5 \) (1A), \(F_4 - F_5 \) (5A) which is used as the differential current, Differential = \(I_{B-2} - I_B = 1B - 2 \) as \(I_B = 0 \). \(I_a \) is always greater than \(I_b \).

6.3.1.2 Biased differential protection lower slope

If three LEDs have been assigned to give phase segregated trip information, Diff Trip A, Diff Trip B and Diff Trip C (DDB 315, 316, 317), these may be used to indicate correct per-phase operation. If not, monitor options are needed - see the next paragraph.
Go to the COMMISSION TESTS column in the menu, scroll down and change cells [0F05: Monitor Bit 1] to 315, [0F06: Monitor Bit 2] to 316 and [0F07: Monitor Bit 3] to 317. Cell [0F04: Test Port Status] will now appropriately set or reset the bits that now represent Phase A Trip (DDB 315), Phase B Trip (DDB 316) and Phase C Trip (DDB 317) with the rightmost bit representing Phase A Trip. From now on you should monitor the indication of [0F04: Test Port Status].

Adjust the variac and the resistor to inject 1 pu into IA-2 to give a bias current of 0.5 pu in the A-phase.

Note: 1 pu = 1 A into terminals, F3 - F2 for 1 A applications; or 1 pu = 5 A into terminals F1-F2 for 5 A applications.

The relay trips and any contacts associated with the A-phase operates, and bit 1 (rightmost) of [0F04: Test Port Status] are set to 1. Some LEDs, including the yellow alarm LED, will come on, but ignore them for the moment.

Slowly increase the current in the B-phase IB-2 input F6 - F5 (1A), F4 - F5 (5 A) until phase B trips (Bit 2 of [0F04: Test Port Status] is set to 1). Record the phase B current magnitude and check that it corresponds to the information below. Switch OFF the ac supply and reset the alarms.

<table>
<thead>
<tr>
<th>Bias current (IA-2/2)</th>
<th>Differential current (IB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase</td>
<td>Magnitude</td>
</tr>
<tr>
<td>A</td>
<td>0.5 pu</td>
</tr>
</tbody>
</table>

Assumption: Is1 = 0.05 pu, k1 = 0%, Is2 = 1.2 pu

For other differential settings the formula below can be used (enter k1 slope in pu form, for example percentage/100):

B phase operate current is (Is1 + IBias x k1) pu +/- 10%

6.3.1.3 Biased differential protection upper slope

Repeat the test in 6.3.1.2 with the A phase, IA-2, current set to be 3.4 pu (Ibias = 1.7 pu).

Slowly increase the current in the B-phase until phase B trips (bit 2 of [0F04: Test Port Status] is set to 1). Record the phase B current magnitude and check that it corresponds to the information below.

Switch OFF the ac supply and reset the alarms.

<table>
<thead>
<tr>
<th>Bias current (IA-2/2)</th>
<th>Differential current (IB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase</td>
<td>Magnitude</td>
</tr>
<tr>
<td>A</td>
<td>1.7 pu</td>
</tr>
</tbody>
</table>

Assumption: Is1 = 0.05 pu, k1 = 0%, Is2 = 1.2 pu, k2 =150% as above

For other differential settings the formula below can be used (enter k1 and k2 slopes in pu form, for example percentage/100):

Operate current is [(IBias x k2) + {(k1 – k2) x Is2} + Is1] pu +/- 20%

Note: Particularly for 5 A applications the duration of current injections should be short to avoid overheating of the variac or injection test set.

6.3.2 Motor differential operation and contact assignment

6.3.2.1 Phase A

Retaining the same test circuit as before, prepare for an instantaneous injection of 4 x Is1 pu current in the A phase, with no current in the B phase (B phase switch open). Connect a timer to start when the fault injection is applied, and to stop when the trip occurs.
Determine which output relay has been selected to operate when a Diff. Trip occurs by viewing the relay’s programmable scheme logic. The programmable scheme logic can only be changed using the appropriate software. If this software is not available then the default output relay allocations are still applicable. In the default PSL, relay 3 is the designated protection trip contact and DDB 371 Any Trip is assigned to this contact.

Ensure that the timer is reset.

Apply a current of 4 x the setting in cell [3002: GROUP 1 DIFFERENTIAL, Diff Is1] to the relay and note the time displayed when the timer stops.

After applying the test check the red trip led and yellow alarm led turns on when the relay operates. Check ‘Alarms/Faults Present - Tripped Phase A, Diff Trip’ is on the display. Reset the alarms.

<table>
<thead>
<tr>
<th>Three Pole Tripping</th>
<th>DDB 318</th>
<th>Diff Trip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Pole Tripping</td>
<td>DDB 315: Diff Trip A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DDB 316: Diff Trip B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DDB 317: Diff Trip C</td>
<td></td>
</tr>
</tbody>
</table>

6.3.2.2 Phase B
Reconfigure the test equipment to inject fault current into the B phase. Repeat the test in 6.3.2.1, this time ensuring that the breaker trip contacts relative to B phase operation close correctly. Record the phase B trip time. Check the red trip led and yellow alarm led turns on when the relay operates. Check ‘Alarms/Faults Present - Tripped Phase B, Diff Trip’ is on the display. Reset the alarms.

6.3.2.3 Phase C
Repeat 6.3.2.2 for the C phase.

The average of the recorded operating times for the three phases should be less than 30 ms. Switch OFF the ac supply and reset the alarms.

On completion of the tests any protection elements which were disabled for testing purposes must have their original settings restored in the CONFIGURATION column.

6.3.3 Sensitive earth fault protection
This test, performed on stage 1 of the sensitive earth fault protection function in setting Group 1, demonstrates that the relay is operating correctly at the application-specific settings.

It is not considered necessary to check the boundaries of operation where cell [3202: SENSITIVE E/F GROUP 1, ISEF>1 Direction] is set to Directional Fwd as the test detailed already confirms the correct functionality between current and voltage inputs, processor and outputs and earlier checks confirmed the measurement accuracy is within the stated tolerance.

To avoid spurious operation of any other protection elements all protection elements except the overcurrent protection should be disabled for the duration of the overcurrent element tests. This is done in the relay’s CONFIGURATION column. Make a note of which elements need to be re-enabled after testing.

6.3.3.1 Connect the test circuit
Determine which output relay has been selected to operate when a ISEF>1 trip occurs by viewing the relay’s programmable scheme logic.

The programmable scheme logic can only be changed using the appropriate software. If this software is not available then the default output relay allocations are still applicable.

If ISEF>1 trip (DDB 261) is not mapped directly to an output relay in the programmable scheme logic, output relay 3 should be used for the test as it operates for any trip condition, DDB 371 Any Trip is assigned to this contact.
The associated terminal numbers can be found from the external connection diagrams in the Installion chapter, P24x/EN IN.

Connect the output relay so that its operation trips the test set and stops the timer.

Connect the current output of the test set to the 'ISensitive' phase current transformer input of the relay (terminals C15 – C14 (1 A, 40TE case), D15 – D14 (1 A, 60TE case), F15 – F14 (1 A, 80TE case), C13 – C14 (5 A, 40TE case), D13 – D14 (5 A, 60TE case) F13 – F14 (5 A, 80TE case)).

Ensure that the timer starts when the current is applied to the relay.

6.3.3.2 Perform the test
Ensure that the timer is reset.

Apply a current of twice the setting in cell [3203: GROUP 1 SENSITIVE E/F, SEF>1 Current Set] to the relay and note the time displayed when the timer stops.

Check the red trip led and yellow alarm led turns on when the relay operates. Check ‘Alarms/Faults Present - Started Phase N, Tripped Phase N, Start ISEF>1, Trip ISEF>1’ is on the display. Reset all alarms.

6.3.3.3 Check the operating time
Check that the operating time recorded by the timer is within the range shown in Table 15.

Note: Except for the definite time characteristic, the operating times given in Table 14 are for a time multiplier or time dial setting of 1. Therefore, to obtain the operating time at other time multiplier or time dial settings, the time given in Table 14 must be multiplied by the setting of cell [3205: GROUP 1 SENSITIVE E/F, ISEF>1 TMS] for IEC and UK characteristics or cell [3207: GROUP 1 SENSITIVE E/F, ISEF>1 Time Dial] for IEEE and US characteristics.

In addition, for definite time and inverse characteristics there is an additional delay of up to 0.02 second and 0.08 second respectively that may need to be added to the relays acceptable range of operating times.

For all characteristics, allowance must be made for the accuracy of the test equipment being used.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Operating time at twice current setting and time multiplier/time dial setting of 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nominal (seconds)</td>
</tr>
<tr>
<td>DT</td>
<td>[3504: ISEF>1 T Delay] setting Setting ±5%</td>
</tr>
<tr>
<td>IEC S Inverse</td>
<td>10.03</td>
</tr>
<tr>
<td>IEC V Inverse</td>
<td>13.50</td>
</tr>
<tr>
<td>IEC E Inverse</td>
<td>26.67</td>
</tr>
<tr>
<td>UK LT Inverse</td>
<td>120.00</td>
</tr>
<tr>
<td>IEEE M Inverse</td>
<td>3.8</td>
</tr>
<tr>
<td>IEEE V Inverse</td>
<td>7.03</td>
</tr>
<tr>
<td>IEEE E Inverse</td>
<td>9.52</td>
</tr>
<tr>
<td>US Inverse</td>
<td>2.16</td>
</tr>
<tr>
<td>US ST Inverse</td>
<td>12.12</td>
</tr>
</tbody>
</table>

Table 15: Characteristic operating times for I>1

On completion of the tests any protection elements that were disabled for testing purposes must have their original settings restored in the CONFIGURATION column.
6.3.4 Thermal overload protection

P24x relays model the time-current thermal characteristic of a motor by internally generating a thermal replica of the machine. The aim of this test is to check:

- The presence of a thermal alarm as soon as the thermal state reaches the set threshold
- The time to a thermal trip in case of a thermal overload
- The measurements of the thermal load and thermal state

The settings of this function are listed in the THERMAL OVERLOAD, GROUP 1 menu column. Check these settings before the test.

To avoid spurious operation of any other protection elements all protection elements except the thermal protection should be disabled for the duration of the thermal element tests. This is done in the relay’s CONFIGURATION column. Make a note of which elements need to be re-enabled after testing.

6.3.4.1 Connect the test circuit

Determine which output relay has been selected to operate when a thermal trip occurs by viewing the relays programmable scheme logic.

The programmable scheme logic can only be changed using the appropriate software. If this software is not available then the default output relay allocations are still applicable.

If the Thermal Trip (DBD 236) is not mapped directly to an output relay in the programmable scheme logic, output relay 3 should be used for the test as it operates for any trip condition, DDB 371 Any Trip is assigned to this contact. The Thermal Alarm (DBD 178) should be mapped directly to an output relay in the programmable scheme logic if this feature is to be tested.

The associated terminal numbers can be found from the external connection diagrams in the Installation chapter, P24x/EN IN.

Connect the output relay so that its operation trips the test set and stops the timer.

Ensure that the timer on the test set is reset.

Apply a current of twice the setting [in cell 3001: THERMAL OVERLOAD, GROUP1, Ith Current Set] to the relay and note the time displayed when the timer stops. If it is required to repeat the test, make sure to disable Thermal Lockout [in cell 3009]. Also make sure to disable the inhibit during start setting Inh Trip Dur St [in cell 300B]. Since most portable secondary injection test sets have limited current output capability, it is suggested to change the Ith Current Set to 1 A (after the as found value is recorded) and use the 1 A phase current input terminals. To save time during testing, it is advisable to set all the thermal time constants to 5 minutes.
Ensure that the thermal state is reset to 0 (see cell [0402: MEASUREMENTS 3, ThermalState]). If not, the thermal state can be reset through the cell [0404: MEASUREMENTS 3, Reset Th State] by selecting YES.

On completion of the tests any protection elements that were disabled for testing purposes must have their original settings restored in the CONFIGURATION column.

6.3.4.3 Verify the operating time

This test is done by a single-phase injection on the A phase current input, it results in that the relay sees equal current magnitudes for both positive and negative phase sequence quantities. On injection of a single phase current value equal to I_{inject}, the relay sees current magnitudes of $I_{\text{inject}}/3$ for both positive and negative phase sequences quantities and I_{rms}. The equivalent thermal current value I_{eq} calculated by the relay is given by the following:

$$I_{eq} = \sqrt{(I_1^2 + K I_2^2)}$$

Note: This equation is used in software version A4.x(09) and before

or

$$I_{eq} = \sqrt{(I_{\text{rms}}^2 + K I_2^2)}$$

Note: This equation is used in software version B1.0(20) or later

Where:

I_1 = Positive sequence current

I_{rms}: root mean square current

I_2: negative sequence current

K is a constant proportional to the thermal capacity of the motor

(K **Coefficient** default setting = 3)

The equivalent motor heating current assuming $K = 3$ for (1) becomes:

$$I_{eq} = \sqrt{4 \times (I_{\text{inject}} / 3)^2}$$
$$= \left(2 \times I_{\text{inject}} / 3 \right)$$

(3)

The equivalent motor heating current assuming $K = 3$ for (2) becomes:

$$I_{eq} = \sqrt{4/3 \times (I_{\text{inject}})^2}$$
$$= \left(2 \times I_{\text{injected}} / \sqrt{3} \right)$$

(4)

The equation used to calculate the trip time at 100% of thermal state is:

$$t = \tau \ln((k^2 - A)/(k^2-1))$$

where the value of τ (thermal time constant) depends on the current value absorbed by the motor:

$\tau = T_1$ (Thermal Const T1) if $I_{th} < I_{eq} = 2*I_{th}$ overload time constant

$\tau = T_2$ (Thermal Const T2) if $I_{eq} > 2*I_{th}$ start-up time constant

$\tau = T_r$ (Cooling Const Tr) if interrupting device is opened cooling time constant

I_{th} = thermal setting in cell [3001: THERMAL OVERLOAD, GROUP1, Inh Current Set]

$k = I_{eq} / I_{th}$ = measured thermal load (or thermal capacity)

A = initial state of the machine, in percentage of the thermal state = 0 for this test.

The time to a thermal trip becomes:
The equation used to calculate the time to the thermal alarm is:

\[t = r \ln(k^2/(k^2-1)) \]

The equation used to calculate the time to the thermal alarm is:

\[t_{\text{alarm}} = r \ln(k^2/(k^2-\text{Thermal Alarm}/100)) \]

Thermal alarm = (Thermal Alarm) thermal alarm setting in percentage of the thermal state

Since a current of twice the setting \(I_{\text{th}} \) is applied, consequently one of the following thermal constants is used:

- \(T_1 \) (overload time constant) if the interrupting device is closed.
- \(T_r \) (cooling time constant) if the interrupting device is opened.

Apply a current of twice the setting [in cell 3001: THERMAL OVERLOAD, GROUP1, \(I_{\text{th}} \) Current Set] to the relay and note the time displayed when the timer stops. Check that the operating time recorded by the timer is within the range (calculated trip time ±5% or 40 ms whichever is the greater). For all characteristics, allowance must be made for the accuracy of the test equipment being used.

Example

For \(I_{\text{th}} \) Current Set = 0.5 A and A phase \(I_{\text{inject}} \) = 2 A, \(T_1 \) = 5 mins

Using (3) \(k = I_{\text{eq}} / I_{\text{th}} = (2 \times 2 / 3) / 0.5 = 8/3 \) A

\[t_{\text{op}} = 5 \times 60 \ln \left(\frac{(8/3)^2}{(8/3)^2 - 1} \right) = 45.465 \text{ s} \]

Using (4) \(k = I_{\text{eq}} / I_{\text{th}} = (2 \times 2 / \sqrt{3}) / 0.5 = 8/\sqrt{3} \) A

\[t_{\text{op}} = 5 \times 60 \ln \left(\frac{(8/\sqrt{3})^2}{(8/\sqrt{3})^2 - 1} \right) = 14.4 \text{ s} \]

For a thermal alarm setting = 90% using (3) \(t_{\text{alarm}} = 40.59 \text{ s} \)

For a thermal alarm setting = 90% using (4) \(t_{\text{alarm}} = 12.96 \text{ s} \)

If the injection is done equally on the 3 phases current transformers, the equation used to evaluate \(I_{\text{eq}} \) will be:

\[I_{\text{eq}} = \sqrt{(I_1^2 + K I_2^2)} \]

Note: This equation is used in software version A4.x(09) and before

or

\[I_{\text{eq}} = \sqrt{(I_{\text{rms}}^2 + K I_2^2)} \]

Note: This equation is used in software version B1.0(20) or later

And provided the phase currents are balanced, \(I_2 \) is zero.

On completion of the tests any protection elements that were disabled for testing purposes must have their original settings restored in the CONFIGURATION column.
7 ON-LOAD CHECKS

The following on-load measuring checks ensure the external wiring to the current and voltage inputs is correct but can only be carried out if there are no restrictions preventing the energization of the plant being protected.

Remove all test leads, for example temporary shorting leads, and replace any external wiring that has been removed to allow testing.

If you have disconnected any of the external wiring from the relay to perform any of the foregoing tests, you should ensure that all connections are replaced in accordance with the relevant external connection or scheme diagram.

7.1 Voltage connections

Using a multimeter measure the voltage transformer secondary voltages to ensure they are correctly rated. Check that the system phase rotation is correct using a phase rotation meter.

Compare the values of the secondary phase voltages with the relays measured values, which can be found in the MEASUREMENTS 1 menu column.

If cell [0D02: MEASURE'T SETUP, Local Values] is set to Secondary, the values displayed on the relay LCD or a portable PC connected to the front EIA(RS)232 communication port should be equal to the applied secondary voltage. The values should be within 1% of the applied secondary voltages. However, an additional allowance must be made for the accuracy of the test equipment being used.

If cell [0D02: MEASURE'T SETUP, Local Values] is set to Primary, the values displayed should be equal to the applied secondary voltage multiplied the corresponding voltage transformer ratio set in the CT & VT RATIOS menu column (see Table 16). Again the values should be within 1% of the expected value, plus an additional allowance for the accuracy of the test equipment being used.

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Cell in MEASUREMENTS 1 Column (02)</th>
<th>Corresponding VT ratio (in VT and CT RATIO column (0A) of menu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAB</td>
<td>[0214: VAB Magnitude]</td>
<td>[0A01: Main VT Primary] [0A02: Main VT Sec'y]</td>
</tr>
<tr>
<td>VBC</td>
<td>[0216: VBC Magnitude]</td>
<td></td>
</tr>
<tr>
<td>VCA</td>
<td>[0218: VCA Magnitude]</td>
<td></td>
</tr>
<tr>
<td>VAN</td>
<td>[021A: VAN Magnitude]</td>
<td></td>
</tr>
<tr>
<td>VBN</td>
<td>[021C: VBN Magnitude]</td>
<td></td>
</tr>
<tr>
<td>VCN</td>
<td>[021E: VCN Magnitude]</td>
<td></td>
</tr>
<tr>
<td>Vremanent</td>
<td>[0222: Vr AntiBacks Magnitude]</td>
<td></td>
</tr>
<tr>
<td>VN</td>
<td>[0220: VN Measured Mag]</td>
<td>[0A05: NVD VT Primary] [0A06: NVD VT Sec'y]</td>
</tr>
</tbody>
</table>

Table 16: Measured voltages and VT ratio settings

7.2 Current connections

Measure the current transformer secondary values for each input using a multimeter connected in series with corresponding relay current input.
Check that the current transformer polarities are correct by measuring the phase angle between the current and voltage, either against a phase meter already installed on site and known to be correct or by determining the direction of power flow by contacting the system control center.

Ensure the current flowing in the neutral circuit of the current transformers is negligible.

Compare the values of the secondary phase currents and phase angle with the relay’s measured values, which can be found in the MEASUREMENTS 1 menu column.

Note: Under normal load conditions the earth fault function measures little, if any, current. It is therefore necessary to simulate a phase to neutral fault. This can be achieved by temporarily disconnecting one or two of the line current transformer connections to the relay and shorting the terminals of these current transformer secondary windings.

Check that the IA/IB/IC Differential currents measured on the P243 relay are less than 10% of the IA/IB/IC Bias currents, see the Measurements 3 menu. Check that the I2 Magnitude negative phase sequence current measured by the relay is not greater than expected for the particular installation, see the Measurements 1 menu. Check that the active and reactive power measured by the relay are correct, see the Measurements 2 menu. The power measurement modes are described in the Measurements and Recording chapter, P24x/EN MR.

If cell [0D02: MEASURE’T SETUP, Local Values] is set to Secondary, the currents displayed on the relay LCD or a portable PC connected to the front EIA(RS)232 communication port should be equal to the applied secondary current. The values should be within 1% of the applied secondary currents. However, an additional allowance must be made for the accuracy of the test equipment being used.

If cell [0D02: MEASURE’T SETUP, Local Values] is set to Primary, the currents displayed should be equal to the applied secondary current multiplied by the corresponding current transformer ratio set in CT & VT RATIOS menu column (see Table 16). Again the values should be within 1% of the expected value, plus an additional allowance for the accuracy of the test equipment being used.

Note: If a P241/2/3 relay is applied with a single dedicated current transformer for the earth fault function, it may not be possible to check the relay’s measured values as the neutral current is almost zero.
8 FINAL CHECKS

The tests are now complete.

Remove all test or temporary shorting leads.

If you have disconnected any of the external wiring from the relay to perform the wiring verification tests, you should ensure that all connections are replaced in accordance with the relevant external connection or scheme diagram.

Ensure that the relay has been restored to service by checking that cell [0F0D: COMMISSIONING TESTS, Test Mode] is set to Disabled.

If the relay is in a new installation or the circuit breaker has just been maintained, the circuit breaker maintenance and current counters should be zero. These counters can be reset using cell [0606: CB CONDITION, Reset All Values]. If the required access level is not active, the relay prompts for a password so that the setting change can be made.

If the menu language was changed to allow accurate testing, it should now be restored to the customer's preferred language.

If an MMLG test block is installed, remove the MMLB01 test plug and replace the MMLG cover so that the protection is put into service.

Ensure that all event records, fault records, disturbance records, alarms and LEDs have been reset before leaving the relay.

If applicable, replace the secondary front cover on the relay.
9 COMMISSIONING TEST RECORD

<table>
<thead>
<tr>
<th>Date:</th>
<th>Engineer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station:</td>
<td>Circuit:</td>
</tr>
<tr>
<td>System Frequency:</td>
<td>Hz</td>
</tr>
<tr>
<td>VT Ratio:</td>
<td>CT Ratio (tap in use):</td>
</tr>
</tbody>
</table>

Front plate information

<table>
<thead>
<tr>
<th>Motor protection relay</th>
<th>MiCOM P24x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model number</td>
<td></td>
</tr>
<tr>
<td>Serial number</td>
<td></td>
</tr>
<tr>
<td>Rated current In</td>
<td>1 A</td>
</tr>
<tr>
<td>Rated voltage Vn</td>
<td></td>
</tr>
<tr>
<td>Auxiliary voltage Vx</td>
<td></td>
</tr>
</tbody>
</table>

Test equipment used

This section should be completed to allow future identification of protective devices that have been commissioned using equipment that is later found to be defective or incompatible but may not be detected during the commissioning procedure.

<table>
<thead>
<tr>
<th>Overcurrent test set</th>
<th>Model:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial No:</td>
<td></td>
</tr>
<tr>
<td>Phase angle meter</td>
<td>Model:</td>
</tr>
<tr>
<td>Serial No:</td>
<td></td>
</tr>
<tr>
<td>Phase rotation meter</td>
<td>Model:</td>
</tr>
<tr>
<td>Serial No:</td>
<td></td>
</tr>
<tr>
<td>Insulation tester</td>
<td>Model:</td>
</tr>
<tr>
<td>Serial No:</td>
<td></td>
</tr>
<tr>
<td>Setting software:</td>
<td>Type:</td>
</tr>
<tr>
<td>Version:</td>
<td></td>
</tr>
</tbody>
</table>

Have all relevant safety instructions been followed? Yes ☐ No ☐

5. PRODUCT CHECKS

5.1 With the relay de-energized

5.1.1 Visual inspection

Relay damaged? Yes ☐ No ☐

Rating information correct for installation? Yes ☐ No ☐

Case earth installed? Yes ☐ No ☐
5.1.2 Current transformer shorting contacts close?
- Yes []
- No []
- Not checked []

5.1.3 Insulation resistance >100 MΩ at 500 V dc
- Yes []
- No []
- Not tested []

5.1.4 External wiring
- Wiring checked against diagram?
 - Yes []
 - No []
- Test block connections checked?
 - Yes []
 - No []
 - N/A []

5.1.5 Watchdog contacts (auxiliary supply off)
- Terminals 11 and 12 Contact closed? Contact resistance
 - Yes []
 - No []
 - Not measured []
- Terminals 13 and 14 Contact open?
 - Yes []
 - No []

5.1.6 Measured auxiliary supply
- V ac/dc

5.2 With the relay energized

5.2.1 Watchdog contacts (auxiliary supply on)
- Terminals 11 and 12 Contact open?
 - Yes []
 - No []
- Terminals 13 and 14 Contact closed? Contact resistance
 - Yes []
 - No []
 - Not measured []

5.2.2 LCD front panel display
- LCD contrast setting used

5.2.3 Date and time
- Clock set to local time?
 - Yes []
 - No []
- Time maintained when auxiliary supply removed?
 - Yes []
 - No []

5.2.4 Light emitting diodes
- Relay healthy (green) LED working?
 - Yes []
 - No []
- Alarm (yellow) LED working?
 - Yes []
 - No []
- Out of service (yellow) LED working?
 - Yes []
 - No []
- Trip (red) LED working?
 - Yes []
 - No []
- All 8 (P241), 18 (P242/3) programmable LEDs working?
 - Yes []
 - No []

5.2.5 Field supply voltage
- Value measured between terminals 7 and 9 V dc
- Value measured between terminals 8 and 10 V dc

5.2.6 Input opto-isolators
- Opto input 1 working?
 - Yes []
 - No []
- Opto input 2 working?
 - Yes []
 - No []
- Opto input 3 working?
 - Yes []
 - No []
- Opto input 4 working?
 - Yes []
 - No []
- Opto input 5 working?
 - Yes []
 - No []
- Opto input 6 working?
 - Yes []
 - No []
Output relays

<table>
<thead>
<tr>
<th>Relay</th>
<th>Working?</th>
<th>Contact resistance</th>
<th>Resistance (Ω)</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay 1</td>
<td>Yes</td>
<td>(N/C)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Relay 2</td>
<td>Yes</td>
<td>(N/O)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Relay 3</td>
<td>Yes</td>
<td>(N/C)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Relay 4</td>
<td>Yes</td>
<td>(N/O)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Relay 5</td>
<td>Yes</td>
<td>(N/C)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Relay 6</td>
<td>Yes</td>
<td>(N/O)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Relay 7</td>
<td>Yes</td>
<td>(N/C)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Relay</td>
<td>Working?</td>
<td>Contact Resistance (N/C)</td>
<td>Contact Resistance (N/O)</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>Relay 8</td>
<td></td>
<td>Yes □ No □</td>
<td>N/A □</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ω</td>
<td>Not measured □</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ω</td>
<td>Not measured □</td>
<td></td>
</tr>
<tr>
<td>Relay 9</td>
<td></td>
<td>Yes □ No □</td>
<td>N/A □</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ω</td>
<td>Not measured □</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ω</td>
<td>Not measured □</td>
<td></td>
</tr>
<tr>
<td>Relay 10</td>
<td></td>
<td>Yes □ No □</td>
<td>N/A □</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ω</td>
<td>Not measured □</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ω</td>
<td>Not measured □</td>
<td></td>
</tr>
<tr>
<td>Relay 11</td>
<td></td>
<td>Yes □ No □</td>
<td>N/A □</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ω</td>
<td>Not measured □</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ω</td>
<td>Not measured □</td>
<td></td>
</tr>
<tr>
<td>Relay 12</td>
<td></td>
<td>Yes □ No □</td>
<td>N/A □</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ω</td>
<td>Not measured □</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ω</td>
<td>Not measured □</td>
<td></td>
</tr>
<tr>
<td>Relay 13</td>
<td></td>
<td>Yes □ No □</td>
<td>N/A □</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ω</td>
<td>Not measured □</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ω</td>
<td>Not measured □</td>
<td></td>
</tr>
<tr>
<td>Relay 14</td>
<td></td>
<td>Yes □ No □</td>
<td>N/A □</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ω</td>
<td>Not measured □</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ω</td>
<td>Not measured □</td>
<td></td>
</tr>
<tr>
<td>Relay 15</td>
<td></td>
<td>Yes □ No □</td>
<td>N/A □</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ω</td>
<td>Not measured □</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ω</td>
<td>Not measured □</td>
<td></td>
</tr>
</tbody>
</table>
5.2.8 RTD inputs

<table>
<thead>
<tr>
<th>RTD reading</th>
<th>Label</th>
<th>%</th>
<th>°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTD 1</td>
<td>[04C01: RTD 1 Label]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD 2</td>
<td>[04C02: RTD 2 Label]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD 3</td>
<td>[04C03: RTD 3 Label]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD 4</td>
<td>[04C04: RTD 4 Label]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD 5</td>
<td>[04C05: RTD 5 Label]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD 6</td>
<td>[04C06: RTD 6 Label]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD 7</td>
<td>[04C07: RTD 7 Label]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD 8</td>
<td>[04C08: RTD 8 Label]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD 9</td>
<td>[04C09: RTD 9 Label]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD 10</td>
<td>[04C0A: RTD 10 Label]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.2.9 Current loop inputs

<table>
<thead>
<tr>
<th>Analog Input Range</th>
<th>mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1 mA</td>
<td></td>
</tr>
<tr>
<td>0 - 10 mA</td>
<td></td>
</tr>
<tr>
<td>0 - 20 mA</td>
<td></td>
</tr>
<tr>
<td>4 - 20 mA</td>
<td></td>
</tr>
</tbody>
</table>

5.2.10 Current loop outputs

<table>
<thead>
<tr>
<th>Analog Output Range</th>
<th>mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1 mA</td>
<td></td>
</tr>
<tr>
<td>0 - 10 mA</td>
<td></td>
</tr>
<tr>
<td>0 - 20 mA</td>
<td></td>
</tr>
<tr>
<td>4 - 20 mA</td>
<td></td>
</tr>
</tbody>
</table>
5.2.11 First rear communications port

<table>
<thead>
<tr>
<th>Communication standard</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>K-Bus</td>
<td>☐</td>
</tr>
<tr>
<td>MODBUS</td>
<td>☐</td>
</tr>
<tr>
<td>IEC 60870-5-103</td>
<td>☐</td>
</tr>
<tr>
<td>IEC 61850</td>
<td>☐</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Communications established?</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>☐</td>
</tr>
<tr>
<td>Yes</td>
<td>☐</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Protocol converter tested?</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>☐</td>
</tr>
</tbody>
</table>

5.2.12 Second rear communications port

<table>
<thead>
<tr>
<th>Communication port configuration</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>K-Bus</td>
<td>☐</td>
</tr>
<tr>
<td>EIA(RS)485</td>
<td>☐</td>
</tr>
<tr>
<td>EIA(RS)232</td>
<td>☐</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Communications established?</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>☐</td>
</tr>
<tr>
<td>Yes</td>
<td>☐</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Protocol converter tested?</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>☐</td>
</tr>
</tbody>
</table>

5.2.13 Current inputs

<table>
<thead>
<tr>
<th>Displayed current</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>☐</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase CT ratio</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[Phase CT Primary]</td>
<td>[Phase CT Sec'y]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEF CT ratio</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[SEF CT Primary]</td>
<td>[SEF CT Sec'y]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input CT</th>
<th>Applied Value</th>
<th>Displayed Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>IB</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>IC</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>IN</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>N/A</td>
<td>A</td>
<td>N/A</td>
</tr>
<tr>
<td>ISEF</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>IA (2)</td>
<td>N/A</td>
<td>A</td>
</tr>
<tr>
<td>IA (2)</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>IB (2)</td>
<td>N/A</td>
<td>A</td>
</tr>
<tr>
<td>IB (2)</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>IC (2)</td>
<td>N/A</td>
<td>A</td>
</tr>
<tr>
<td>IC (2)</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

5.2.14 Voltage inputs

<table>
<thead>
<tr>
<th>Displayed voltage</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>☐</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Main VT ratio</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[Main VT Primary]</td>
<td>[Main VT Sec'y.]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NVD VT ratio</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[NVD VT Primary]</td>
<td>[NVD VT Secondary]</td>
</tr>
</tbody>
</table>
Input VT

<table>
<thead>
<tr>
<th>Applied Value</th>
<th>Displayed Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Va</td>
<td>V</td>
</tr>
<tr>
<td>Vb</td>
<td>V</td>
</tr>
<tr>
<td>Vc</td>
<td>V</td>
</tr>
<tr>
<td>VN</td>
<td>V</td>
</tr>
</tbody>
</table>

6. SETTING CHECKS

6.1 Application-specific function settings applied?
- Yes []
- No []

- Application-specific programmable scheme logic settings applied?
 - Yes []
 - No []
 - N/A []

6.2 Application-specific function settings verified?
- Yes []
- No []
- N/A []

- Application-specific programmable scheme logic tested?
 - Yes []
 - No []
 - N/A []

6.3 Demonstrate correct relay operation

6.3.1 Motor differential protection (P243)

- Motor Differential lower slope pickup
 - A

- Motor Differential upper slope pickup
 - A

- Motor Differential Phase A contact routing OK?
 - Yes []
 - No []
 - s []

- Motor Differential Phase B contact routing OK?
 - Yes []
 - No []
 - s []

- Motor Differential Phase C contact routing OK?
 - Yes []
 - No []
 - s []

- Motor Differential Phase C trip time
 - s []

- Average trip time, Phases A, B and C
 - s []

6.3.3 Sensitive E/F protection (P241/P242/P243)

- Protection function timing tested?
 - Yes []
 - No []
 - Directional Fwd []
 - Non-directional []

- SEF type (set in cell [ISEF>1 Direction])
 - Applied current
 - A []
 - Expected operating time
 - s []
 - Measured operating time
 - s []

6.3.4 Thermal Overload protection (P241/P242/P243)

- Protection function timing tested?
 - Yes []
 - No []

- Thermal Trip
 - Applied current
 - A []
 - Expected trip operating time
 - s []
 - Measured trip operating time
 - s []

- Thermal Alarm
 - Applied current
 - A []
7.1 VT wiring checked?

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase rotation correct?</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Displayed voltage

<table>
<thead>
<tr>
<th>VT Type</th>
<th>Quantity</th>
<th>Unit</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main VT ratio</td>
<td>[Primary]</td>
<td>V</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Secondary]</td>
<td>V</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NVD VT ratio</td>
<td>[Primary]</td>
<td>V</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Secondary]</td>
<td>V</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.2 CT wiring checked?

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT polarities correct?</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Displayed current

<table>
<thead>
<tr>
<th>CT Type</th>
<th>Quantity</th>
<th>Unit</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase CT ratio</td>
<td>[Primary]</td>
<td>A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Secondary]</td>
<td>A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEF CT ratio</td>
<td>[Primary]</td>
<td>A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Secondary]</td>
<td>A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Voltages

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Quantity</th>
<th>Unit</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAN/VAB</td>
<td>V</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBN/VBC</td>
<td>V</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCN/VCA</td>
<td>V</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VN</td>
<td>V</td>
<td>V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Currents

<table>
<thead>
<tr>
<th>Current</th>
<th>Quantity</th>
<th>Unit</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>ISEF</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IA (2) P243 only</td>
<td>A</td>
<td>A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB (2) P243 only</td>
<td>A</td>
<td>A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC (2) P243 only</td>
<td>A</td>
<td>A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8. **FINAL CHECKS**

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test wiring removed?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disturbed customer wiring re-checked?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test mode disabled?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circuit breaker operations counter reset?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current counters reset?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Event records reset?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fault records reset?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disturbance records reset?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alarms reset?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEDs reset?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary front cover replaced?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

__________________________ ____________________________
Commissioning Engineer Customer Witness

Date: Date:
Setting Record

<table>
<thead>
<tr>
<th>Date:</th>
<th>Engineer:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station:</th>
<th>Circuit:</th>
<th>System Frequency:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VT Ratio:</th>
<th>CT Ratio (tap in use):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Front Plate Information

<table>
<thead>
<tr>
<th>Motor Protection Relay</th>
<th>MiCOM P24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Number</td>
<td></td>
</tr>
<tr>
<td>Serial Number</td>
<td></td>
</tr>
<tr>
<td>Rated Current In</td>
<td>1 A</td>
</tr>
<tr>
<td></td>
<td>5 A</td>
</tr>
<tr>
<td>Rated Voltage Vn</td>
<td></td>
</tr>
<tr>
<td>Auxiliary Voltage Vx</td>
<td></td>
</tr>
</tbody>
</table>

Setting Groups Used

<table>
<thead>
<tr>
<th>Group</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

System Data

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Language</th>
<th>Deutsch</th>
<th>Espanol</th>
<th>Francais</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>Language</td>
<td>English</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deutsche</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0002</td>
<td>Password</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0004</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0005</td>
<td>Plant Reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0006</td>
<td>Model Number</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0008</td>
<td>Serial Number</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0009</td>
<td>Frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00A</td>
<td>Comms Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00B</td>
<td>Relay Address</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0011</td>
<td>Software Ref 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00D1</td>
<td>Password Control</td>
<td>Level 0</td>
<td></td>
<td>Level 1</td>
<td>Level 2</td>
</tr>
<tr>
<td>00D2</td>
<td>Password Level 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00D3</td>
<td>Password Level 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CB Condition

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0601</td>
<td>CB Operations</td>
</tr>
<tr>
<td>0602</td>
<td>Total IA Broken</td>
</tr>
<tr>
<td>0603</td>
<td>Total IB Broken</td>
</tr>
</tbody>
</table>
CB CONDITION

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0604</td>
<td>Total IC Broken</td>
</tr>
<tr>
<td>0605</td>
<td>CB Operate Time</td>
</tr>
</tbody>
</table>

CB CONTROL

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>0701</td>
<td>CB Control by</td>
<td>Disabled, Local, Remote, Opto, Opto + Remote</td>
</tr>
<tr>
<td>0702</td>
<td>Close Pulse Time</td>
<td></td>
</tr>
<tr>
<td>0703</td>
<td>Trip Pulse Time</td>
<td></td>
</tr>
<tr>
<td>0705</td>
<td>Man Close Delay</td>
<td></td>
</tr>
</tbody>
</table>

DATE AND TIME

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>0804</td>
<td>IRIG-B Sync</td>
<td>Disabled, Enabled</td>
</tr>
<tr>
<td>0805</td>
<td>IRIG-B Status</td>
<td>Inactive, Active</td>
</tr>
<tr>
<td>0806</td>
<td>Battery Status</td>
<td>Dead, Healthy</td>
</tr>
</tbody>
</table>

CONFIGURATION

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>0902</td>
<td>Setting Group</td>
<td>Select via Menu, Select via Optos</td>
</tr>
<tr>
<td>0903</td>
<td>Active Settings</td>
<td>Group 1, Group 2</td>
</tr>
<tr>
<td>0907</td>
<td>Setting Group 1</td>
<td>Disabled, Enabled</td>
</tr>
<tr>
<td>0908</td>
<td>Setting Group 2</td>
<td>Disabled, Enabled</td>
</tr>
<tr>
<td>090B</td>
<td>Thermal Overload</td>
<td>Disabled, Enabled</td>
</tr>
<tr>
<td>090C</td>
<td>Short circuit</td>
<td>Disabled, Enabled</td>
</tr>
<tr>
<td>090D</td>
<td>Sensitive E/F</td>
<td>Disabled, Enabled</td>
</tr>
<tr>
<td>090E</td>
<td>Neg. Seq. O/C</td>
<td>Disabled, Enabled</td>
</tr>
<tr>
<td>090F</td>
<td>3PH Volt Check</td>
<td>Disabled, Enabled</td>
</tr>
<tr>
<td>0910</td>
<td>Derived E/F</td>
<td>Disabled, Enabled</td>
</tr>
<tr>
<td>0909</td>
<td>Neg Seq O/V</td>
<td>Disabled, Enabled</td>
</tr>
<tr>
<td>0914</td>
<td>Stall Detection</td>
<td>Disabled, Enabled</td>
</tr>
<tr>
<td>0915</td>
<td>Differential</td>
<td>Disabled, Enabled</td>
</tr>
<tr>
<td>0916</td>
<td>Residual O/V NVD</td>
<td>Disabled, Enabled</td>
</tr>
<tr>
<td>0917</td>
<td>Limit Nb Starts</td>
<td>Disabled, Enabled</td>
</tr>
<tr>
<td>0918</td>
<td>Loss of Load</td>
<td>Disabled, Enabled</td>
</tr>
<tr>
<td>0919</td>
<td>Out of Step</td>
<td>Disabled, Enabled</td>
</tr>
<tr>
<td>091A</td>
<td>Reverse Power</td>
<td>Disabled, Enabled</td>
</tr>
<tr>
<td>091B</td>
<td>Anti-Backspin</td>
<td>Disabled, Enabled</td>
</tr>
<tr>
<td>091C</td>
<td>Field Failure</td>
<td>Disabled, Enabled</td>
</tr>
<tr>
<td>091D</td>
<td>Volt Protection</td>
<td>Disabled, Enabled</td>
</tr>
<tr>
<td>091E</td>
<td>Under Frequency</td>
<td>Disabled, Enabled</td>
</tr>
<tr>
<td>091F</td>
<td>RTD Inputs</td>
<td>Disabled, Enabled</td>
</tr>
<tr>
<td>0920</td>
<td>CB Fail</td>
<td>Disabled, Enabled</td>
</tr>
<tr>
<td>0924</td>
<td>System Config</td>
<td>Invisible, Visible</td>
</tr>
<tr>
<td>0925</td>
<td>Input Labels</td>
<td>Invisible, Visible</td>
</tr>
<tr>
<td>0926</td>
<td>Output Labels</td>
<td>Invisible, Visible</td>
</tr>
<tr>
<td>0927</td>
<td>RTD Labels</td>
<td>Invisible, Visible</td>
</tr>
</tbody>
</table>
Configuration

<table>
<thead>
<tr>
<th>Address</th>
<th>Description</th>
<th>Visible</th>
<th>Secondary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0928</td>
<td>CT & VT Ratios</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0929</td>
<td>Record Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>092A</td>
<td>Disturb Recorder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>092B</td>
<td>Measure’t Setup</td>
<td></td>
<td></td>
</tr>
<tr>
<td>092C</td>
<td>Comms Settings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>092D</td>
<td>Commission Tests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>092E</td>
<td>Setting Values</td>
<td></td>
<td></td>
</tr>
<tr>
<td>092F</td>
<td>Control Inputs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0930</td>
<td>CLIO Inputs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0931</td>
<td>CLIO Outputs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0932</td>
<td>CLIO Labels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0935</td>
<td>Ctrl I/P Config</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0936</td>
<td>Ctrl I/P Labels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0939</td>
<td>Direct Access</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0950</td>
<td>Function Key(242/3only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09FF</td>
<td>LCD Contrast</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CT and VT Ratios

<table>
<thead>
<tr>
<th>Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0A01</td>
<td>Main VT Primary</td>
</tr>
<tr>
<td>0A02</td>
<td>Main VT Sec’y</td>
</tr>
<tr>
<td>0A07</td>
<td>Phase CT Primary</td>
</tr>
<tr>
<td>0A08</td>
<td>Phase CT Sec’y</td>
</tr>
<tr>
<td>0A0B</td>
<td>SEF CT Primary</td>
</tr>
<tr>
<td>0A0C</td>
<td>SEF CT Sec’y</td>
</tr>
<tr>
<td>0A11</td>
<td>VT Connecting Mode</td>
</tr>
<tr>
<td>0A12</td>
<td>NVD VT Primary</td>
</tr>
<tr>
<td>0A13</td>
<td>NVD VT Sec’y</td>
</tr>
</tbody>
</table>

Record Control

<table>
<thead>
<tr>
<th>Address</th>
<th>Description</th>
<th>Enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>0B04</td>
<td>Alarm Event</td>
<td></td>
</tr>
<tr>
<td>0B05</td>
<td>Output Event</td>
<td></td>
</tr>
<tr>
<td>0B06</td>
<td>Opto Input Event</td>
<td></td>
</tr>
<tr>
<td>0B07</td>
<td>Relay Sys Event</td>
<td></td>
</tr>
<tr>
<td>0B08</td>
<td>Fault Rec Event</td>
<td></td>
</tr>
<tr>
<td>0B09</td>
<td>Maint Rec Event</td>
<td></td>
</tr>
<tr>
<td>0B0A</td>
<td>Protection Event</td>
<td></td>
</tr>
<tr>
<td>0B40</td>
<td>DDB 31 - 0</td>
<td></td>
</tr>
<tr>
<td>0B41</td>
<td>DDB 63 - 32</td>
<td></td>
</tr>
<tr>
<td>0B42</td>
<td>DDB 95 - 64</td>
<td></td>
</tr>
<tr>
<td>0B43</td>
<td>DDB 127 - 96</td>
<td></td>
</tr>
<tr>
<td>0B44</td>
<td>DDB 159 - 128</td>
<td></td>
</tr>
<tr>
<td>0B45</td>
<td>DDB 191 - 160</td>
<td></td>
</tr>
<tr>
<td>0B00</td>
<td>RECORD CONTROL</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>0B46</td>
<td>DDB 223 - 192</td>
<td></td>
</tr>
<tr>
<td>0B47</td>
<td>DDB 255 - 224</td>
<td></td>
</tr>
<tr>
<td>0B48</td>
<td>DDB 287 - 256</td>
<td></td>
</tr>
<tr>
<td>0B49</td>
<td>DDB 319 - 288</td>
<td></td>
</tr>
<tr>
<td>0B4A</td>
<td>DDB 351 - 320</td>
<td></td>
</tr>
<tr>
<td>0B4B</td>
<td>DDB 383 - 352</td>
<td></td>
</tr>
<tr>
<td>0B4C</td>
<td>DDB 415 - 384</td>
<td></td>
</tr>
<tr>
<td>0B4D</td>
<td>DDB 447 - 416</td>
<td></td>
</tr>
<tr>
<td>0B4E</td>
<td>DDB 479 - 448</td>
<td></td>
</tr>
<tr>
<td>0B4F</td>
<td>DDB 511 - 480</td>
<td></td>
</tr>
<tr>
<td>0B50</td>
<td>DDB 543 - 512</td>
<td></td>
</tr>
<tr>
<td>0B51</td>
<td>DDB 575 - 544</td>
<td></td>
</tr>
<tr>
<td>0B52</td>
<td>DDB 607 - 576</td>
<td></td>
</tr>
<tr>
<td>0B53</td>
<td>DDB 639 - 608</td>
<td></td>
</tr>
<tr>
<td>0B54</td>
<td>DDB 671 - 640</td>
<td></td>
</tr>
<tr>
<td>0B55</td>
<td>DDB 703 - 672</td>
<td></td>
</tr>
<tr>
<td>0B56</td>
<td>DDB 735 - 704</td>
<td></td>
</tr>
<tr>
<td>0B57</td>
<td>DDB 767 - 736</td>
<td></td>
</tr>
<tr>
<td>0B58</td>
<td>DDB 799 - 768</td>
<td></td>
</tr>
<tr>
<td>0B59</td>
<td>DDB 831 - 800</td>
<td></td>
</tr>
<tr>
<td>0B5A</td>
<td>DDB 863 - 832</td>
<td></td>
</tr>
<tr>
<td>0B5B</td>
<td>DDB 895 - 864</td>
<td></td>
</tr>
<tr>
<td>0B5C</td>
<td>DDB 927 - 896</td>
<td></td>
</tr>
<tr>
<td>0B5D</td>
<td>DDB 959 - 928</td>
<td></td>
</tr>
<tr>
<td>0B5E</td>
<td>DDB 991 - 960</td>
<td></td>
</tr>
<tr>
<td>0B5F</td>
<td>DDB 1022 - 992</td>
<td></td>
</tr>
<tr>
<td>0B60</td>
<td>DDB 1055 - 1024</td>
<td></td>
</tr>
<tr>
<td>0B61</td>
<td>DDB 1087 - 1056</td>
<td></td>
</tr>
<tr>
<td>0B62</td>
<td>DDB 1119 - 1088</td>
<td></td>
</tr>
<tr>
<td>0B63</td>
<td>DDB 1151 - 1120</td>
<td></td>
</tr>
<tr>
<td>0B64</td>
<td>DDB 1183 - 1152</td>
<td></td>
</tr>
<tr>
<td>0B65</td>
<td>DDB 1215 - 1184</td>
<td></td>
</tr>
<tr>
<td>0B66</td>
<td>DDB 1247 - 1216</td>
<td></td>
</tr>
<tr>
<td>0B67</td>
<td>DDB 1279 - 1248</td>
<td></td>
</tr>
<tr>
<td>0B68</td>
<td>DDB 1311 - 1280</td>
<td></td>
</tr>
</tbody>
</table>
RECORD CONTROL

<table>
<thead>
<tr>
<th>0B00</th>
<th>DDB 1343 - 1312</th>
</tr>
</thead>
<tbody>
<tr>
<td>0B69</td>
<td>DDB 1375 - 1344</td>
</tr>
<tr>
<td>0B6A</td>
<td>DDB 1407 - 1376</td>
</tr>
<tr>
<td>0B6B</td>
<td>DDB 1439 - 1408</td>
</tr>
<tr>
<td>0B6C</td>
<td>DDB 1471 - 1440</td>
</tr>
<tr>
<td>0B6D</td>
<td>DDB 1503 - 1472</td>
</tr>
<tr>
<td>0B6E</td>
<td>DDB 1535 - 1504</td>
</tr>
<tr>
<td>0B6F</td>
<td>DDB 1567 - 1536</td>
</tr>
<tr>
<td>0B70</td>
<td>DDB 1599 - 1568</td>
</tr>
<tr>
<td>0B71</td>
<td>DDB 1631 - 1600</td>
</tr>
<tr>
<td>0B72</td>
<td>DDB 1663 - 1632</td>
</tr>
<tr>
<td>0B73</td>
<td>DDB 1695 - 1664</td>
</tr>
<tr>
<td>0B74</td>
<td>DDB 1727 - 1696</td>
</tr>
<tr>
<td>0B75</td>
<td>DDB 1759 - 1728</td>
</tr>
<tr>
<td>0B76</td>
<td>DDB 1791 - 1760</td>
</tr>
<tr>
<td>0B77</td>
<td>DDB 1823 - 1792</td>
</tr>
<tr>
<td>0B78</td>
<td>DDB 1855 - 1824</td>
</tr>
<tr>
<td>0B79</td>
<td>DDB 1887 - 1856</td>
</tr>
<tr>
<td>0B7A</td>
<td>DDB 1919 - 1888</td>
</tr>
<tr>
<td>0B7B</td>
<td>DDB 1951 - 1920</td>
</tr>
<tr>
<td>0B7C</td>
<td>DDB 1983 - 1952</td>
</tr>
<tr>
<td>0B7D</td>
<td>DDB 2015 - 1984</td>
</tr>
<tr>
<td>0B7E</td>
<td>DDB 2047 - 2016</td>
</tr>
<tr>
<td>0B7F</td>
<td>DDB 2079 - 2047</td>
</tr>
</tbody>
</table>

DISTURB. RECORDER

<table>
<thead>
<tr>
<th>0C00</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0C01</td>
<td>Trigger Position</td>
</tr>
<tr>
<td>0C02</td>
<td>Trigger Mode</td>
</tr>
<tr>
<td>0C03</td>
<td>Single</td>
</tr>
<tr>
<td>0C04</td>
<td>Analog Channel 1</td>
</tr>
<tr>
<td>0C05</td>
<td>Analog Channel 2</td>
</tr>
<tr>
<td>0C06</td>
<td>Analog Channel 3</td>
</tr>
<tr>
<td>0C07</td>
<td>Analog Channel 4</td>
</tr>
<tr>
<td>0C08</td>
<td>Analog Channel 5</td>
</tr>
<tr>
<td>0C09</td>
<td>Analog Channel 6</td>
</tr>
<tr>
<td>0C0A</td>
<td>Analog Channel 7</td>
</tr>
<tr>
<td>0C0B</td>
<td>Analog Channel 8</td>
</tr>
<tr>
<td>0C00</td>
<td>DISTURB. RECORDER</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
</tr>
<tr>
<td>0C0C</td>
<td>Digital Input 1</td>
</tr>
<tr>
<td>0C0D</td>
<td>Input 1 Trigger</td>
</tr>
<tr>
<td></td>
<td>No Trigger</td>
</tr>
<tr>
<td></td>
<td>Trigger Edge +/-</td>
</tr>
<tr>
<td>0C0E</td>
<td>Digital Input 2</td>
</tr>
<tr>
<td>0C0F</td>
<td>Input 2 Trigger</td>
</tr>
<tr>
<td></td>
<td>No Trigger</td>
</tr>
<tr>
<td></td>
<td>Trigger Edge +/-</td>
</tr>
<tr>
<td>0C10</td>
<td>Digital Input 3</td>
</tr>
<tr>
<td>0C11</td>
<td>Input 3 Trigger</td>
</tr>
<tr>
<td></td>
<td>No Trigger</td>
</tr>
<tr>
<td></td>
<td>Trigger Edge +/-</td>
</tr>
<tr>
<td>0C12</td>
<td>Digital Input 4</td>
</tr>
<tr>
<td>0C13</td>
<td>Input 4 Trigger</td>
</tr>
<tr>
<td></td>
<td>No Trigger</td>
</tr>
<tr>
<td></td>
<td>Trigger Edge +/-</td>
</tr>
<tr>
<td>0C14</td>
<td>Digital Input 5</td>
</tr>
<tr>
<td>0C15</td>
<td>Input 5 Trigger</td>
</tr>
<tr>
<td></td>
<td>No Trigger</td>
</tr>
<tr>
<td></td>
<td>Trigger Edge +/-</td>
</tr>
<tr>
<td>0C16</td>
<td>Digital Input 6</td>
</tr>
<tr>
<td>0C17</td>
<td>Input 6 Trigger</td>
</tr>
<tr>
<td></td>
<td>No Trigger</td>
</tr>
<tr>
<td></td>
<td>Trigger Edge +/-</td>
</tr>
<tr>
<td>0C18</td>
<td>Digital Input 7</td>
</tr>
<tr>
<td>0C19</td>
<td>Input 7 Trigger</td>
</tr>
<tr>
<td></td>
<td>No Trigger</td>
</tr>
<tr>
<td></td>
<td>Trigger Edge +/-</td>
</tr>
<tr>
<td>0C1A</td>
<td>Digital Input 8</td>
</tr>
<tr>
<td>0C1B</td>
<td>Input 8 Trigger</td>
</tr>
<tr>
<td></td>
<td>No Trigger</td>
</tr>
<tr>
<td></td>
<td>Trigger Edge +/-</td>
</tr>
<tr>
<td>0C1C</td>
<td>Digital Input 9</td>
</tr>
<tr>
<td>0C1D</td>
<td>Input 9 Trigger</td>
</tr>
<tr>
<td></td>
<td>No Trigger</td>
</tr>
<tr>
<td></td>
<td>Trigger Edge +/-</td>
</tr>
<tr>
<td>0C1E</td>
<td>Digital Input 10</td>
</tr>
<tr>
<td>0C1F</td>
<td>Input 10 Trigger</td>
</tr>
<tr>
<td></td>
<td>No Trigger</td>
</tr>
<tr>
<td></td>
<td>Trigger Edge +/-</td>
</tr>
<tr>
<td>0C20</td>
<td>Digital Input 11</td>
</tr>
<tr>
<td>0C21</td>
<td>Input 11 Trigger</td>
</tr>
<tr>
<td></td>
<td>No Trigger</td>
</tr>
<tr>
<td></td>
<td>Trigger Edge +/-</td>
</tr>
<tr>
<td>0C22</td>
<td>Digital Input 12</td>
</tr>
<tr>
<td>0C23</td>
<td>Input 12 Trigger</td>
</tr>
<tr>
<td></td>
<td>No Trigger</td>
</tr>
<tr>
<td></td>
<td>Trigger Edge +/-</td>
</tr>
<tr>
<td>0C24</td>
<td>Digital Input 13</td>
</tr>
<tr>
<td>0C25</td>
<td>Input 13 Trigger</td>
</tr>
<tr>
<td></td>
<td>No Trigger</td>
</tr>
<tr>
<td></td>
<td>Trigger Edge +/-</td>
</tr>
<tr>
<td>0C26</td>
<td>Digital Input 14</td>
</tr>
<tr>
<td>0C27</td>
<td>Input 14 Trigger</td>
</tr>
<tr>
<td></td>
<td>No Trigger</td>
</tr>
<tr>
<td></td>
<td>Trigger Edge +/-</td>
</tr>
<tr>
<td>0C28</td>
<td>Digital Input 15</td>
</tr>
<tr>
<td>OC00</td>
<td>DISTURB. RECORDER</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>OC29</td>
<td>Input 15 Trigger</td>
</tr>
<tr>
<td>OC2A</td>
<td>Digital Input 16</td>
</tr>
<tr>
<td>OC2B</td>
<td>Input 16 Trigger</td>
</tr>
<tr>
<td>OC2C</td>
<td>Digital Input 17</td>
</tr>
<tr>
<td>OC2D</td>
<td>Input 17 Trigger</td>
</tr>
<tr>
<td>OC2E</td>
<td>Digital Input 18</td>
</tr>
<tr>
<td>OC2F</td>
<td>Input 18 Trigger</td>
</tr>
<tr>
<td>OC30</td>
<td>Digital Input 19</td>
</tr>
<tr>
<td>OC31</td>
<td>Input 19 Trigger</td>
</tr>
<tr>
<td>OC32</td>
<td>Digital Input 20</td>
</tr>
<tr>
<td>OC33</td>
<td>Input 20 Trigger</td>
</tr>
<tr>
<td>OC34</td>
<td>Digital Input 21</td>
</tr>
<tr>
<td>OC35</td>
<td>Input 21 Trigger</td>
</tr>
<tr>
<td>OC36</td>
<td>Digital Input 22</td>
</tr>
<tr>
<td>OC37</td>
<td>Input 22 Trigger</td>
</tr>
<tr>
<td>OC38</td>
<td>Digital Input 23</td>
</tr>
<tr>
<td>OC39</td>
<td>Input 23 Trigger</td>
</tr>
<tr>
<td>OC3A</td>
<td>Digital Input 24</td>
</tr>
<tr>
<td>OC3B</td>
<td>Input 24 Trigger</td>
</tr>
<tr>
<td>OC3C</td>
<td>Digital Input 25</td>
</tr>
<tr>
<td>OC3D</td>
<td>Input 25 Trigger</td>
</tr>
<tr>
<td>OC3E</td>
<td>Digital Input 26</td>
</tr>
<tr>
<td>OC3F</td>
<td>Input 26 Trigger</td>
</tr>
<tr>
<td>OC40</td>
<td>Digital Input 27</td>
</tr>
<tr>
<td>OC41</td>
<td>Input 27 Trigger</td>
</tr>
<tr>
<td>OC42</td>
<td>Digital Input 28</td>
</tr>
<tr>
<td>OC43</td>
<td>Input 28 Trigger</td>
</tr>
<tr>
<td>OC44</td>
<td>Digital Input 29</td>
</tr>
<tr>
<td>OC45</td>
<td>Input 29 Trigger</td>
</tr>
</tbody>
</table>
0C00 DISTURB. RECORDER

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>No Trigger</th>
<th>Trigger Edge -/+</th>
<th>Trigger Edge +/-</th>
</tr>
</thead>
<tbody>
<tr>
<td>0C46</td>
<td>Digital Input 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0C47</td>
<td>Input 30 Trigger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0C48</td>
<td>Digital Input 31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0C49</td>
<td>Input 31 Trigger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0C4A</td>
<td>Digital Input 32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0C4B</td>
<td>Input 32 Trigger</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0D00 MEASURE'T. SETUP

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>VA</th>
<th>VB</th>
<th>VC</th>
<th>IA</th>
<th>IB</th>
<th>IC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0D01</td>
<td>Default Display</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0D02</td>
<td>Local Values</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0D03</td>
<td>Remote Values</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0D04</td>
<td>Measurement Ref</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0D06</td>
<td>Fix Dem Period</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0D07</td>
<td>Alarm Fix Dem</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0D08</td>
<td>3Ph W Thresh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0D09</td>
<td>3Ph VAr Thresh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0D0A</td>
<td>Alarm Energies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0D0B</td>
<td>W Fwd Thresh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0D0C</td>
<td>W Rev Thresh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0D0D</td>
<td>VAr Fwd Thresh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0D0E</td>
<td>VAr Rev Thresh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0D0F</td>
<td>Motor Hour Run >1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0D10</td>
<td>Motor Hour Run >1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0D11</td>
<td>Motor Hour Run >2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0D12</td>
<td>Motor Hour Run >2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0D1B</td>
<td>Remote 2 Values</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COMMUNICATIONS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>0E00</td>
<td>COMMUNICATIONS</td>
<td></td>
</tr>
<tr>
<td>0E01</td>
<td>RP1 Protocol</td>
<td>Courier ✓, MODBUS ✓, IEC 870-5-103 ☐, DNP3.0 ☐, IEC 61850 ☐</td>
</tr>
<tr>
<td>0E02</td>
<td>RP1 Address</td>
<td></td>
</tr>
<tr>
<td>0E03</td>
<td>RP1 Inactivity Timer</td>
<td></td>
</tr>
<tr>
<td>0E04</td>
<td>RP1 Baud Rate</td>
<td>1200 ☐, 2400 ☐, 4800 ☐, 9600 ☐, 19200 ☐, 38400 ☐</td>
</tr>
<tr>
<td>0E05</td>
<td>RP1 Parity</td>
<td>Odd ☐, Even ☐, None ☐</td>
</tr>
<tr>
<td>0E06</td>
<td>RP1 Measure’t Period</td>
<td></td>
</tr>
<tr>
<td>0E07</td>
<td>RP1 Physical Link</td>
<td>Copper ☐, Fiber Optic ☐</td>
</tr>
<tr>
<td>0E08</td>
<td>RP1 Time Sync</td>
<td>Disabled ☐, Enabled ☐</td>
</tr>
<tr>
<td>0E09</td>
<td>MODBUS IEC Time</td>
<td>Standard IEC ☐, Reverse ☐</td>
</tr>
<tr>
<td>0E0A</td>
<td>RP1 CS103 Blocking</td>
<td>Disabled ☐, Command Blocking ☐</td>
</tr>
<tr>
<td>0E0B</td>
<td>RP1 Card Status</td>
<td>K Bus OK ☐, EIA(RS)485 OK ☐, Fiber Optic OK ☐</td>
</tr>
<tr>
<td>0E0C</td>
<td>RP1 Port Config</td>
<td>EIA(RS)232 ☐, K-Bus ☐, EIA(RS)485 ☐</td>
</tr>
<tr>
<td>0E1F</td>
<td>NIC Protocol</td>
<td>IEC 61850 ☐</td>
</tr>
<tr>
<td>0E22</td>
<td>NIC MAC Address</td>
<td>IEC 61850 ☐</td>
</tr>
<tr>
<td>0E64</td>
<td>NIC Tunl Timeout</td>
<td>IEC 61850 ☐</td>
</tr>
<tr>
<td>0E6A</td>
<td>NIC Link Report</td>
<td>IEC 61850 ☐</td>
</tr>
<tr>
<td>0E8D</td>
<td>RP1 Comms. Mode</td>
<td>IEC 60870 FT1.2 ☐, 10-bit No Parity ☐</td>
</tr>
<tr>
<td>0E81</td>
<td>RP2 Protocol</td>
<td>Courier ☐</td>
</tr>
<tr>
<td>0E0B</td>
<td>RP2 Card Status</td>
<td>Unsupported ☐, Card Not Fitted ☐, EIA(RS)232 OK ☐, EIA(RS)485 OK ☐, K-Bus OK ☐</td>
</tr>
<tr>
<td>0E88</td>
<td>RP2 Port Config</td>
<td>EIA(RS)232 ☐, EIA(RS)485 ☐, K-Bus OK ☐</td>
</tr>
<tr>
<td>0E8A</td>
<td>RP2 Comms Mode</td>
<td>IEC 60870 FT1.2 ☐, 10-bit No Parity ☐</td>
</tr>
<tr>
<td>0E90</td>
<td>RP2 Address</td>
<td></td>
</tr>
<tr>
<td>0E92</td>
<td>RP2 Inactive Timer</td>
<td></td>
</tr>
<tr>
<td>0E94</td>
<td>RP2 Baud Rate</td>
<td>1200 ☐, 2400 ☐, 4800 ☐, 9600 ☐, 19200 ☐, 38400 ☐</td>
</tr>
</tbody>
</table>

COMMISSION TESTS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0F05</td>
<td>Monitor Bit 1</td>
</tr>
<tr>
<td>0F06</td>
<td>Monitor Bit 2</td>
</tr>
<tr>
<td>0F07</td>
<td>Monitor Bit 3</td>
</tr>
<tr>
<td>0F08</td>
<td>Monitor Bit 4</td>
</tr>
<tr>
<td>0F09</td>
<td>Monitor Bit 5</td>
</tr>
<tr>
<td>0F0A</td>
<td>Monitor Bit 6</td>
</tr>
<tr>
<td>0F0B</td>
<td>Monitor Bit 7</td>
</tr>
<tr>
<td>0F0C</td>
<td>Monitor Bit 8</td>
</tr>
</tbody>
</table>
CB Monitor Setup

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
<th>Value 5</th>
<th>Value 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>Broken I^</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1002</td>
<td>I^ Maintenance</td>
<td>Alarm Disabled</td>
<td></td>
<td>Alarm Enabled</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1003</td>
<td>I^ Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1006</td>
<td>Nb CB Ops Maint</td>
<td>Alarm Disabled</td>
<td></td>
<td>Alarm Enabled</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1007</td>
<td>Nb CB Ops Maint</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100A</td>
<td>CB Time Maint</td>
<td>Alarm Disabled</td>
<td></td>
<td>Alarm Enabled</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100B</td>
<td>CB Time Maint</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Opto Config

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
<th>Value 5</th>
<th>Value 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1101</td>
<td>Global Nominal V</td>
<td>24 - 27 V</td>
<td></td>
<td>30 - 34 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>48 - 54 V</td>
<td></td>
<td>110 - 125 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>220 - 250 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Custom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1102</td>
<td>Opto Input 1</td>
<td>24 - 27 V</td>
<td></td>
<td>30 - 34 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>48 - 54 V</td>
<td></td>
<td>110 - 125 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>220 - 250 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1103</td>
<td>Opto Input 2</td>
<td>24 - 27 V</td>
<td></td>
<td>30 - 34 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>48 - 54 V</td>
<td></td>
<td>110 - 125 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>220 - 250 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1104</td>
<td>Opto Input 3</td>
<td>24 - 27 V</td>
<td></td>
<td>30 - 34 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>48 - 54 V</td>
<td></td>
<td>110 - 125 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>220 - 250 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1105</td>
<td>Opto Input 4</td>
<td>24 - 27 V</td>
<td></td>
<td>30 - 34 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>48 - 54 V</td>
<td></td>
<td>110 - 125 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>220 - 250 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1106</td>
<td>Opto Input 5</td>
<td>24 - 27 V</td>
<td></td>
<td>30 - 34 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>48 - 54 V</td>
<td></td>
<td>110 - 125 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>220 - 250 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1107</td>
<td>Opto Input 6</td>
<td>24 - 27 V</td>
<td></td>
<td>30 - 34 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>48 - 54 V</td>
<td></td>
<td>110 - 125 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>220 - 250 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1108</td>
<td>Opto Input 7</td>
<td>24 - 27 V</td>
<td></td>
<td>30 - 34 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>48 - 54 V</td>
<td></td>
<td>110 - 125 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>220 - 250 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1109</td>
<td>Opto Input 8</td>
<td>24 - 27 V</td>
<td></td>
<td>30 - 34 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>48 - 54 V</td>
<td></td>
<td>110 - 125 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>220 - 250 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110A</td>
<td>Opto Input 9</td>
<td>24 - 27 V</td>
<td></td>
<td>30 - 34 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>48 - 54 V</td>
<td></td>
<td>110 - 125 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>220 - 250 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110B</td>
<td>Opto Input 10</td>
<td>24 - 27 V</td>
<td></td>
<td>30 - 34 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>48 - 54 V</td>
<td></td>
<td>110 - 125 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>220 - 250 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OPTO CONFIG

<table>
<thead>
<tr>
<th>1100</th>
<th>110C</th>
<th>Opto Input 11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24 - 27 V</td>
<td>□</td>
</tr>
<tr>
<td></td>
<td>48 - 54 V</td>
<td>□</td>
</tr>
<tr>
<td></td>
<td>220 - 250 V</td>
<td>□</td>
</tr>
<tr>
<td></td>
<td>30 - 34 V</td>
<td>□</td>
</tr>
<tr>
<td></td>
<td>110 - 125 V</td>
<td>□</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>110D</th>
<th>Opto Input 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 - 27 V</td>
<td>□</td>
</tr>
<tr>
<td>48 - 54 V</td>
<td>□</td>
</tr>
<tr>
<td>220 - 250 V</td>
<td>□</td>
</tr>
<tr>
<td>30 - 34 V</td>
<td>□</td>
</tr>
<tr>
<td>110 - 125 V</td>
<td>□</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>110E</th>
<th>Opto Input 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 - 27 V</td>
<td>□</td>
</tr>
<tr>
<td>48 - 54 V</td>
<td>□</td>
</tr>
<tr>
<td>220 - 250 V</td>
<td>□</td>
</tr>
<tr>
<td>30 - 34 V</td>
<td>□</td>
</tr>
<tr>
<td>110 - 125 V</td>
<td>□</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>110F</th>
<th>Opto Input 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 - 27 V</td>
<td>□</td>
</tr>
<tr>
<td>48 - 54 V</td>
<td>□</td>
</tr>
<tr>
<td>220 - 250 V</td>
<td>□</td>
</tr>
<tr>
<td>30 - 34 V</td>
<td>□</td>
</tr>
<tr>
<td>110 - 125 V</td>
<td>□</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1110</th>
<th>Opto Input 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 - 27 V</td>
<td>□</td>
</tr>
<tr>
<td>48 - 54 V</td>
<td>□</td>
</tr>
<tr>
<td>220 - 250 V</td>
<td>□</td>
</tr>
<tr>
<td>30 - 34 V</td>
<td>□</td>
</tr>
<tr>
<td>110 - 125 V</td>
<td>□</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1111</th>
<th>Opto Input 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 - 27 V</td>
<td>□</td>
</tr>
<tr>
<td>48 - 54 V</td>
<td>□</td>
</tr>
<tr>
<td>220 - 250 V</td>
<td>□</td>
</tr>
<tr>
<td>30 - 34 V</td>
<td>□</td>
</tr>
<tr>
<td>110 - 125 V</td>
<td>□</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1150</th>
<th>Opto Filter Ctrl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1180</th>
<th>Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard 60% - 80%</td>
</tr>
<tr>
<td></td>
<td>□ 50% - 70%</td>
</tr>
</tbody>
</table>

CTRL I/P CONFIG

<table>
<thead>
<tr>
<th>1300</th>
<th>1301</th>
<th>Hotkey Enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1310</th>
<th>Control Input 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Latched</td>
</tr>
<tr>
<td></td>
<td>Pulsed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1311</th>
<th>Ctrl Command 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On/Off</td>
</tr>
<tr>
<td></td>
<td>Set/Reset</td>
</tr>
<tr>
<td></td>
<td>In/Out</td>
</tr>
<tr>
<td></td>
<td>Enabled/Disabled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1314</th>
<th>Control Input 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Latched</td>
</tr>
<tr>
<td></td>
<td>Pulsed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1315</th>
<th>Ctrl Command 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On/Off</td>
</tr>
<tr>
<td></td>
<td>Set/Reset</td>
</tr>
<tr>
<td></td>
<td>In/Out</td>
</tr>
<tr>
<td></td>
<td>Enabled/Disabled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1318</th>
<th>Control Input 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Latched</td>
</tr>
<tr>
<td></td>
<td>Pulsed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1319</th>
<th>Ctrl Command 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On/Off</td>
</tr>
<tr>
<td></td>
<td>Set/Reset</td>
</tr>
<tr>
<td></td>
<td>In/Out</td>
</tr>
<tr>
<td></td>
<td>Enabled/Disabled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>131C</th>
<th>Control Input 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Latched</td>
</tr>
<tr>
<td></td>
<td>Pulsed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>131D</th>
<th>Ctrl Command 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On/Off</td>
</tr>
<tr>
<td></td>
<td>Set/Reset</td>
</tr>
<tr>
<td></td>
<td>In/Out</td>
</tr>
<tr>
<td></td>
<td>Enabled/Disabled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1320</th>
<th>Control Input 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Latched</td>
</tr>
<tr>
<td></td>
<td>Pulsed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1321</th>
<th>Ctrl Command 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On/Off</td>
</tr>
<tr>
<td></td>
<td>Set/Reset</td>
</tr>
<tr>
<td></td>
<td>In/Out</td>
</tr>
<tr>
<td></td>
<td>Enabled/Disabled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1324</th>
<th>Control Input 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Latched</td>
</tr>
<tr>
<td></td>
<td>Pulsed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1325</th>
<th>Ctrl Command 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On/Off</td>
</tr>
<tr>
<td></td>
<td>Set/Reset</td>
</tr>
<tr>
<td></td>
<td>In/Out</td>
</tr>
<tr>
<td></td>
<td>Enabled/Disabled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1328</th>
<th>Control Input 7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Latched</td>
</tr>
<tr>
<td></td>
<td>Pulsed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1329</th>
<th>Ctrl Command 7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On/Off</td>
</tr>
<tr>
<td></td>
<td>Set/Reset</td>
</tr>
<tr>
<td></td>
<td>In/Out</td>
</tr>
<tr>
<td></td>
<td>Enabled/Disabled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>132C</th>
<th>Control Input 8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Latched</td>
</tr>
<tr>
<td></td>
<td>Pulsed</td>
</tr>
<tr>
<td></td>
<td>CTRL I/P CONFIG</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>1300</td>
<td></td>
</tr>
<tr>
<td>132D</td>
<td>Ctrl Command 8 On/Off</td>
</tr>
<tr>
<td></td>
<td>In/Out</td>
</tr>
<tr>
<td></td>
<td>Set/Reset</td>
</tr>
<tr>
<td></td>
<td>Enabled/Disabled</td>
</tr>
<tr>
<td>1330</td>
<td>Control Input 9 Latched</td>
</tr>
<tr>
<td></td>
<td>Pulsed</td>
</tr>
<tr>
<td>1331</td>
<td>Ctrl Command 9 On/Off</td>
</tr>
<tr>
<td></td>
<td>In/Out</td>
</tr>
<tr>
<td></td>
<td>Set/Reset</td>
</tr>
<tr>
<td></td>
<td>Enabled/Disabled</td>
</tr>
<tr>
<td>1334</td>
<td>Control Input 10 Latched</td>
</tr>
<tr>
<td></td>
<td>Pulsed</td>
</tr>
<tr>
<td>1335</td>
<td>Ctrl Command 10 On/Off</td>
</tr>
<tr>
<td></td>
<td>In/Out</td>
</tr>
<tr>
<td></td>
<td>Set/Reset</td>
</tr>
<tr>
<td></td>
<td>Enabled/Disabled</td>
</tr>
<tr>
<td>1338</td>
<td>Control Input 11 Latched</td>
</tr>
<tr>
<td></td>
<td>Pulsed</td>
</tr>
<tr>
<td>1339</td>
<td>Ctrl Command 11 On/Off</td>
</tr>
<tr>
<td></td>
<td>In/Out</td>
</tr>
<tr>
<td></td>
<td>Set/Reset</td>
</tr>
<tr>
<td></td>
<td>Enabled/Disabled</td>
</tr>
<tr>
<td>133C</td>
<td>Control Input 12 Latched</td>
</tr>
<tr>
<td></td>
<td>Pulsed</td>
</tr>
<tr>
<td>133C</td>
<td>Ctrl Command 12 On/Off</td>
</tr>
<tr>
<td></td>
<td>In/Out</td>
</tr>
<tr>
<td></td>
<td>Set/Reset</td>
</tr>
<tr>
<td></td>
<td>Enabled/Disabled</td>
</tr>
<tr>
<td>1340</td>
<td>Control Input 13 Latched</td>
</tr>
<tr>
<td></td>
<td>Pulsed</td>
</tr>
<tr>
<td>1341</td>
<td>Ctrl Command 13 On/Off</td>
</tr>
<tr>
<td></td>
<td>In/Out</td>
</tr>
<tr>
<td></td>
<td>Set/Reset</td>
</tr>
<tr>
<td></td>
<td>Enabled/Disabled</td>
</tr>
<tr>
<td>1344</td>
<td>Control Input 14 Latched</td>
</tr>
<tr>
<td></td>
<td>Pulsed</td>
</tr>
<tr>
<td>1345</td>
<td>Ctrl Command 14 On/Off</td>
</tr>
<tr>
<td></td>
<td>In/Out</td>
</tr>
<tr>
<td></td>
<td>Set/Reset</td>
</tr>
<tr>
<td></td>
<td>Enabled/Disabled</td>
</tr>
<tr>
<td>1348</td>
<td>Control Input 15 Latched</td>
</tr>
<tr>
<td></td>
<td>Pulsed</td>
</tr>
<tr>
<td>1349</td>
<td>Ctrl Command 15 On/Off</td>
</tr>
<tr>
<td></td>
<td>In/Out</td>
</tr>
<tr>
<td></td>
<td>Set/Reset</td>
</tr>
<tr>
<td></td>
<td>Enabled/Disabled</td>
</tr>
<tr>
<td>134C</td>
<td>Control Input 16 Latched</td>
</tr>
<tr>
<td></td>
<td>Pulsed</td>
</tr>
<tr>
<td>134D</td>
<td>Ctrl Command 16 On/Off</td>
</tr>
<tr>
<td></td>
<td>In/Out</td>
</tr>
<tr>
<td></td>
<td>Set/Reset</td>
</tr>
<tr>
<td></td>
<td>Enabled/Disabled</td>
</tr>
<tr>
<td>1350</td>
<td>Control Input 17 Latched</td>
</tr>
<tr>
<td></td>
<td>Pulsed</td>
</tr>
<tr>
<td>1351</td>
<td>Ctrl Command 17 On/Off</td>
</tr>
<tr>
<td></td>
<td>In/Out</td>
</tr>
<tr>
<td></td>
<td>Set/Reset</td>
</tr>
<tr>
<td></td>
<td>Enabled/Disabled</td>
</tr>
<tr>
<td>1354</td>
<td>Control Input 18 Latched</td>
</tr>
<tr>
<td></td>
<td>Pulsed</td>
</tr>
<tr>
<td>1355</td>
<td>Ctrl Command 18 On/Off</td>
</tr>
<tr>
<td></td>
<td>In/Out</td>
</tr>
<tr>
<td></td>
<td>Set/Reset</td>
</tr>
<tr>
<td></td>
<td>Enabled/Disabled</td>
</tr>
<tr>
<td>1358</td>
<td>Control Input 19 Latched</td>
</tr>
<tr>
<td></td>
<td>Pulsed</td>
</tr>
<tr>
<td>1359</td>
<td>Ctrl Command 19 On/Off</td>
</tr>
<tr>
<td></td>
<td>In/Out</td>
</tr>
<tr>
<td></td>
<td>Set/Reset</td>
</tr>
<tr>
<td></td>
<td>Enabled/Disabled</td>
</tr>
<tr>
<td>135C</td>
<td>Control Input 20 Latched</td>
</tr>
<tr>
<td></td>
<td>Pulsed</td>
</tr>
<tr>
<td>135D</td>
<td>Ctrl Command 20 On/Off</td>
</tr>
<tr>
<td></td>
<td>In/Out</td>
</tr>
<tr>
<td></td>
<td>Set/Reset</td>
</tr>
<tr>
<td></td>
<td>Enabled/Disabled</td>
</tr>
<tr>
<td>1360</td>
<td>Control Input 21 Latched</td>
</tr>
<tr>
<td></td>
<td>Pulsed</td>
</tr>
<tr>
<td>1361</td>
<td>Ctrl Command 21 On/Off</td>
</tr>
<tr>
<td></td>
<td>In/Out</td>
</tr>
<tr>
<td></td>
<td>Set/Reset</td>
</tr>
<tr>
<td></td>
<td>Enabled/Disabled</td>
</tr>
<tr>
<td>1364</td>
<td>Control Input 22 Latched</td>
</tr>
<tr>
<td></td>
<td>Pulsed</td>
</tr>
<tr>
<td>1365</td>
<td>Ctrl Command 22 On/Off</td>
</tr>
<tr>
<td></td>
<td>In/Out</td>
</tr>
<tr>
<td></td>
<td>Set/Reset</td>
</tr>
<tr>
<td></td>
<td>Enabled/Disabled</td>
</tr>
<tr>
<td>1368</td>
<td>Control Input 23 Latched</td>
</tr>
<tr>
<td></td>
<td>Pulsed</td>
</tr>
<tr>
<td>1369</td>
<td>Ctrl Command 23 On/Off</td>
</tr>
<tr>
<td></td>
<td>In/Out</td>
</tr>
<tr>
<td></td>
<td>Set/Reset</td>
</tr>
<tr>
<td></td>
<td>Enabled/Disabled</td>
</tr>
<tr>
<td>136C</td>
<td>Control Input 24 Latched</td>
</tr>
<tr>
<td></td>
<td>Pulsed</td>
</tr>
<tr>
<td>136D</td>
<td>Ctrl Command 24 On/Off</td>
</tr>
<tr>
<td></td>
<td>In/Out</td>
</tr>
<tr>
<td></td>
<td>Set/Reset</td>
</tr>
<tr>
<td></td>
<td>Enabled/Disabled</td>
</tr>
<tr>
<td>1370</td>
<td>Control Input 25 Latched</td>
</tr>
<tr>
<td></td>
<td>Pulsed</td>
</tr>
</tbody>
</table>
1300 CTRL I/P CONFIG

<table>
<thead>
<tr>
<th>1371</th>
<th>Ctrl Command 25</th>
<th>On/Off</th>
<th>In/Out</th>
<th>Set/Reset</th>
<th>Enabled/Disabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>1374</td>
<td>Control Input 26</td>
<td>Latched</td>
<td>Pulsed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1375</td>
<td>Ctrl Command 26</td>
<td>On/Off</td>
<td>In/Out</td>
<td>Set/Reset</td>
<td>Enabled/Disabled</td>
</tr>
<tr>
<td>1378</td>
<td>Control Input 27</td>
<td>Latched</td>
<td>Pulsed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1379</td>
<td>Ctrl Command 27</td>
<td>On/Off</td>
<td>In/Out</td>
<td>Set/Reset</td>
<td>Enabled/Disabled</td>
</tr>
<tr>
<td>137C</td>
<td>Control Input 28</td>
<td>Latched</td>
<td>Pulsed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>137D</td>
<td>Ctrl Command 28</td>
<td>On/Off</td>
<td>In/Out</td>
<td>Set/Reset</td>
<td>Enabled/Disabled</td>
</tr>
<tr>
<td>1380</td>
<td>Control Input 29</td>
<td>Latched</td>
<td>Pulsed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1381</td>
<td>Ctrl Command 29</td>
<td>On/Off</td>
<td>In/Out</td>
<td>Set/Reset</td>
<td>Enabled/Disabled</td>
</tr>
<tr>
<td>1384</td>
<td>Control Input 30</td>
<td>Latched</td>
<td>Pulsed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1385</td>
<td>Ctrl Command 30</td>
<td>On/Off</td>
<td>In/Out</td>
<td>Set/Reset</td>
<td>Enabled/Disabled</td>
</tr>
<tr>
<td>1388</td>
<td>Control Input 31</td>
<td>Latched</td>
<td>Pulsed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1389</td>
<td>Ctrl Command 31</td>
<td>On/Off</td>
<td>In/Out</td>
<td>Set/Reset</td>
<td>Enabled/Disabled</td>
</tr>
<tr>
<td>138C</td>
<td>Control Input 32</td>
<td>Latched</td>
<td>Pulsed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>138D</td>
<td>Ctrl Command 32</td>
<td>On/Off</td>
<td>In/Out</td>
<td>Set/Reset</td>
<td>Enabled/Disabled</td>
</tr>
</tbody>
</table>

1700 FUNCTION KEYS

(P242/3 only)

<table>
<thead>
<tr>
<th>1702</th>
<th>Fn. Key 1 Status</th>
<th>Unlock*</th>
<th>Enable*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1703</td>
<td>Fn. Key 1 Mode</td>
<td>Normal</td>
<td>Toggle*</td>
</tr>
<tr>
<td>1704</td>
<td>Fn. Key 1 Label</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1705</td>
<td>Fn. Key 2 Status</td>
<td>Unlock*</td>
<td>Enable*</td>
</tr>
<tr>
<td>1706</td>
<td>Fn. Key 2 Mode</td>
<td>Normal</td>
<td>Toggle*</td>
</tr>
<tr>
<td>1707</td>
<td>Fn. Key 2 Label</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1708</td>
<td>Fn. Key 3 Status</td>
<td>Unlock*</td>
<td>Enable*</td>
</tr>
<tr>
<td>1709</td>
<td>Fn. Key 3 Mode</td>
<td>Normal</td>
<td>Toggle*</td>
</tr>
<tr>
<td>170A</td>
<td>Fn. Key 3 Label</td>
<td></td>
<td></td>
</tr>
<tr>
<td>170B</td>
<td>Fn. Key 4 Status</td>
<td>Unlock*</td>
<td>Enable*</td>
</tr>
<tr>
<td>170C</td>
<td>Fn. Key 4 Mode</td>
<td>Normal</td>
<td>Toggle*</td>
</tr>
<tr>
<td>170D</td>
<td>Fn. Key 4 Label</td>
<td></td>
<td></td>
</tr>
<tr>
<td>170E</td>
<td>Fn. Key 5 Status</td>
<td>Unlock*</td>
<td>Enable*</td>
</tr>
<tr>
<td>170F</td>
<td>Fn. Key 5 Mode</td>
<td>Normal</td>
<td>Toggle*</td>
</tr>
<tr>
<td>1710</td>
<td>Fn. Key 5 Label</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1711</td>
<td>Fn. Key 6 Status</td>
<td>Unlock*</td>
<td>Enable*</td>
</tr>
<tr>
<td>1712</td>
<td>Fn. Key 6 Mode</td>
<td>Normal</td>
<td>Toggle*</td>
</tr>
<tr>
<td>1713</td>
<td>Fn. Key 6 Label</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1714</td>
<td>Fn. Key 7 Status</td>
<td>Unlock*</td>
<td>Enable*</td>
</tr>
<tr>
<td>1715</td>
<td>Fn. Key 7 Mode</td>
<td>Normal</td>
<td>Toggle*</td>
</tr>
<tr>
<td>1716</td>
<td>Fn. Key 7 Label</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FUNCTION KEYS
(P242/3 only)

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Mode</th>
<th>Status</th>
<th>Enable</th>
<th>Toggle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1717</td>
<td>Fn. Key 8 Status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1718</td>
<td>Fn. Key 8 Mode</td>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1719</td>
<td>Fn. Key 8 Label</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>171A</td>
<td>Fn. Key 9 Status</td>
<td>Unlock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>171B</td>
<td>Fn. Key 9 Mode</td>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>171C</td>
<td>Fn. Key 9 Label</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>171D</td>
<td>Fn. Key 10 Status</td>
<td>Unlock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>171E</td>
<td>Fn. Key 10 Mode</td>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>171F</td>
<td>Fn. Key 10 Label</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CTRL I/P LABELS

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2901</td>
<td>Control Input 1</td>
</tr>
<tr>
<td>2902</td>
<td>Control Input 2</td>
</tr>
<tr>
<td>2903</td>
<td>Control Input 3</td>
</tr>
<tr>
<td>2904</td>
<td>Control Input 4</td>
</tr>
<tr>
<td>2905</td>
<td>Control Input 5</td>
</tr>
<tr>
<td>2906</td>
<td>Control Input 6</td>
</tr>
<tr>
<td>2907</td>
<td>Control Input 7</td>
</tr>
<tr>
<td>2908</td>
<td>Control Input 8</td>
</tr>
<tr>
<td>2909</td>
<td>Control Input 9</td>
</tr>
<tr>
<td>290A</td>
<td>Control Input 10</td>
</tr>
<tr>
<td>290B</td>
<td>Control Input 11</td>
</tr>
<tr>
<td>290C</td>
<td>Control Input 12</td>
</tr>
<tr>
<td>290D</td>
<td>Control Input 13</td>
</tr>
<tr>
<td>290E</td>
<td>Control Input 14</td>
</tr>
<tr>
<td>290F</td>
<td>Control Input 15</td>
</tr>
<tr>
<td>2910</td>
<td>Control Input 16</td>
</tr>
<tr>
<td>2911</td>
<td>Control Input 17</td>
</tr>
<tr>
<td>2912</td>
<td>Control Input 18</td>
</tr>
<tr>
<td>2913</td>
<td>Control Input 19</td>
</tr>
<tr>
<td>2914</td>
<td>Control Input 20</td>
</tr>
<tr>
<td>2915</td>
<td>Control Input 21</td>
</tr>
<tr>
<td>2916</td>
<td>Control Input 22</td>
</tr>
<tr>
<td>2917</td>
<td>Control Input 23</td>
</tr>
<tr>
<td>2918</td>
<td>Control Input 24</td>
</tr>
<tr>
<td>2919</td>
<td>Control Input 25</td>
</tr>
<tr>
<td>291A</td>
<td>Control Input 26</td>
</tr>
</tbody>
</table>
2900 CTRL I/P LABELS

<table>
<thead>
<tr>
<th>291B</th>
<th>Control Input 27</th>
</tr>
</thead>
<tbody>
<tr>
<td>291C</td>
<td>Control Input 28</td>
</tr>
<tr>
<td>291D</td>
<td>Control Input 29</td>
</tr>
<tr>
<td>291E</td>
<td>Control Input 30</td>
</tr>
<tr>
<td>291F</td>
<td>Control Input 31</td>
</tr>
<tr>
<td>2920</td>
<td>Control Input 32</td>
</tr>
</tbody>
</table>

B700 PSL DATA

<table>
<thead>
<tr>
<th>B701</th>
<th>Grp 1 PSL Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>B702</td>
<td>Date/Time</td>
</tr>
<tr>
<td>B703</td>
<td>Grp 1 PSL ID</td>
</tr>
<tr>
<td>B711</td>
<td>Grp 2 PSL Ref</td>
</tr>
<tr>
<td>B712</td>
<td>Date/Time</td>
</tr>
<tr>
<td>B713</td>
<td>Grp 2 PSL ID</td>
</tr>
<tr>
<td>B721</td>
<td>Grp 3 PSL Ref</td>
</tr>
<tr>
<td>B722</td>
<td>Date/Time</td>
</tr>
<tr>
<td>B723</td>
<td>Grp 3 PSL ID</td>
</tr>
<tr>
<td>B731</td>
<td>Grp 4 PSL Ref</td>
</tr>
<tr>
<td>B732</td>
<td>Date/Time</td>
</tr>
<tr>
<td>B733</td>
<td>Grp 4 PSL ID</td>
</tr>
</tbody>
</table>

PROTECTION SETTINGS

Group 1 protection settings use 3xxx/4xxx Courier cell addresses

Group 2 protection settings use 5xxx/6xxx Courier cell addresses

3000 THERMAL OVERLOAD

<table>
<thead>
<tr>
<th>Group 1 settings</th>
<th>Group 1 settings</th>
<th>Group 2 settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>3001 In Current Set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3002 K Coefficient</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3003 Thermal Const T1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3004 Thermal Const T2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3005 Cooling Const Tr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3006 Thermal Trip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3007 Thermal Alarm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3008 Alarm Threshold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3009 Thermal Lockout</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3000 THERMAL OVERLOAD

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>300A</td>
<td>Lockout Thresh</td>
<td></td>
</tr>
<tr>
<td>300B</td>
<td>Inh Trip Dur St</td>
<td></td>
</tr>
</tbody>
</table>

3100 SHORT CIRCUIT

<table>
<thead>
<tr>
<th>Group 1 settings</th>
<th>Group 1 settings</th>
<th>Group 2 settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>3101</td>
<td>$I>1$ Function</td>
<td></td>
</tr>
<tr>
<td>3102</td>
<td>$I>1$ Current Set</td>
<td></td>
</tr>
<tr>
<td>3103</td>
<td>$I>1$ Time Delay</td>
<td></td>
</tr>
<tr>
<td>3111</td>
<td>$I>2$ Function</td>
<td></td>
</tr>
<tr>
<td>3112</td>
<td>$I>2$ Current Set</td>
<td></td>
</tr>
<tr>
<td>3113</td>
<td>$I>2$ Time Delay</td>
<td></td>
</tr>
<tr>
<td>3121</td>
<td>$I>3$ Function</td>
<td></td>
</tr>
<tr>
<td>3122</td>
<td>$I>3$ Current setting</td>
<td></td>
</tr>
<tr>
<td>3123</td>
<td>$I>3$ Time Delay</td>
<td></td>
</tr>
<tr>
<td>3131</td>
<td>$I>4$ Function</td>
<td></td>
</tr>
<tr>
<td>3132</td>
<td>$I>4$ Current setting</td>
<td></td>
</tr>
<tr>
<td>3133</td>
<td>$I>4$ Time Delay</td>
<td></td>
</tr>
</tbody>
</table>

3200 SENSITIVE E/F

<table>
<thead>
<tr>
<th>Group 1 settings</th>
<th>Group 1 settings</th>
<th>Group 2 settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>3201</td>
<td>ISEF>1 Function</td>
<td></td>
</tr>
<tr>
<td>3202</td>
<td>ISEF>1 Direction</td>
<td></td>
</tr>
<tr>
<td>3203</td>
<td>ISEF>1 Current</td>
<td></td>
</tr>
<tr>
<td>3204</td>
<td>ISEF>1 T Delay</td>
<td></td>
</tr>
<tr>
<td>3205</td>
<td>ISEF>1 TMS</td>
<td></td>
</tr>
<tr>
<td>3206</td>
<td>ISEF>1 Time Dial</td>
<td></td>
</tr>
<tr>
<td>3207</td>
<td>ISEF>1 Reset Chr</td>
<td></td>
</tr>
<tr>
<td>3208</td>
<td>ISEF>1 tReset</td>
<td></td>
</tr>
<tr>
<td>3209</td>
<td>ISEF>2 Function</td>
<td></td>
</tr>
<tr>
<td>320A</td>
<td>ISEF>2 Direction</td>
<td></td>
</tr>
<tr>
<td>320B</td>
<td>ISEF>2 Current</td>
<td></td>
</tr>
<tr>
<td>320C</td>
<td>ISEF>2 T Delay</td>
<td></td>
</tr>
<tr>
<td>320D</td>
<td>ISEF> Directional</td>
<td></td>
</tr>
<tr>
<td>320E</td>
<td>ISEF> Char Angle</td>
<td></td>
</tr>
<tr>
<td>320F</td>
<td>ISEF> VNpol set</td>
<td></td>
</tr>
<tr>
<td>3210</td>
<td>Earth fault - Wattmetric Prot.</td>
<td></td>
</tr>
<tr>
<td>3211</td>
<td>PO> Function</td>
<td></td>
</tr>
</tbody>
</table>
SENSITIVE E/F

<table>
<thead>
<tr>
<th></th>
<th>Group 1 settings</th>
<th>Group 1 settings</th>
<th>Group 2 settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>3200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3212</td>
<td>PO> Current Set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3213</td>
<td>PO> Voltage Set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3214</td>
<td>PO> Coeff K Set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3215</td>
<td>PO> Char Angle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3216</td>
<td>PO> Time Delay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3220</td>
<td>ISEF> VTS Blocking</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NEG SEQ O/C

<table>
<thead>
<tr>
<th></th>
<th>Group 1 settings</th>
<th>Group 1 settings</th>
<th>Group 2 settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>3300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3301</td>
<td>I2>1 Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3302</td>
<td>I2>1 Current Set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3303</td>
<td>I2>1 Time Delay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3304</td>
<td>I2>2 Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3305</td>
<td>I2>2 Current Set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3306</td>
<td>I2>2 TMS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3PH VOLT CHECK

<table>
<thead>
<tr>
<th></th>
<th>Group 1 settings</th>
<th>Group 1 settings</th>
<th>Group 2 settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>3400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3401</td>
<td>Start Low V Set</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DERIVED EARTH FAULT

<table>
<thead>
<tr>
<th></th>
<th>Group 1 settings</th>
<th>Group 1 settings</th>
<th>Group 2 settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>3500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3501</td>
<td>IN>1 Function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3502</td>
<td>IN>1 Direction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3503</td>
<td>IN>1 Current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3504</td>
<td>IN>1 T Delay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3505</td>
<td>IN>1 TMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3506</td>
<td>IN1 Time Dial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3507</td>
<td>IN>1 Reset Chr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3508</td>
<td>IN>1 tReset</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3509</td>
<td>IN>2 Function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>350A</td>
<td>IN>2 Direction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>350B</td>
<td>IN>2 Current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>350C</td>
<td>IN>2 T Delay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>350D</td>
<td>IN> Directional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>350E</td>
<td>IN> Char Angle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>350F</td>
<td>IN> Pol Type</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DERIVED EARTH FAULT

<table>
<thead>
<tr>
<th>3500</th>
<th>DERIVED EARTH FAULT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Group 1 settings</td>
</tr>
<tr>
<td>3510</td>
<td>IN> VN pol set</td>
</tr>
<tr>
<td>3511</td>
<td>IN2> V2pol set</td>
</tr>
<tr>
<td>3512</td>
<td>IN2> I2pol set</td>
</tr>
<tr>
<td>3520</td>
<td>IN> VTS Blocking</td>
</tr>
</tbody>
</table>

NEG SEQ O/V

<table>
<thead>
<tr>
<th>3600</th>
<th>NEG SEQ O/V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Group 1 settings</td>
</tr>
<tr>
<td>3601</td>
<td>V2>1 Status</td>
</tr>
<tr>
<td>3602</td>
<td>V2>1 Voltage Set</td>
</tr>
<tr>
<td>3603</td>
<td>V2>1 Time Delay</td>
</tr>
<tr>
<td>3611</td>
<td>V2>2 Status</td>
</tr>
<tr>
<td>3612</td>
<td>V2>2 Voltage Set</td>
</tr>
<tr>
<td>3613</td>
<td>V2>2 Time Delay</td>
</tr>
</tbody>
</table>

STALL PROTECTION

<table>
<thead>
<tr>
<th>3900</th>
<th>STALL PROTECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Group 1 settings</td>
</tr>
<tr>
<td>3901</td>
<td>Prolonged Start</td>
</tr>
<tr>
<td>3902</td>
<td>Start Criteria</td>
</tr>
<tr>
<td>3903</td>
<td>Starting Current</td>
</tr>
<tr>
<td>3904</td>
<td>Prol Start Time</td>
</tr>
<tr>
<td>3905</td>
<td>Stall Rotor-strt</td>
</tr>
<tr>
<td>3906</td>
<td>Stall Detection</td>
</tr>
<tr>
<td>3907</td>
<td>Stall Setting</td>
</tr>
<tr>
<td>3908</td>
<td>Stall Time</td>
</tr>
<tr>
<td>3909</td>
<td>Reacceleration</td>
</tr>
<tr>
<td>390A</td>
<td>Reacc Low V Set</td>
</tr>
<tr>
<td>390B</td>
<td>LV Ride Thru</td>
</tr>
<tr>
<td>390C</td>
<td>Reac. High V Set</td>
</tr>
<tr>
<td>390D</td>
<td>Reac. Time</td>
</tr>
<tr>
<td>390E</td>
<td>Auto Re-start</td>
</tr>
<tr>
<td>390F</td>
<td>Reac. Long Time</td>
</tr>
<tr>
<td>3910</td>
<td>Reac. Shed Time</td>
</tr>
</tbody>
</table>

DIFFERENTIAL

<table>
<thead>
<tr>
<th>3A00</th>
<th>DIFFERENTIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Group 1 settings</td>
</tr>
<tr>
<td>3A01</td>
<td>Diff Function</td>
</tr>
<tr>
<td>3A02</td>
<td>Diff Is1</td>
</tr>
<tr>
<td>3A03</td>
<td>Diff k1</td>
</tr>
<tr>
<td>3A04</td>
<td>Diff Is2</td>
</tr>
</tbody>
</table>
3A00 DIFFERENTIAL

| 3A05 | Diff k2 |

3B00 RESIDUAL O/V NVD

<table>
<thead>
<tr>
<th>Group 1 settings</th>
<th>Group 1 settings</th>
<th>Group 2 settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>3B02</td>
<td>VN>1 Function</td>
<td></td>
</tr>
<tr>
<td>3B03</td>
<td>VN>1 Voltage Set</td>
<td></td>
</tr>
<tr>
<td>3B04</td>
<td>VN>1 Time Delay</td>
<td></td>
</tr>
<tr>
<td>3B05</td>
<td>VN>1 TMS</td>
<td></td>
</tr>
<tr>
<td>3B07</td>
<td>VN>2 Status</td>
<td></td>
</tr>
<tr>
<td>3B08</td>
<td>VN>2 Voltage Set</td>
<td></td>
</tr>
<tr>
<td>3B09</td>
<td>VN>2 Time Delay</td>
<td></td>
</tr>
</tbody>
</table>

3C00 LIMIT NB STARTS

<table>
<thead>
<tr>
<th>Group 1 settings</th>
<th>Group 1 settings</th>
<th>Group 2 settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>3C01</td>
<td>Hot Start Status</td>
<td></td>
</tr>
<tr>
<td>3C02</td>
<td>Hot Start Nb</td>
<td></td>
</tr>
<tr>
<td>3C03</td>
<td>Cold Start Stat</td>
<td></td>
</tr>
<tr>
<td>3C04</td>
<td>Cold Start Nb</td>
<td></td>
</tr>
<tr>
<td>3C05</td>
<td>Supervising Time</td>
<td></td>
</tr>
<tr>
<td>3C06</td>
<td>T Betw St Status</td>
<td></td>
</tr>
<tr>
<td>3C07</td>
<td>Time Betw Start</td>
<td></td>
</tr>
<tr>
<td>3C08</td>
<td>Inhib Start Time</td>
<td></td>
</tr>
</tbody>
</table>

3D00 LOSS OF LOAD

<table>
<thead>
<tr>
<th>Group 1 settings</th>
<th>Group 1 settings</th>
<th>Group 2 settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D01</td>
<td>P<1 Status</td>
<td></td>
</tr>
<tr>
<td>3D02</td>
<td>P<1 Power Set</td>
<td></td>
</tr>
<tr>
<td>3D03</td>
<td>P<1 Time Delay</td>
<td></td>
</tr>
<tr>
<td>3D11</td>
<td>P<2 Status</td>
<td></td>
</tr>
<tr>
<td>3D12</td>
<td>P<2 Power Set</td>
<td></td>
</tr>
<tr>
<td>3D13</td>
<td>P<2 Time Delay</td>
<td></td>
</tr>
<tr>
<td>3D20</td>
<td>P< Drop-off Time</td>
<td></td>
</tr>
</tbody>
</table>

3E00 OUT OF STEP

<table>
<thead>
<tr>
<th>Group 1 settings</th>
<th>Group 1 settings</th>
<th>Group 2 settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>3E01</td>
<td>PF< Status Lead</td>
<td></td>
</tr>
<tr>
<td>3E02</td>
<td>PF< Trip Set Lead</td>
<td></td>
</tr>
<tr>
<td>3E03</td>
<td>PF< Trip Delay</td>
<td></td>
</tr>
<tr>
<td>3E11</td>
<td>PF< Status Lag</td>
<td></td>
</tr>
</tbody>
</table>
3E00 OUT OF STEP

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3E12</td>
<td>PF< Trip Set Lag</td>
</tr>
<tr>
<td>3E13</td>
<td>PF< Trip Delay Lag</td>
</tr>
<tr>
<td>3E01</td>
<td>PF< Status Lead</td>
</tr>
</tbody>
</table>

3F00 REVERSE POWER

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
<th>Group 1 settings</th>
<th>Group 1 settings</th>
<th>Group 2 settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>3F02</td>
<td>Rev P< Power Set</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3F03</td>
<td>Rev P< Time Delay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3F20</td>
<td>P< Drop-of Ti</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4000 ANTI-BACKSPIN

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
<th>Group 1 settings</th>
<th>Group 1 settings</th>
<th>Group 2 settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>4001</td>
<td>VRem Anti-backs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4002</td>
<td>Anti-backs Delay</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4100 FIELD FAILURE

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
<th>Group 1 settings</th>
<th>Group 1 settings</th>
<th>Group 2 settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>4101</td>
<td>FFail Alm Status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4102</td>
<td>FFail Alm Angle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4103</td>
<td>FFail Alm Delay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4104</td>
<td>FFail1 Status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4105</td>
<td>FFail1 -Xa1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4106</td>
<td>FFail1 Xb1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4107</td>
<td>FFail1 Time Delay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4108</td>
<td>FFail1 DO Timer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4109</td>
<td>FFail2 Status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>410A</td>
<td>FFail2 -Xa1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>410B</td>
<td>FFail2 Xb1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>410C</td>
<td>FFail2 Time Delay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>410D</td>
<td>FFail2 DO Timer</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4200 VOLT PROTECTION

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
<th>Group 1 settings</th>
<th>Group 1 settings</th>
<th>Group 2 settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>4201</td>
<td>UNDERVOLTAGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4202</td>
<td>V<1 Measur't Mode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4203</td>
<td>V<1 Operate Mode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4204</td>
<td>V<1 Function</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4200 VOLTS PROTECTION

<table>
<thead>
<tr>
<th>Group 1 settings</th>
<th>Group 1 settings</th>
<th>Group 2 settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>4205 V<1 Voltage Set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4206 V<1 Time Delay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4207 V<1 TMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4209 V<2 Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>420A V<2 Voltage Set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>420B V<2 Time Delay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>420C Inhib During St</td>
<td></td>
<td></td>
</tr>
<tr>
<td>420D OVERVOLTAGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>420E V>1 Measur’t Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>420F V>1 Operate Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4210 V>1 Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4211 V>1 Voltage Set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4212 V>1 Time Delay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4214 V>2 Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4215 V>2 Voltage Set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4216 V>2 Time Delay</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4300 UNDERFREQUENCY

<table>
<thead>
<tr>
<th>Group 1 settings</th>
<th>Group 1 settings</th>
<th>Group 2 settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>4302 F<1 Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4303 F<1 Setting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4304 F<1 Time Delay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4305 F<2 Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4306 F<2 Setting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4307 F<2 Time Delay</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4400 RTD PROTECTION

<table>
<thead>
<tr>
<th>Group 1 settings</th>
<th>Group 1 settings</th>
<th>Group 2 settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>4401 Select RTD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4403 RTD 1 Alarm Set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4404 RTD 1 Alarm Dly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4405 RTD 1 Trip Set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4406 RTD 1 Trip Dly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4408 RTD 2 Alarm Set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4409 RTD 2 Alarm Dly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>440A RTD 2 Trip Set</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RTD PROTECTION

<table>
<thead>
<tr>
<th>4400</th>
<th>Group 1 settings</th>
<th>Group 1 settings</th>
<th>Group 2 settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>440B</td>
<td>RTD 2 Trip Dly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>440D</td>
<td>RTD 3 Alarm Set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>440E</td>
<td>RTD 3 Alarm Dly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>440F</td>
<td>RTD 3 Trip Set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4410</td>
<td>RTD 3 Trip Dly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4412</td>
<td>RTD 4 Alarm Set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4413</td>
<td>RTD 4 Alarm Dly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4414</td>
<td>RTD 4 Trip Set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4415</td>
<td>RTD 4 Trip Dly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4417</td>
<td>RTD 5 Alarm Set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4418</td>
<td>RTD 5 Alarm Dly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4419</td>
<td>RTD 5 Trip Set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>441A</td>
<td>RTD 5 Trip Dly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>441C</td>
<td>RTD 6 Alarm Set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>441D</td>
<td>RTD 6 Alarm Dly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>441E</td>
<td>RTD 6 Trip Set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>441F</td>
<td>RTD 6 Trip Dly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4421</td>
<td>RTD 7 Alarm Set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4422</td>
<td>RTD 7 Alarm Dly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4423</td>
<td>RTD 7 Trip Set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4424</td>
<td>RTD 7 Trip Dly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4426</td>
<td>RTD 8 Alarm Set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4427</td>
<td>RTD 8 Alarm Dly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4428</td>
<td>RTD 8 Trip Set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4429</td>
<td>RTD 8 Trip Dly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>442B</td>
<td>RTD 9 Alarm Set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>442C</td>
<td>RTD 9 Alarm Dly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>442D</td>
<td>RTD 9 Trip Set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>442E</td>
<td>RTD 9 Trip Dly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4430</td>
<td>RTD 10 Alarm Set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4431</td>
<td>RTD 10 Alarm Dly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4432</td>
<td>RTD 10 Trip Set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4433</td>
<td>RTD 10 Trip Dly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4434</td>
<td>Ext Temp Influen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4435</td>
<td>Ext Temp RTD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4400 RTD PROTECTION

<table>
<thead>
<tr>
<th>Group 1 settings</th>
<th>Group 1 settings</th>
<th>Group 2 settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>4436</td>
<td>Ext RTD Back-up</td>
<td></td>
</tr>
<tr>
<td>4450</td>
<td>Type RTD</td>
<td></td>
</tr>
<tr>
<td>4451</td>
<td>RTD Unit</td>
<td></td>
</tr>
</tbody>
</table>

4500 CB FAIL

<table>
<thead>
<tr>
<th>Group 1 settings</th>
<th>Group 1 settings</th>
<th>Group 2 settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>4501</td>
<td>BREAKER FAIL</td>
<td></td>
</tr>
<tr>
<td>4502</td>
<td>CB Fail 1 Status</td>
<td></td>
</tr>
<tr>
<td>4503</td>
<td>CB Fail 1 Timer</td>
<td></td>
</tr>
<tr>
<td>4504</td>
<td>CB Fail 2 Status</td>
<td></td>
</tr>
<tr>
<td>4505</td>
<td>CB Fail 2 Timer</td>
<td></td>
</tr>
<tr>
<td>4506</td>
<td>CBF Non I Reset</td>
<td></td>
</tr>
<tr>
<td>4507</td>
<td>CBF Ext Reset</td>
<td></td>
</tr>
<tr>
<td>4508</td>
<td>UNDER CURRENT</td>
<td></td>
</tr>
<tr>
<td>4509</td>
<td>I< Current Set</td>
<td></td>
</tr>
</tbody>
</table>

4600 CLIO INPUT

<table>
<thead>
<tr>
<th>Group 1 settings</th>
<th>Group 1 settings</th>
<th>Group 2 settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>4701</td>
<td>Range 1</td>
<td></td>
</tr>
<tr>
<td>4702</td>
<td>Unit 1</td>
<td></td>
</tr>
<tr>
<td>4703</td>
<td>Minimum 1</td>
<td></td>
</tr>
<tr>
<td>4704</td>
<td>Maximum 1</td>
<td></td>
</tr>
<tr>
<td>4705</td>
<td>Function 1</td>
<td></td>
</tr>
<tr>
<td>4706</td>
<td>Alarm Set 1</td>
<td></td>
</tr>
<tr>
<td>4707</td>
<td>Alarm Delay 1</td>
<td></td>
</tr>
<tr>
<td>4708</td>
<td>Trip Set 1</td>
<td></td>
</tr>
<tr>
<td>4709</td>
<td>Trip Delay 1</td>
<td></td>
</tr>
<tr>
<td>4711</td>
<td>Range 2</td>
<td></td>
</tr>
<tr>
<td>4712</td>
<td>Unit 2</td>
<td></td>
</tr>
<tr>
<td>4713</td>
<td>Minimum 2</td>
<td></td>
</tr>
<tr>
<td>4714</td>
<td>Maximum 2</td>
<td></td>
</tr>
<tr>
<td>4715</td>
<td>Function 2</td>
<td></td>
</tr>
<tr>
<td>4716</td>
<td>Alarm Set 2</td>
<td></td>
</tr>
<tr>
<td>4617</td>
<td>Alarm Delay 2</td>
<td></td>
</tr>
<tr>
<td>4618</td>
<td>Trip Set 2</td>
<td></td>
</tr>
<tr>
<td>4619</td>
<td>Trip Delay 2</td>
<td></td>
</tr>
</tbody>
</table>
CLIO INPUT

<table>
<thead>
<tr>
<th>4600</th>
<th>Group 1 settings</th>
<th>Group 1 settings</th>
<th>Group 2 settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>4621</td>
<td>Range 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4622</td>
<td>Unit 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4623</td>
<td>Minimum 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4624</td>
<td>Maximum 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4625</td>
<td>Function 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4626</td>
<td>Alarm Set 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4627</td>
<td>Alarm Delay 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4628</td>
<td>Trip Set 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4629</td>
<td>Trip Delay 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4631</td>
<td>Range 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4632</td>
<td>Unit 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4633</td>
<td>Minimum 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4634</td>
<td>Maximum 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4635</td>
<td>Function 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4636</td>
<td>Alarm Set 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4637</td>
<td>Alarm Delay 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4638</td>
<td>Trip Set 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4639</td>
<td>Trip Delay 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4640</td>
<td>Drop-Off time</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CLIO OUTPUTS

<table>
<thead>
<tr>
<th>4700</th>
<th>Group 1 settings</th>
<th>Group 1 settings</th>
<th>Group 2 settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>4701</td>
<td>Range 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4702</td>
<td>ANALOG OUTPUT 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4703</td>
<td>Minimum 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4704</td>
<td>Maximum 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4711</td>
<td>Range 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4712</td>
<td>ANALOG OUTPUT 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4713</td>
<td>Minimum 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4714</td>
<td>Maximum 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4721</td>
<td>Range 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4722</td>
<td>ANALOG OUTPUT 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4723</td>
<td>Minimum 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4724</td>
<td>Maximum 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4731</td>
<td>Range 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4700 CLIO OUTPUTS

<table>
<thead>
<tr>
<th>4732</th>
<th>ANALOG OUTPUT 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>4733</td>
<td>Minimum 4</td>
</tr>
<tr>
<td>4734</td>
<td>Maximum 4</td>
</tr>
</tbody>
</table>

4800 SUPERVISION

<table>
<thead>
<tr>
<th>4801</th>
<th>VT Supervision</th>
</tr>
</thead>
<tbody>
<tr>
<td>4802</td>
<td>VTS Time Delay</td>
</tr>
<tr>
<td>4803</td>
<td>VTS I2 & I0 > Inhibit</td>
</tr>
<tr>
<td>4804</td>
<td>Detect 3P</td>
</tr>
<tr>
<td>4805</td>
<td>Threshold 3P</td>
</tr>
<tr>
<td>4806</td>
<td>Delta I></td>
</tr>
<tr>
<td>4807</td>
<td>VTS I> Inhibit</td>
</tr>
<tr>
<td>4810</td>
<td>CT Supervision</td>
</tr>
<tr>
<td>4811</td>
<td>CTS1 Status</td>
</tr>
<tr>
<td>4812</td>
<td>CTS1 VN< Inhibit</td>
</tr>
<tr>
<td>4813</td>
<td>CTS1 IN> Set</td>
</tr>
<tr>
<td>4814</td>
<td>CTS1 Time Delay</td>
</tr>
<tr>
<td>4821</td>
<td>CTS2 Status</td>
</tr>
<tr>
<td>4822</td>
<td>CTS2 VN< Inhibit</td>
</tr>
<tr>
<td>4823</td>
<td>CTS2 IN> Set</td>
</tr>
<tr>
<td>4824</td>
<td>CTS2 Time Delay</td>
</tr>
</tbody>
</table>

4900 SYSTEM CONFIG

| 4901 | Phase Sequence |

4A00 INPUT LABELS

<table>
<thead>
<tr>
<th>4A01</th>
<th>Opto Input 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>4A02</td>
<td>Opto Input 2</td>
</tr>
<tr>
<td>4A03</td>
<td>Opto Input 3</td>
</tr>
<tr>
<td>4A04</td>
<td>Opto Input 4</td>
</tr>
<tr>
<td>4A05</td>
<td>Opto Input 5</td>
</tr>
<tr>
<td>4A06</td>
<td>Opto Input 6</td>
</tr>
<tr>
<td>4A07</td>
<td>Opto Input 7</td>
</tr>
</tbody>
</table>
4A00 INPUT LABELS

<table>
<thead>
<tr>
<th>Group 1 settings</th>
<th>Group 1 settings</th>
<th>Group 2 settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>4A08</td>
<td>Opto Input 8</td>
<td></td>
</tr>
<tr>
<td>4A09</td>
<td>Opto Input 9</td>
<td></td>
</tr>
<tr>
<td>4A0A</td>
<td>Opto Input 10</td>
<td></td>
</tr>
<tr>
<td>4A0B</td>
<td>Opto Input 11</td>
<td></td>
</tr>
<tr>
<td>4A0C</td>
<td>Opto Input 12</td>
<td></td>
</tr>
<tr>
<td>4A0D</td>
<td>Opto Input 13</td>
<td></td>
</tr>
<tr>
<td>4A0E</td>
<td>Opto Input 14</td>
<td></td>
</tr>
<tr>
<td>4A0F</td>
<td>Opto Input 15</td>
<td></td>
</tr>
<tr>
<td>4A10</td>
<td>Opto Input 16</td>
<td></td>
</tr>
</tbody>
</table>

4B00 OUTPUT LABELS

<table>
<thead>
<tr>
<th>Group 1 settings</th>
<th>Group 1 settings</th>
<th>Group 2 settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>4B01</td>
<td>Relay 1</td>
<td></td>
</tr>
<tr>
<td>4B02</td>
<td>Relay 2</td>
<td></td>
</tr>
<tr>
<td>4B03</td>
<td>Relay 3</td>
<td></td>
</tr>
<tr>
<td>4B04</td>
<td>Relay 4</td>
<td></td>
</tr>
<tr>
<td>4B05</td>
<td>Relay 5</td>
<td></td>
</tr>
<tr>
<td>4B06</td>
<td>Relay 6</td>
<td></td>
</tr>
<tr>
<td>4B07</td>
<td>Relay 7</td>
<td></td>
</tr>
<tr>
<td>4B08</td>
<td>Relay 8</td>
<td></td>
</tr>
<tr>
<td>4B09</td>
<td>Relay 9</td>
<td></td>
</tr>
<tr>
<td>4B0A</td>
<td>Relay 10</td>
<td></td>
</tr>
<tr>
<td>4B0B</td>
<td>Relay 11</td>
<td></td>
</tr>
<tr>
<td>4B0C</td>
<td>Relay 12</td>
<td></td>
</tr>
<tr>
<td>4B0D</td>
<td>Relay 13</td>
<td></td>
</tr>
<tr>
<td>4B0E</td>
<td>Relay 14</td>
<td></td>
</tr>
<tr>
<td>4B0F</td>
<td>Relay 15</td>
<td></td>
</tr>
<tr>
<td>4B10</td>
<td>Relay 16</td>
<td></td>
</tr>
</tbody>
</table>

4C00 RTD LABELS

<table>
<thead>
<tr>
<th>Group 1 settings</th>
<th>Group 1 settings</th>
<th>Group 2 settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>4C01</td>
<td>RTD 1</td>
<td></td>
</tr>
<tr>
<td>4C02</td>
<td>RTD 2</td>
<td></td>
</tr>
<tr>
<td>4C03</td>
<td>RTD 3</td>
<td></td>
</tr>
<tr>
<td>4C04</td>
<td>RTD 4</td>
<td></td>
</tr>
</tbody>
</table>
RTD LABELS

<table>
<thead>
<tr>
<th>4C00</th>
<th>RTD LABELS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4C05</td>
<td>RTD 5</td>
</tr>
<tr>
<td>4C06</td>
<td>RTD 6</td>
</tr>
<tr>
<td>4C07</td>
<td>RTD 7</td>
</tr>
<tr>
<td>4C08</td>
<td>RTD 8</td>
</tr>
<tr>
<td>4C09</td>
<td>RTD 9</td>
</tr>
<tr>
<td>4C0A</td>
<td>RTD 10</td>
</tr>
</tbody>
</table>

CLIO LABELS

<table>
<thead>
<tr>
<th>4D00</th>
<th>CLIO LABELS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4D01</td>
<td>CLIO Input 1</td>
</tr>
<tr>
<td>4D02</td>
<td>CLIO Input 2</td>
</tr>
<tr>
<td>4D03</td>
<td>CLIO Input 3</td>
</tr>
<tr>
<td>4D04</td>
<td>CLIO Input 4</td>
</tr>
</tbody>
</table>
Commissioning

(CM) 10-74

MiCOM P40 Agile P241, P242, P243
MAINTENANCE
MiCOM P40 Agile P241, P242, P243
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MAINTENANCE</td>
<td>5</td>
</tr>
<tr>
<td>1.1</td>
<td>Maintenance period</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Maintenance checks</td>
<td>5</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Alarms</td>
<td>5</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Opto-isolators</td>
<td>5</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Output relays</td>
<td>5</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Measurement accuracy</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Method of repair</td>
<td>6</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Replacing the complete relay</td>
<td>6</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Replacing a PCB</td>
<td>7</td>
</tr>
<tr>
<td>1.3.2.1</td>
<td>Replacement of the main processor board</td>
<td>10</td>
</tr>
<tr>
<td>1.3.2.2</td>
<td>Replacement of the IRIG-B/2nd rear communications, Ethernet board</td>
<td>11</td>
</tr>
<tr>
<td>1.3.2.3</td>
<td>Replacement of the input module</td>
<td>14</td>
</tr>
<tr>
<td>1.3.2.4</td>
<td>Replacement of the power supply board</td>
<td>15</td>
</tr>
<tr>
<td>1.3.2.5</td>
<td>Replacement of the relay board in the power supply module</td>
<td>16</td>
</tr>
<tr>
<td>1.3.2.6</td>
<td>Replacement of the opto and separate relay boards (P241/2/3)</td>
<td>16</td>
</tr>
<tr>
<td>1.3.2.7</td>
<td>Replacement of the RTD input board</td>
<td>17</td>
</tr>
<tr>
<td>1.3.2.8</td>
<td>Replacement of the CLIO input board</td>
<td>19</td>
</tr>
<tr>
<td>1.4</td>
<td>Re-calibration</td>
<td>19</td>
</tr>
<tr>
<td>1.5</td>
<td>Changing the battery</td>
<td>19</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Instructions for replacing the battery</td>
<td>20</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Post modification tests</td>
<td>20</td>
</tr>
<tr>
<td>1.5.3</td>
<td>Battery disposal</td>
<td>20</td>
</tr>
<tr>
<td>1.6</td>
<td>Cleaning</td>
<td>20</td>
</tr>
</tbody>
</table>

FIGURES

- Figure 1: Location of securing screws for terminal blocks
- Figure 2: Front panel assembly
- Figure 3: Location of securing screws for IRIG-B board
- Figure 4: Typical IRIG-B board
- Figure 5: Second rear communications board with IRIG-B
- Figure 6: Location of securing screws for input module
- Figure 7: Typical power supply board
- Figure 8: Typical relay board
- Figure 9: Typical opto board
- Figure 10: Location of securing screws for RTD/CLIO input board
- Figure 11: Typical RTD input board
TABLES

Table 1: PCB part numbers

<table>
<thead>
<tr>
<th>Device</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MiCOM P40 Agile P241, P242, P243</td>
<td>10</td>
</tr>
</tbody>
</table>
1 MAINTENANCE

1.1 Maintenance period

It is recommended that products supplied by General Electric receive periodic monitoring after installation. As with all products some deterioration with time is inevitable. Due to the critical nature of protective relays and their infrequent operation, it is necessary to confirm regularly that they are operating correctly.

General Electric protective relays are designed for life in excess of 20 years.

MiCOM P24x motor relays are self-supervising and so require less maintenance than earlier designs of relay. Most problems result in an alarm so that remedial action can be taken. However, some periodic tests should be done to ensure the relay is functioning correctly and the external wiring is intact.

If the customer’s organization has a Preventative Maintenance Policy, the recommended product checks should be included in the regular program. Maintenance periods will depend on many factors, such as:

- The operating environment
- The accessibility of the site
- The amount of available manpower
- The importance of the installation in the power system
- The consequences of failure

1.2 Maintenance checks

Although some functionality checks can be performed from a remote location by using the communications ability of the relays, these are mainly restricted to checking the relay is measuring the applied currents and voltages accurately, and checking the circuit breaker maintenance counters. Therefore it is recommended that maintenance checks are performed locally (i.e. at the substation itself).

Before carrying out any work on the equipment, the user should be familiar with the contents of the Safety and Technical Data chapters and the ratings on the equipment’s rating label.

Before carrying out any work on the equipment the user should be familiar with the contents of the Safety Section/Safety Guide Pxxx-SG-4LM-2 or later issue and the ratings on the equipment’s rating label.

1.2.1 Alarms

Check the alarm status LED to identify if any alarm conditions exist. If the LED is ON, press the read key \[\text{READ}\] repeatedly to step through the alarms. Clear the alarms to switch the LED OFF.

1.2.2 Opto-isolators

Check the relay responds when the opto-isolated inputs are energized. See section 5.2.6 of P24x/EN CM.

1.2.3 Output relays

Check the output relays operate. See section 5.2.7 of P24x/EN CM.

1.2.4 Measurement accuracy

If the power system is energized, compare the values measured by the relay with known system values to check that they are in the approximate range. If they are, the relay is performing the analog-to-digital conversion and calculations correctly. See sections 7.1 and 7.2 of P24x/EN CM.

Alternatively, check the values measured by the relay against known values injected into the relay using the test block, if fitted, or injected directly into the relay terminals. See sections
1.3 Method of repair

If the relay develops a fault while in service, depending on the type of fault, the watchdog contacts change state and an alarm condition is flagged. Due to the extensive use of surface-mount components faulty PCBs cannot be repaired and should be replaced. Therefore replace the complete relay or just the faulty PCB identified by the in-built diagnostic software. Advice about identifying the faulty PCB can be found in ‘Problem Analysis’.

The preferred method is to replace the complete relay. This ensures the internal circuitry is protected against electrostatic discharge and physical damage at all times and avoids incompatibility between replacement PCBs. However, it may be difficult to remove an installed relay due to limited access in the back of the cubicle and rigidity of the scheme wiring.

Replacing PCBs can reduce transport costs but requires clean, dry conditions on site and higher skills from the person performing the repair. However, if the repair is not performed by an approved service center, the warranty will be invalidated.

Before carrying out any work on the equipment the user should be familiar with the contents of the Safety Section/Safety Guide Pxxx-SG-4LM-2 or later issue and the ratings on the equipment’s rating label. This should ensure that no damage is caused by incorrect handling of the electronic components.

1.3.1 Replacing the complete relay

The case and rear terminal blocks are designed to ease removal of the complete relay, without having to disconnect the scheme wiring.

Before working at the rear of the relay, isolate all voltage and current supplies to the relay.

Note: The MiCOM range of relays have integral current transformer shorting switches which will close when the heavy duty terminal block is removed. Disconnect the relay earth connection from the rear of the relay.
There are three types of terminal block used on the relay, RTD/CLIO input, heavy duty and medium duty. The terminal blocks are fastened to the rear panel using slotted screws on RTD/CLIO input blocks and crosshead on the heavy and medium duty blocks. See Figure 1.

Note: The use of a magnetic bladed screwdriver is recommended to minimize the risk of the screws being left in the terminal block or lost. Without exerting excessive force or damaging the scheme wiring, pull the terminal blocks away from their internal connectors.

Remove the screws used to fasten the relay to the panel and rack. These are the screws with the larger diameter heads that are accessible with the access covers are fitted and open.

Warning: If the top and bottom access covers have been removed, do not remove the screws with the smaller diameter heads which are accessible. These screws hold the front panel on the relay.

Withdraw the relay from the pane and rack. Be careful because the relay is heavy due to the internal transformers, particularly the P243.

To reinstall the repaired or replacement relay follow the above instructions in reverse, ensuring that each terminal block is relocated in the correct position and the case earth, IRIG-B and fiber optic connections are replaced. To help identify each terminal block, they are labeled alphabetically with ‘A’ on the left hand side when viewed from the rear.

Once reinstallation is complete, recommission the relay. See sections 1 to 7 in chapter P24x/EN CM.

1.3.2 Replacing a PCB

Replacing printed circuit boards and other internal components of protective relays must be undertaken only by Service Centers approved by General Electric. Failure to obtain the authorization of General Electric After Sales Engineers prior to commencing work may invalidate the product warranty.
General Electric support teams are available world-wide and it is recommended that any repairs be entrusted to these trained personnel.

If the relay fails to operate correctly refer to document ‘Problem Analysis’, to help determine which PCB has become faulty.

To replace any of the relay’s PCBs, first remove the front panel.

⚠️ **Before removing the front panel to replace a PCB the auxiliary supply must be removed. It is also strongly recommended that the voltage and current transformer connections and trip circuit are isolated.**

Open the top and bottom access covers. With size 60TE/80TE cases the access covers have two hinge-assistance T-pieces which clear the front panel molding when the access covers are opened by more than 90°, so allowing their removal.

If fitted, remove the transparent secondary front cover. See the Introduction chapter, *P24x/EN IT*.

Apply outward pressure to the middle of the access covers to bow them and disengage the hinge lug, so the access cover can be removed. The screws that fasten the front panel to the case are now accessible.

The size 40TE case has four crosshead screws fastening the front panel to the case, one in each corner, in recessed holes. The size 60TE/80TE case has an additional two screws, one midway along each of the top and bottom edges of the front plate. Undo and remove the screws.

⚠️ **Do not remove the screws with the larger diameter heads which are accessible when the access covers are fitted and open. These screws hold the relay in its mounting (panel or cubicle).**

When the screws have been removed, the complete front panel can be pulled forward and separated from the metal case.

⚠️ **Caution should be observed at this stage because the front panel is connected to the rest of the relay circuitry by a 64-way ribbon cable.**

Additionally, from here on, the internal circuitry of the relay is exposed and not protected against electrostatic discharges, dust ingress, etc. Therefore ESD precautions and clean working conditions should be maintained at all times.

The ribbon cable is fastened to the front panel using an IDC connector; a socket on the cable itself and a plug with locking latches on the front panel. Gently push the two locking latches outwards which will eject the connector socket slightly. Remove the socket from the plug to disconnect the front panel.

The PCBs in the relay are now accessible. Figures 20 to 22 in chapter *P24x/EN IN* show the PCB locations for the motor relays in the size 40TE case (P241), size 60TE case (P242) and size 80TE case (P243) respectively.

Note: The numbers above the case outline identify the guide slot reference for each printed circuit board. Each printed circuit board has a label stating the corresponding guide slot number to ensure correct re-location after removal. To serve as a reminder of the slot numbering there is a label on the rear of the front panel metallic screen.

The 64-way ribbon cable to the front panel also provides the electrical connections between PCBs with the connections being via IDC connectors.

The slots inside the case which hold the PCBs securely in place each correspond to a rear terminal block. Looking from the front of the relay these terminal blocks are labeled from right to left.
Note: To ensure compatibility, always replace a faulty PCB with one of an identical part number. Table 1 lists the part numbers of each PCB type.

<table>
<thead>
<tr>
<th>PCB</th>
<th>Part number</th>
<th>Design suffix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front panel assembly P241 only</td>
<td>GN0004 001</td>
<td>A/C</td>
</tr>
<tr>
<td>Front panel assembly P242 only</td>
<td>GN0006 001</td>
<td>C</td>
</tr>
<tr>
<td>Front panel assembly P243 only</td>
<td>GN0068 001</td>
<td>C</td>
</tr>
<tr>
<td>Front panel assembly P241 only</td>
<td>GN0178 001</td>
<td>J</td>
</tr>
<tr>
<td>Front panel assembly P242 only</td>
<td>GN0277 001</td>
<td>K</td>
</tr>
<tr>
<td>Front panel assembly P243 only</td>
<td>GN0341 001</td>
<td>K</td>
</tr>
<tr>
<td>Power supply board (24/48 V dc)</td>
<td>ZN0001 001</td>
<td>A</td>
</tr>
<tr>
<td>Power supply board (48/125 V dc)</td>
<td>ZN0001 002</td>
<td>A</td>
</tr>
<tr>
<td>Power supply board (110/250 V dc)</td>
<td>ZN0001 003</td>
<td>A</td>
</tr>
<tr>
<td>Power supply board (24/48 V dc)</td>
<td>ZN0021 001</td>
<td>C/J/K</td>
</tr>
<tr>
<td>Power supply board (48/125 V dc)</td>
<td>ZN0021 002</td>
<td>C/J/K</td>
</tr>
<tr>
<td>Power supply board (110/250 V dc)</td>
<td>ZN0021 003</td>
<td>C/J/K</td>
</tr>
<tr>
<td>Relay board 7 Relay contacts</td>
<td>ZN0002 001</td>
<td>A</td>
</tr>
<tr>
<td>Relay board 7 Relay contacts</td>
<td>ZN0031 001</td>
<td>C/J</td>
</tr>
<tr>
<td>Relay board 8 Relay contacts</td>
<td>ZN0019 001</td>
<td>C/J/K</td>
</tr>
<tr>
<td>Opto board 8 Opto inputs</td>
<td>ZN0005 002</td>
<td>A</td>
</tr>
<tr>
<td>Opto board 8 Opto inputs</td>
<td>ZN0017 002</td>
<td>C</td>
</tr>
<tr>
<td>Dual char. opto board</td>
<td>ZN0017 012</td>
<td>J/K</td>
</tr>
<tr>
<td>Dual char. input/output board 4 Opto inputs + 4 relay contacts</td>
<td>ZN0028 011</td>
<td>J</td>
</tr>
<tr>
<td>IRIG-B board (comms. assy.) (IRIG-B modulated input only)</td>
<td>ZN0007 001</td>
<td>A/C/J/K</td>
</tr>
<tr>
<td>IRIG-B board (comms. assy.) (Fiber optic rear comms port only)</td>
<td>ZN0007 002</td>
<td>A/C/J/K</td>
</tr>
<tr>
<td>IRIG-B board (comms. assy.) (IRIG-B input modulated with fiber optic rear comms port)</td>
<td>ZN0007 003</td>
<td>A/C/J/K</td>
</tr>
<tr>
<td>RTD board 10 RTDs</td>
<td>ZN0010 002</td>
<td>A</td>
</tr>
<tr>
<td>RTD board 10 RTDs</td>
<td>ZN0044 002</td>
<td>C/J/K</td>
</tr>
<tr>
<td>2nd rear comms. board (2nd rear comms with IRIG-B modulated)</td>
<td>ZN0025 001</td>
<td>J/K</td>
</tr>
<tr>
<td>2nd rear comms. board (2nd rear comms port only)</td>
<td>ZN0025 002</td>
<td>J/K</td>
</tr>
<tr>
<td>Ethernet board (Ethernet port only)</td>
<td>ZN0049 001</td>
<td>J/K</td>
</tr>
<tr>
<td>Ethernet board (Ethernet with IRIG-B modulated)</td>
<td>ZN0049 002</td>
<td>J/K</td>
</tr>
<tr>
<td>Ethernet board (Ethernet with IRIG-B unmodulated)</td>
<td>ZN0049 003</td>
<td>J/K</td>
</tr>
<tr>
<td>Ethernet board (IRIG-B unmodulated input only)</td>
<td>ZN0049 004</td>
<td>J/K</td>
</tr>
</tbody>
</table>
Table 1: PCB part numbers

<table>
<thead>
<tr>
<th>PCB</th>
<th>Part number</th>
<th>Design suffix</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIO board</td>
<td>ZN0018 001</td>
<td>C/J/K</td>
</tr>
<tr>
<td>Transformer board</td>
<td>ZN0004 001</td>
<td>A/B/C/J/K</td>
</tr>
<tr>
<td>Auxiliary transformer board</td>
<td>ZN0011 001</td>
<td>A/B/C/J</td>
</tr>
<tr>
<td>Input board</td>
<td>ZN0005 005</td>
<td>A</td>
</tr>
<tr>
<td>Input board</td>
<td>ZN0017 003</td>
<td>B/C</td>
</tr>
<tr>
<td>Dual char. input board</td>
<td>ZN0017 013</td>
<td>J/K</td>
</tr>
<tr>
<td>Input module (transformer + auxiliary transformer + input board) P241 Vn = 100/120 V</td>
<td>GN0010 005</td>
<td>A/C/J</td>
</tr>
<tr>
<td></td>
<td>GN0010 092</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GN0010 029</td>
<td></td>
</tr>
<tr>
<td>P242 Vn = 100/120 V</td>
<td>GN0010 005</td>
<td>C/K</td>
</tr>
<tr>
<td></td>
<td>GN0010 092</td>
<td></td>
</tr>
<tr>
<td>P243 Vn = 100/120 V</td>
<td>GN0012 011</td>
<td>C/K</td>
</tr>
<tr>
<td></td>
<td>GN0010 029</td>
<td></td>
</tr>
</tbody>
</table>

1.3.2.1 Replacement of the main processor board

The main processor board is in the front panel. The other PCBs are in the main case of the relay.

Place the front panel with the user interface face-down and remove the six screws from the metallic screen, as shown in Figure 2. Remove the metal plate.

Remove the two screws, either side of the rear of the battery compartment recess, that hold the main processor PCB in position.

The user interface keypad is connected to the main processor board with a flex-strip ribbon cable. Carefully disconnect the ribbon cable at the PCB-mounted connector as it could easily be damaged by excessive twisting.
Figure 2: Front panel assembly

Re-assemble the front panel with a replacement PCB using the reverse procedure. Make sure the ribbon cable is reconnected to the main processor board. Make sure all eight screws are refitted.

Refit the front panel using the reverse procedure to that given in section 1.3.2. After refitting and closing the access covers on size 60/80TE cases, press at the location of the hinge-assistance T-pieces so that they click back into the front panel molding.

After replacement of the main processor board, all the settings required for the application need to be re-entered. Therefore, it is useful if an electronic copy of the application-specific settings is available on disk. Although this is not essential, it can reduce the time taken to re-enter the settings and therefore reduce the time the protection is out of service.

Once the relay has been reassembled after repair, recommission it according to the instructions in sections 1 to 7 of P24x/EN CM.

1.3.2.2 Replacement of the IRIG-B/2nd rear communications, Ethernet board

Depending on the model number of the relay, it may have an IRIG-B board fitted with connections for IRIG-B signals, fiber optic rear communications, both or not be present at all. The relay may also have the 2nd communications board fitted with or without IRIG-B in same position.

To replace a faulty board, disconnect all IRIG-B and/or communications connections at the rear of the relay.

The board is secured in the relay case by two screws accessible from the rear of the relay, one at the top and another at the bottom, as shown in Figure 3. Remove these screws carefully as they are not captive in the rear panel of the relay.
Gently pull the IRIG-B board or 2nd rear communications board or Ethernet board forward and out of the case.

To help identify that the correct board has been removed, Figure 4 shows the layout of the IRIG-B board with both IRIG-B and fiber optic rear communications port options fitted (ZN0007 003). The other versions (ZN0007 001 and ZN0007 002) use the same PCB layout but have less components fitted. Figure 5 shows the 2nd communications board with IRIG-B.
Figure 4: Typical IRIG-B board

Figure 5: Second rear communications board with IRIG-B

Before fitting the replacement PCB check that the number on the round label next to the front edge of the PCB matches the slot number into which it will be fitted. If the slot number is missing or incorrect write the correct slot number on the label.

Fit the replacement PCB carefully into the appropriate slot. Make sure that it is pushed fully back on to the rear terminal blocks and the securing screws are refitted.

Reconnect all IRIG-B and/or communications connections at the rear of the relay.

Refit the front panel using the reverse procedure to that given in section 1.3.2. After refitting and closing the access covers on size 60TE/80TE cases, press at the location of the hinge-assistance T-pieces so that they click back into the front panel molding.

Once the relay is reassembled after repair, recommission it according to sections 1 to 7 in the Commissioning chapter, P24x/EN CM.
1.3.2.3 Replacement of the input module

The input module comprises of two or three boards fastened together. In the P241/2 relays the input module consists of a transformer board and an input board. The P243 input module has three boards: input, transformer and auxiliary transformer.

The module is secured in the case by two screws on its right-hand side, accessible from the front of the relay, as shown in Figure 6. Remove these screws carefully as they are not captive in the front plate of the module.

![Figure 6: Location of securing screws for input module](image)

On the right-hand side of the analog input module in P241 and P242 relays there is a small metal tab which brings out a handle. In the P243 relay there is an additional tab on the left hand side. Grasp the handle or handles firmly and pull the module forward, away from the rear terminal blocks. A reasonable amount of force is needed due to the friction between the contacts of the terminal blocks; one medium duty and one heavy duty in P241 and P242 relays, one medium duty and two heavy duty in P243 relay.

Note: Care should be taken when withdrawing the input module as it will suddenly come loose once the friction of the terminal blocks has been overcome. This is particularly important with unmounted relays as the metal case will need to be held firmly while the module is withdrawn.

Remove the module from the case, taking care as it is heavy because it contains all the relay’s input voltage and current transformers.

Before fitting the replacement module check the number on the round label next to the front edge of the PCB matches the slot number into which it will be fitted. If the slot number is missing or incorrect write the correct slot number on the label.

Slot in the replacement module and push it fully back on to the rear terminal blocks. To check the module has been fully inserted, make sure the V-shaped cut-out in the bottom plate of the case is fully visible. Refit the securing screws.

Note: When the transformer and input boards in the module are calibrated, the calibration data is stored on the input board. Therefore it is recommended that the complete module is replaced to avoid on-site recalibration.
Refit the front panel using the reverse procedure to that given in section 1.3.2. After refitting and closing the access covers on size 60TE/80TE cases, press at the location of the hinge-assistance T-pieces so that they click back into the front panel molding.

Once the relay has been reassembled after repair, recommission it according to sections 1 to 7 in chapter, P24x/EN CM.

1.3.2.4 Replacement of the power supply board

⚠️ Before carrying out any work on the equipment the user should be familiar with the contents of the Safety Section/Safety Guide Pxxx-SG-4LM-2 or later issue and the ratings on the equipment’s rating label.

The power supply board is fastened to a relay board to form the power supply module and is located on the extreme left-hand side of all MiCOM motor relays.

Pull the power supply module forward, away from the rear terminal blocks and out of the case. A reasonable amount of force will be required to achieve this due to the friction between the contacts of the two medium duty terminal blocks.

The two boards are held together with push-fit nylon pillars. Separate them by pulling them apart. Take care when separating the boards to avoid damaging the inter-board connectors near the lower edge of the PCBs towards the front of the power supply module.

The power supply board is the one with two large electrolytic capacitors on it that protrude through the other board that forms the power supply module. To help identify that the correct board has been removed, see Figure 7.

![Figure 7: Typical power supply board](image)

Before re-assembling the module with a replacement PCB check that the number on the round label next to the front edge of the PCB matches the slot number into which it will be fitted. If the slot number is missing or incorrect, write the correct slot number on the label.

Reassemble the module with a replacement PCB. Push the inter-board connectors firmly together. Fit the four push-fit nylon pillars securely in their respective holes in each PCB.

Slot the power supply module back into the relay case; push it fully back on to the rear terminal blocks.

Refit the front panel using the reverse procedure to that given in section 1.3.2. After refitting and closing the access covers on size 60TE/80TE cases, press at the location of the hinge-assistance T-pieces so that they click back into the front panel molding.

Once the relay has been reassembled after repair, recommission it according to sections 1 to 7 in chapter P24/EN CM.
1.3.2.5 Replacement of the relay board in the power supply module

Remove and replace the relay board in the power supply module as described in 1.3.2.4 above.

The relay board is the one with holes cut in it to allow the transformer and two large electrolytic capacitors of the power supply board to protrude through. To help identify the board see Figure 8.

Figure 8: Typical relay board

Before re-assembling the module with a replacement relay board check the number on the round label adjacent to the front edge of the PCB matches the slot number into which it will be fitted. If the slot number is missing or incorrect write the correct slot number on the label.

Ensure the setting of the link (located above IDC connector) on the replacement relay board is the same as the one being replaced before replacing the module in the relay case.

Once the relay has been reassembled after repair, recommission it according to sections 1 to 7 in chapter P24/EN CM.

1.3.2.6 Replacement of the opto and separate relay boards (P241/2/3)

The P241/2/3 motor relays have additional boards. These boards provide extra output relays and optically-isolated inputs to those in the power supply and input modules respectively.

To remove, gently pull the faulty PCB forward and out of the case.

If the relay board is being replaced, make sure the setting of the link above IDC connector on the replacement relay board is the same as the one being replaced. To help identify that the correct board has been removed, Figure 8 and Figure 9 show the layout of the relay and opto boards respectively.

Before fitting the replacement PCB check that the number on the round label next to the front edge of the PCB matches the slot number into which it will be fitted. If the slot number is missing or incorrect write the correct slot number on the label.
Carefully slide the replacement PCB into the appropriate slot, ensuring that it is pushed fully back on to the rear terminal blocks.

Refit the front panel using the reverse procedure to that given in section 1.3.2. After refitting and closing the access covers on size 60TE/80TE cases, press at the location of the hinge-assistance T-pieces so that they click back into the front panel molding.

![Diagram of PCB connections](image)

Figure 9: Typical opto board

Once the relay has been reassembled after repair, recommission it according to sections 1 to 7 in chapter P24/EN CM.

1.3.2.7 Replacement of the RTD input board

To replace a faulty RTD input board, first remove the two 15-way terminal blocks. Each block is fastened to its other half by slotted screws above and below the row of terminals, as shown in Figure 10. Remove these screws carefully as they are not captive in the terminal blocks.

Without damaging the RTD wiring, pull the terminal blocks away from their internal halves. It is not necessary to disconnect the RTD screen connections from the spade connectors on the metal rear panel of the relay.
The RTD input board is secured in the case by two screws accessible from the rear of the relay, one at the top and another at the bottom, as shown in Figure 10. Remove these screws carefully as they are not captive in the rear panel of the relay.
Gently pull the faulty RTD input PCB forward and out of the case. To help identify that the correct board has been removed, Figure 10 shows the PCB layout.

Slot the replacement PCB carefully into the appropriate slot. Push it fully back and refit the board securing screws.

Refit the RTD input terminal blocks. Make sure they are in the correct location and refit their fixing screws.

Once the relay has been reassembled after repair, recommission it according to sections 1 to 7 in chapter P24/EN CM.

1.3.2.8 Replacement of the CLIO input board

All external connections to the current loop input output board are made using the same 15 way light duty I/O connector SL3.5/15/90F as used on the RTD board. Two such connectors are used, one for the current loop outputs and one for the current loop inputs.

To replace a faulty CLIO board, first remove the two 15-way terminal blocks; each is fastened to its other half by slotted screws above and below the row of terminals, as shown in Figure 11. Remove these screws carefully as they are not captive in the terminal blocks.

Note: The CLIO board occupies the same slot B as the RTD board in the 40TE case (P241) but uses a separate slot C in the 60/80TE case (P242/3).

Without damaging the CLIO wiring, pull the terminal blocks away from their internal halves. It is not necessary to disconnect the CLIO screen connections from the spade connectors on the metal rear panel of the relay.

The CLIO board is secured in the case by two screws accessible from the rear of the relay, one at the top and another at the bottom, as shown in Figure 11. Remove these screws carefully as they are not captive in the rear panel of the relay.

Gently pull the faulty CLIO PCB forward and out of the case.

The replacement PCB should be carefully slotted into the appropriate slot, ensuring that it is pushed fully back and the board securing screws are re-fitted.

Refit the CLIO terminal blocks, ensuring that they are in the correct location and that their fixing screws are replaced.

Once the relay has been reassembled after repair, it should be re-commissioned in accordance with the instructions in documents 1 to 7 inclusive of document P24x/EN CM.

1.4 Re-calibration

Re-calibration is not needed when a PCB is replaced, unless it is one of the boards in the input module. If either of these boards is replaced it directly affects the calibration.

Although it is possible to carry out recalibration on site, this requires test equipment with suitable accuracy and a special calibration program to run on a PC. It is therefore recommended that the work is carried out by the manufacturer, or entrusted to an approved service centre.

1.5 Changing the battery

Each relay has a battery to maintain status data and the correct time when the auxiliary supply voltage fails. The data maintained includes event, fault and disturbance records and the thermal state at the time of failure.

This battery periodically needs changing, although an alarm is given as part of the relay’s continuous self-monitoring if there is a low battery condition.

If the battery-backed facilities are not required to be maintained during an interruption of the auxiliary supply, the steps below can be followed to remove the battery, but do not replace with a new battery.

Before carrying out any work on the equipment the user should be familiar with the contents of the Safety Section/Safety Guide Pxxx-SG-4LM-2 or later
issue and the ratings on the equipment’s rating label.

1.5.1 Instructions for replacing the battery
Open the bottom access cover on the front of the relay.
Gently remove the battery. If necessary, use a small insulated screwdriver.
Make sure the metal terminals in the battery socket are free from corrosion, grease and dust.

⚠️ The replacement battery should be removed from its packaging and placed into the battery holder, make sure the polarity markings on the battery agree with those adjacent to the socket.

Note: Only use a type ½AA Lithium battery with a nominal voltage of 3.6 V and safety approvals such as UL (Underwriters Laboratory), CSA (Canadian Standards Association) or VDE (Vereinigung Deutscher Elektrizitätswerke).

Ensure that the battery is held securely in its socket and that the battery terminals make good contact with the socket terminals.
Close the bottom access cover.

1.5.2 Post modification tests
To ensure that the replacement battery maintains the time and status data if the auxiliary supply fails, check cell [0806: DATE and TIME, Battery Status] reads Healthy.
To confirm the replacement battery is installed correctly check the commissioning test described in section 5.2.3 (Date and Time) of the Commissioning chapter (P24x/EN CM).

1.5.3 Battery disposal
Dispose the removed battery according to the disposal procedure for Lithium batteries in the country in which the relay is installed.

1.6 Cleaning
⚠️ Before cleaning the relay ensure that all ac and dc supplies, current transformer and voltage transformer connections are isolated to prevent any chance of an electric shock whilst cleaning.
Only clean the equipment with a lint-free cloth dampened with clean water. Do not use detergents, solvents or abrasive cleaners as they may damage the relay’s surface and leave a conductive residue.
TROUBLESHOOTING
Troubleshooting

MiCOM P40 Agile P241, P242, P243
CONTENTS

1 INTRODUCTION 5
2 INITIAL PROBLEM IDENTIFICATION 6
3 POWER UP ERRORS 7
4 ERROR MESSAGE/CODE ON POWER-UP 8
5 OUT OF SERVICE LED ILLUMINATED ON POWER UP 9
6 ERROR CODE DURING OPERATION 10
7 MAL-OPERATION OF THE RELAY DURING TESTING 11
 7.1 Failure of output contacts 11
 7.2 Failure of opto-isolated inputs 11
 7.3 Incorrect analog signals 11
 7.4 PSL editor troubleshooting 12
 7.4.1 Diagram reconstruction after recover from relay 12
 7.4.2 PSL version check 12
8 REPAIR AND MODIFICATION PROCEDURE 13

TABLES

Table 1: Problem identification 6
Table 2: Failure of relay to power up 7
Table 3: Power-up self-test error 8
Table 4: Out of service LED illuminated 9
Table 5: Failure of output contacts 11
1 INTRODUCTION

Before carrying out any work on the equipment the user should be familiar with the contents of the Safety and Technical Data chapters and the ratings on the equipment’s rating label.

The purpose of this section of the technical manual is to allow an error condition on the relay to be identified so that appropriate corrective action can be taken.

If the relay develops a fault, it is possible to identify which relay module needs attention. The Maintenance chapter (P24x/EN MT) advises on the recommended method of repair where faulty modules need replacing. It is not possible to perform an on-site repair to a faulted module.

If a faulty relay or module is returned to the manufacturer or one of their approved service centers, include a completed copy of the Repair or Modification Return Authorization Form.
2 INITIAL PROBLEM IDENTIFICATION

Use the table below to find the description that best matches the problem, then consult the referenced section for a more detailed analysis of the problem.

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay fails to power up</td>
<td>Section 4</td>
</tr>
<tr>
<td>Relay powers up but indicates an error and halts during power-up sequence</td>
<td>Section 5</td>
</tr>
<tr>
<td>Relay Powers up but the Out of Service LED is ON</td>
<td>Section 6</td>
</tr>
<tr>
<td>Error during normal operation</td>
<td>Section 7</td>
</tr>
<tr>
<td>Mal-operation of the relay during testing</td>
<td>Section 8</td>
</tr>
</tbody>
</table>

Table 1: Problem identification
3 POWER UP ERRORS

If the relay does not appear to power up, use the procedure in Table 2 to determine whether the fault is in the external wiring, auxiliary fuse, relay power supply module or the relay front panel.

<table>
<thead>
<tr>
<th>Test</th>
<th>Check</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Measure the auxiliary voltage on terminals 1 and 2. Verify the voltage level and polarity against rating the label on front. Terminal 1 is –dc, 2 is +dc</td>
<td>If the auxiliary voltage is correct, go to test 2. Otherwise check the wiring and fuses in the auxiliary supply.</td>
</tr>
<tr>
<td>2</td>
<td>Check the LEDs and LCD backlight switch ON at power-up. Also check the N/O watchdog contact for closing.</td>
<td>If the LEDs and LCD backlight switch ON or the contact closes and no error code is displayed, the error is probably on the main processor board in the front panel. If the LEDs and LCD backlight do not switch ON and the contact does not close, go to test 3.</td>
</tr>
<tr>
<td>3</td>
<td>Check Field voltage output (nominally 48 V DC)</td>
<td>If there is no field voltage, the fault is probably in the relay power supply module.</td>
</tr>
</tbody>
</table>

Table 2: Failure of relay to power up
4 ERROR MESSAGE/CODE ON POWER-UP

The relay performs a self-test during power-up. If it detects an error, a message appears on the LCD and the power-up sequence stops. If the error occurs when the relay application software is running, a maintenance record is created and the relay reboots.

<table>
<thead>
<tr>
<th>Test</th>
<th>Check</th>
<th>Action</th>
</tr>
</thead>
</table>
| 1 | Is an error message or code permanently displayed during power up? | If relay locks up and displays an error code permanently, go to test 2.
If the relay prompts for user input, go to test 4.
If the relay reboots automatically, go to test 5. |
| 2 | Record displayed error, then remove and re-apply relay auxiliary supply. | Record whether the same error code is displayed when the relay is rebooted. If no error code is displayed, contact the local service center stating the error code and relay information. If the same code is displayed, go to test 3. |
| 3 | Error code Identification
The following text messages (in English) are displayed if a fundamental problem is detected, preventing the system from booting:
Bus Fail – address lines
SRAM Fail – data lines
FLASH Fail format error
FLASH Fail checksum
Code Verify Fail
The following hex error codes relate to errors detected in specific relay modules:
0c140005/0c0d0000 Input Module (inc. Opto-isolated inputs)
0c140006/0c0e0000 Output Relay Cards
The last 4 digits provide details on the actual error.
Other error codes relate to problems within the main processor board hardware or software. Contact General Electric with details of the problem for a full analysis. | These messages indicate that a problem has been detected on the relay’s main processor board or in the front panel. |
| 4 | The relay displays a message for corrupt settings and prompts for default values to be restored for the affected settings. | The power-up tests have detected corrupted relay settings. Restore the default settings to allow the power-up to be complete, reapply the application-specific settings. |
| 5 | The relay resets when the power-up is complete. A record error code is displayed | Error 0x0E080000, programmable scheme logic error due to excessive execution time. If relay powers up successfully, check programmable logic for feedback paths.
Other error codes will relate to software errors on the main processor board, contact General Electric. |

Table 3: Power-up self-test error
5 OUT OF SERVICE LED ILLUMINATED ON POWER UP

<table>
<thead>
<tr>
<th>Test</th>
<th>Check</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Using the relay menu, confirm the Commission Test/Test Mode setting is Enabled. If it is not enabled, got to test 2.</td>
<td>If the setting is Enabled, disable the test mode and make sure the Out of Service LED is OFF.</td>
</tr>
<tr>
<td>2</td>
<td>Select View Records, then view the last maintenance record from the menu.</td>
<td>Check for H/W Verify Fail. This indicates a discrepancy between the relay model number and the hardware. Examine the Maint. Data; this indicates the causes of the failure using bit fields:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit Meaning</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The application type field in the model number does not match the software ID</td>
</tr>
<tr>
<td>1</td>
<td>The application field in the model number does not match the software ID</td>
</tr>
<tr>
<td>2</td>
<td>The variant 1 field in the model number does not match the software ID</td>
</tr>
<tr>
<td>3</td>
<td>The variant 2 field in the model number does not match the software ID</td>
</tr>
<tr>
<td>4</td>
<td>The protocol field in the model number does not match the software ID</td>
</tr>
<tr>
<td>5</td>
<td>The language field in the model number does not match the software ID</td>
</tr>
<tr>
<td>6</td>
<td>The VT type field in the model number is incorrect (110 V VTs fitted)</td>
</tr>
<tr>
<td>7</td>
<td>The VT type field in the model number is incorrect (440 V VTs fitted)</td>
</tr>
<tr>
<td>8</td>
<td>The VT type field in the model number is incorrect (no VTs fitted)</td>
</tr>
</tbody>
</table>

Table 4: Out of service LED illuminated
6 ERROR CODE DURING OPERATION

The relay performs continuous self-checking. If the relay detects an error it displays an error message, logs a maintenance record and after a 1.6 second delay the relay resets. A permanent problem (for example due to a hardware fault) is usually detected in the power-up sequence, then the relay displays an error code and halts. If the problem was transient, the relay reboots correctly and continues operation. By examining the maintenance record logged, the nature of the detected fault can be determined.

There are also two cases where a maintenance record will be logged due to a detected error where the relay will not reset. These are detection of a failure of either the field voltage or the lithium battery, in these cases the failure is indicated by an alarm message; however the relay will continue to operate.

If the relay detects the field voltage has dropped below threshold, a scheme logic signal is set. This allows the scheme logic to be adapted specifically for this failure (for example if a blocking scheme is being used).

To prevent the relay from issuing an alarm when there is a battery failure, select Date and Time then Battery Alarm then Disabled. The relay can then be used without a battery and no battery alarm message appears.

If there is an RTD board failure, an RTD board fail message appears, the RTD protection is disabled, but the rest of the relay functions normally.
7 MAL-OPERATION OF THE RELAY DURING TESTING

7.1 Failure of output contacts
An apparent failure of the relay output contacts can be caused by the relay configuration; the following tests should be performed to identify the real cause of the failure.

Note: The relay self-tests verify that the coil of the contact has been energized; an error will be displayed if there is a fault in the output relay board.

<table>
<thead>
<tr>
<th>Test</th>
<th>Check</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Is the Out of Service LED ON?</td>
<td>If this LED is ON, the relay may be in test mode or the protection has been disabled due to a hardware verify error (see Table 4).</td>
</tr>
<tr>
<td>2</td>
<td>Examine the Contact status in the Commissioning section of the menu.</td>
<td>If the relevant bits of the contact status are operated, go to test 4; if not, go to test 3.</td>
</tr>
<tr>
<td>3</td>
<td>Examine the fault record or by use the test port to check the protection element is operating correctly.</td>
<td>If the protection element does not operate check the test is correctly applied. If the protection element operates, check the programmable logic, to make sure the protection element is correctly mapped to the contacts.</td>
</tr>
<tr>
<td>4</td>
<td>Using the Commissioning/Test mode function, apply a test pattern to the relevant relay output contacts. Consult the correct external connection diagram and use a continuity tester at the rear of the relay to check the relay output contacts operate.</td>
<td>If the output relay operates, the problem must be in the external wiring to the relay. If the output relay does not operate the output relay contacts may have failed (the self-tests verify that the relay coil is being energized). Ensure the closed resistance is not too high for the continuity tester to detect.</td>
</tr>
</tbody>
</table>

Table 5: Failure of output contacts

7.2 Failure of opto-isolated inputs
The opto-isolated inputs are mapped onto the relay internal signals using the programmable scheme logic. If an input does not appear to be recognized by the relay scheme logic use the Commission Tests/Opto Status menu option to check whether the problem is in the opto-isolated input or the mapping of its signal to the scheme logic functions. If the opto-isolated input does appear to be read correctly, examine its mapping in the programmable logic.

If the relay does not correctly read the opto-isolated input state, test the applied signal. Verify the connections to the opto-isolated input using the correct wiring diagram and the nominal voltage settings in the Universal Inputs menu. In the Universal Inputs menu select the nominal battery voltage for all opto inputs by selecting one of the five standard ratings in the Global Threshold settings. Select Custom to set each opto input individually to a nominal voltage value. Using a voltmeter, check the voltage on its input terminals is greater than the minimum pick-up level. See chapter P24x/EN/TD for opto pick-up levels. If the signal is correctly applied to the relay, the failure may be on the input card. Depending on which opto-isolated input has failed, the complete analog input module or a separate opto board may need to be replaced. The board in the analog input module cannot be individually replaced without recalibrating the relay.

7.3 Incorrect analog signals
The measurements can be configured in primary or secondary to assist. If the analog quantities measured by the relay do not seem correct, use the measurement function of the relay to verify the type of problem. Compare the measured values displayed by the relay with the actual magnitudes at the relay terminals. Check the correct terminals are used (in particular the dual rated CT inputs) and check the CT and VT ratios set on the relay are correct. Use the correct 120 degree displacement of the phase measurements to confirm the inputs are correctly connected.
7.4 PSL editor troubleshooting
A failure to open a connection could be due to one or more of the following:

- The relay address is not valid (this address is always 1 for the front port).
- Password is not valid
- Communication Set-up (COM port, Baud rate, or Framing) is not correct
- Transaction values are not suitable for the relay or the type of connection
- Modem configuration is not valid. Changes may be necessary when using a modem
- The connection cable is not wired correctly or broken. See MiCOM S1 Studio connection configurations
- The option switches on any KITZ101/102 this is in use may be incorrectly set

7.4.1 Diagram reconstruction after recover from relay
Although a scheme can be extracted from a relay, the facility is provided to recover a scheme if the original file is unobtainable.

A recovered scheme is logically correct but much of the original graphical information is lost. Many signals are drawn in a vertical line down the left side of the canvas. Links are drawn orthogonally using the shortest path from A to B.

Any annotation added to the original diagram such as titles and notes are lost.

Sometimes a gate type does not appear expected. For example, a 1-input AND gate in the original scheme appears as an OR gate when uploaded. Programmable gates with an inputs-to-trigger value of 1 also appear as OR gates.

7.4.2 PSL version check
The PSL is saved with a version reference, time stamp and CRC check. This gives a visual check whether the default PSL is in place or whether a new application has been downloaded.
8 REPAIR AND MODIFICATION PROCEDURE

Please follow these 5 steps to return an Automation product to us:

1. Get the Repair and Modification Authorization Form (RMA)
 - To obtain an electronic version of the RMA form please contact the Contact Centre.

2. Fill in RMA form
 Fill in only the white part of the form.
 Please ensure that all fields marked (M) are completed such as:
 - Equipment model
 - Model No. and Serial No.
 - Description of failure or modification required (please be specific)
 - Value for customs (in case the product requires export)
 - Delivery and invoice addresses
 - Contact details

3. Send RMA form to your local contact

4. Receive from local service contact, the information required to ship the product
 Your local service contact will provide you with all the information:
 - Pricing details
 - RMA n°
 - Repair center address
 If required, an acceptance of the quote must be delivered before going to next stage.

5. Send the product to the repair center
 - Address the shipment to the repair center specified by your local contact
 - Ensure all items are protected by appropriate packaging: anti-static bag and foam protection
 - Ensure a copy of the import invoice is attached with the unit being returned
 - Ensure a copy of the RMA form is attached with the unit being returned
 - E-mail or fax a copy of the import invoice and airway bill document to your local contact.
SCADA COMMUNICATIONS
SCADA Communications

MiCOM P40 Agile P241, P242, P243
CONTENTS

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>REAR PORT INFORMATION AND CONNECTION ADVICE – EIA(RS)485 PROTOCOLS</td>
<td>8</td>
</tr>
<tr>
<td>2.1</td>
<td>Rear communication port EIA(RS)485 interface</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>EIA(RS)485 bus</td>
<td>8</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Bus termination</td>
<td>8</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Bus connections & topologies</td>
<td>8</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Biasing</td>
<td>8</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Courier communication</td>
<td>9</td>
</tr>
<tr>
<td>2.2.5</td>
<td>MODBUS communication</td>
<td>12</td>
</tr>
<tr>
<td>2.2.6</td>
<td>IEC 60870-5 CS 103 communication</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Second rear communication port</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>COURIER INTERFACE</td>
<td>18</td>
</tr>
<tr>
<td>3.1</td>
<td>Courier protocol</td>
<td>18</td>
</tr>
<tr>
<td>3.2</td>
<td>Front courier port</td>
<td>18</td>
</tr>
<tr>
<td>3.3</td>
<td>Supported command set</td>
<td>19</td>
</tr>
<tr>
<td>3.4</td>
<td>Relay courier database</td>
<td>19</td>
</tr>
<tr>
<td>3.5</td>
<td>Setting changes</td>
<td>20</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Method 1</td>
<td>20</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Method 2</td>
<td>20</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Relay settings</td>
<td>20</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Setting transfer mode</td>
<td>20</td>
</tr>
<tr>
<td>3.6</td>
<td>Event extraction</td>
<td>21</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Automatic event extraction</td>
<td>21</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Event types</td>
<td>21</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Event format</td>
<td>21</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Manual event record extraction</td>
<td>22</td>
</tr>
<tr>
<td>3.7</td>
<td>Disturbance record extraction</td>
<td>22</td>
</tr>
<tr>
<td>3.8</td>
<td>Programmable scheme logic settings</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>MODBUS INTERFACE</td>
<td>24</td>
</tr>
<tr>
<td>4.1</td>
<td>Serial interface</td>
<td>24</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Character framing</td>
<td>24</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Maximum MODBUS query and response frame size</td>
<td>24</td>
</tr>
<tr>
<td>4.1.3</td>
<td>User configurable communications parameters</td>
<td>24</td>
</tr>
<tr>
<td>4.2</td>
<td>Supported MODBUS query functions</td>
<td>24</td>
</tr>
<tr>
<td>4.3</td>
<td>MODBUS response code interpretation</td>
<td>25</td>
</tr>
<tr>
<td>4.4</td>
<td>Maximum query and response parameters</td>
<td>25</td>
</tr>
<tr>
<td>4.5</td>
<td>Register mapping</td>
<td>26</td>
</tr>
</tbody>
</table>
5.4 Spontaneous events 55
5.5 General interrogation 56
5.6 Cyclic measurements 56
5.7 Commands 56
5.8 Test mode 56
5.9 Disturbance records 56
5.10 Blocking of monitor direction 56

6 IEC 61850 ETHERNET INTERFACE 57
6.1 Introduction 57
6.2 What is IEC 61850? 57
6.2.1 Interoperability 57
6.2.2 The data model 57
6.3 IEC 61850 in MiCOM relays 59
6.3.1 Capability 59
6.3.2 IEC 61850 configuration 60
6.3.2.1 Configuration banks 61
6.3.2.2 Network connectivity 61
6.4 The data model of MiCOM relays 61
6.5 The communication services of MiCOM relays 61
6.6 Peer-to-peer (GSE) communications 62
6.6.1 Scope 62
6.6.2 IEC 61850 GOOSE configuration 62
6.7 Ethernet functionality 62
6.7.1 Ethernet disconnection 63
6.7.2 Redundant Ethernet communication ports 63
6.7.3 Loss of power 63

7 SECOND REAR COMMUNICATIONS PORT (COURIER) 64
7.1 Courier protocol 64
7.2 Event extraction 64
7.3 Disturbance record extraction 64
7.4 Connection to the second rear port 64

8 SK5 PORT CONNECTION 66

FIGURES
Figure 1: EIA(RS)485 bus connection arrangements 9
Figure 2: Remote communication connection arrangements 10
Figure 3: Second rear port K-Bus application 16
Figure 4: Second rear port EIA(RS)485 example 17
Figure 5: Second rear port EIA(RS)232 example 17
Figure 6: Automatic event extraction procedure 37
Figure 7: Manual selection of a disturbance record
Figure 8: Automatic selection of a disturbance - option 1
Figure 9: Automatic selection of a disturbance - option 2
Figure 10: Extracting the COMTRADE configuration file
Figure 11: Extracting the COMTRADE binary data file
Figure 12: Data model layers in IEC 61850

TABLES

Table 1: MODBUS query functions supported by the product
Table 2: MODBUS response code interpretation
Table 3: Maximum query and response parameters for supported queries
Table 4: MODBUS "memory" pages reference and application
Table 5: Measurement data available in the P240 product range
Table 6: Binary status information available in the P240 product range
Table 7: Event record extraction registers
Table 8: Maintenance record types
Table 9: Event record 3x registers
Table 10: Disturbance record extraction registers
Table 11: Disturbance record status register (3x934) values
Table 12: Example of numeric settings
Table 13: G12 date & time data type structure
Table 14: Available physical links and their corresponding valid protocols
Table 15: EIA (RS)232 pin designation
Table 16: EIA (RS)485 pin designation
1 INTRODUCTION

This chapter describes the remote interfaces of the MiCOM relay in enough detail to allow integration in a substation communication network. As outlined in earlier chapters, the relay supports a choice of one of four protocols through the rear communication interface, selected using the model number when ordering. This is in addition to the front serial interface and 2nd rear communications port, which supports the Courier protocol only.

The rear EIA(RS)485 interface is isolated and is suitable for permanent connection whichever protocol is selected. The advantage of this type of connection is that up to 32 relays can be daisy chained together using a simple twisted pair electrical connection.

For each of the protocol options, the supported functions and commands are listed with the database definition. The operation of standard procedures such as extraction of event, fault and disturbance records, or setting changes, is also described.

The descriptions in this chapter do not aim to fully describe the protocol in detail. Refer to the relevant documentation protocol for this information. This chapter describes the specific implementation of the protocol in the relay.
2 REAR PORT INFORMATION AND CONNECTION ADVICE – EIA(RS)485 PROTOCOLS

2.1 Rear communication port EIA(RS)485 interface
The rear EIA(RS)485 communication port is provided by a 3-terminal screw connector on the back of the relay. See chapter P24x/EN IN for details of the connection terminals. The rear port provides K-Bus/EIA(RS)485 serial data communication and is intended for use with a permanently wired connection to a remote control center. Of the three connections, two are for the signal connection, and the other is for the earth shield of the cable. When the K-Bus option is selected for the rear port, the two signal connections are not polarity conscious, however for MODBUS - and IEC 60870-5-103 care must be taken to observe the correct polarity.

The protocol provided by the relay is indicated in the relay menu in the ‘Communications’ column. Using the keypad and LCD, first check that the Comms. settings cell in the Configuration column is set to Visible, then move to the Communications column. The first cell down the column shows the communication protocol being used by the rear port.

2.2 EIA(RS)485 bus
The EIA(RS)485 two-wire connection provides a half-duplex fully isolated serial connection to the product. The connection is polarized and the product’s connection diagrams indicate the polarization of the connection terminals. However, there is no agreed definition of which terminal is which. If the master is unable to communicate with the product and the communication parameters match, make sure the two-wire connection is not reversed.

EIA(RS)485 provides the capability to connect multiple devices to the same two-wire bus. MODBUS is a master-slave protocol, so one device is the master, and the remaining devices are the slaves. It is not possible to connect two masters to the same bus, unless they negotiate bus access.

2.2.1 Bus termination
The EIA(RS)485 bus must have 120 Ω (Ωhm) ½ Watt terminating resistors fitted at either end across the signal wires - see Figure 1. Some devices may be able to provide the bus terminating resistors by different connection or configuration arrangements, in which case separate external components are not required. However, this product does not provide such a facility, so if it is located at the bus terminus then an external termination resistor is required.

2.2.2 Bus connections & topologies
The EIA(RS)485 standard requires that each device be directly connected to the physical cable that is the communications bus. Stubs and tees are expressly forbidden, as are star topologies. Loop bus topologies are not part of the EIA(RS)485 standard and are forbidden by it.

Two-core screened cable is recommended. The specification of the cable depends on the application, although a multi-strand 0.5 mm² per core is normally adequate. Total cable length must not exceed 1000 m. The screen must be continuous and connected at one end, normally at the master connection point; it is important to avoid circulating currents, especially when the cable runs between buildings, for both safety and noise reasons.

This product does not provide a signal ground connection. If a signal ground connection is present in the bus cable then it must be ignored, although it must have continuity for the benefit of other devices connected to the bus. At no stage must the signal ground be connected to the cables screen or to the product’s chassis. This is for both safety and noise reasons.

2.2.3 Biasing
It may also be necessary to bias the signal wires to prevent jabber. Jabber occurs when the signal level has an indeterminate state because the bus is not being actively driven. This can occur when all the slaves are in receive mode and the master is slow to turn from receive mode to transmit mode. This may be because the master purposefully waits in
receive mode, or even in a high impedance state, until it has something to transmit. Jabber causes the receiving device(s) to miss the first bits of the first character in the packet, which results in the slave rejecting the message and consequentially not responding. Symptoms of this are poor response times (due to retries), increasing message error counters, erratic communications, and even a complete failure to communicate.

Biasing requires that the signal lines be weakly pulled to a defined voltage level of about 1 V. There should only be one bias point on the bus, which is best situated at the master connection point. The DC source used for the bias must be clean; otherwise noise is injected.

Note: Some devices may (optionally) be able to provide the bus bias, in which case external components are not required.

Figure 1: EIA(RS)485 bus connection arrangements

It is possible to use the product’s field voltage output (48 V DC) to bias the bus using values of 2.2 kΩ (½ W) as bias resistors instead of the 180 Ω resistors shown in the above diagram.

The following warnings apply:

- It is extremely important that the 120 Ω termination resistors are fitted. Failure to do so results in an excessive bias voltage that may damage the devices connected to the bus.
- As the field voltage is much higher than that required, General Electric cannot assume responsibility for any damage that may occur to a device connected to the network as a result of incorrect application of this voltage.
- Ensure that the field voltage is not being used for other purposes (i.e. powering logic inputs) as this may cause noise to be passed to the communication network.

2.2.4 Courier communication

Courier is the communication language developed by General Electric to allow remote interrogation of its range of protection relays. Courier works on a master/slave basis where the slave units contain information in the form of a database, and respond with information from the database when it is requested by a master unit.

The relay is a slave unit that is designed to be used with a Courier master unit such as MiCOM S1 Studio, MiCOM S10, PAS&T or a SCADA system. MiCOM S1 Studio is a Windows NT4.0/98 compatible software package which is specifically designed for setting changes with the relay.

To use the rear port to communicate with a PC-based master station using Courier, a KITZ K-Bus to EIA(RS)232 protocol converter is required. This unit is available from General Electric. A typical connection arrangement is shown in Figure 8. For more detailed information on other possible connection arrangements refer to the manual for the Courier master station software and the manual for the KITZ protocol converter. Each spur of the K-
Bus twisted pair wiring can be up to 1000 m in length and have up to 32 relays connected to it.

Figure 2: Remote communication connection arrangements

Having made the physical connection to the relay, the relay’s communication settings must be configured. To do this use the keypad and LCD user interface. In the relay menu firstly check that the Comms. settings cell in the Configuration column is set to Visible, then move to the Communications column. Only two settings apply to the rear port using Courier, the relay’s address and the inactivity timer. Synchronous communication is used at a fixed baud rate of 64 kbits/s.

Move down the Communications column from the column heading to the first cell down which indicates the communication protocol:

```
RP1 Protocol
Courier
```

The next cell down the column controls the address of the relay:
Since up to 32 relays can be connected to one K-Bus spur, as indicated in Figure 8, it is necessary for each relay to have a unique address so that messages from the master control station are accepted by one relay only. Courier uses an integer number between 0 and 254 for the relay address that is set with this cell. It is important that no two relays have the same Courier address. The Courier address is then used by the master station to communicate with the relay.

The next cell down controls the inactivity timer:

RP1 Inactiv timer
10.00 mins.

The inactivity timer controls how long the relay waits without receiving any messages on the rear port before it reverts to its default state, including revoking any password access that was enabled. For the rear port this can be set between 1 and 30 minutes.

The next cell down the column controls the physical media used for the communication:

RP1 Physical link
Copper

The default setting is to select the copper electrical EIA(RS)485 connection. If the optional fiber optic connectors are fitted to the relay, then this setting can be changed to Fiber optic. This cell is also invisible if second rear comms. port is fitted as it is mutually exclusive with the fiber optic connectors.

As an alternative to running Courier over K-Bus, Courier over EIA(RS)485 may be selected. The next cell down indicates the status of the hardware, e.g.:

RP1 Card status
EIA(RS)232 OK

The next cell allows for selection of the port configuration:

RP1 Port config.
EIA(RS)232

The port can be configured for EIA(RS)485 or K-Bus.

In the case of EIA(RS)485 the next cell selects the communication mode:

RP1 Comms. Mode
IEC 60870 FT1.2

The choice is either IEC 60870 FT1.2 for normal operation with 11-bit modems, or 10-bit no parity.

In the case of EIA(RS)485 the next cell down controls the baud rate. For K-Bus the baud rate is fixed at 64kbit/second between the relay and the KITZ interface at the end of the relay spur.

RP1 Baud rate
19200
Courier communications is asynchronous. Three baud rates are supported by the relay, ‘9600 bits/s’, ‘19200 bits/s’ and ‘38400 bits/s’.

Protection and disturbance recorder settings that are modified using an on-line editor such as PAS&T must be confirmed with a write to the Save changes cell of the Configuration column. Off-line editors such as MiCOM S1 Studio do not require this action for the setting changes to take effect.

2.2.5 MODBUS communication

MODBUS is a master/slave communication protocol that can be used for network control. In a similar fashion to Courier, the system works by the master device initiating all actions and the slave devices, (the relays), responding to the master by supplying the requested data or by taking the requested action. MODBUS communication is achieved via a twisted pair connection to the rear port and can be used over a distance of 1000 m with up to 32 slave devices.

To use the rear port with MODBUS communication, the relay’s communication settings must be configured. To do this use the keypad and LCD user interface. In the relay menu firstly check that the Comm. settings cell in the Configuration column is set to Visible, then move to the Communications column. Four settings apply to the rear port using MODBUS that are described below. Move down the Communications column from the column heading to the first cell down that indicates the communication protocol:

```
RP1 Protocol
MODBUS
```

The next cell down controls the MODBUS address of the relay:

```
RP1 MODBUS address
23
```

Up to 32 relays can be connected to one MODBUS spur, and therefore it is necessary for each relay to have a unique address so that messages from the master control station are accepted by one relay only. MODBUS uses an integer number between 1 and 247 for the relay address. It is important that no two relays have the same MODBUS address. The MODBUS address is then used by the master station to communicate with the relay.

The next cell down controls the inactivity timer:

```
RP1 Inactiv timer
10.00 mins.
```

The inactivity timer controls how long the relay waits without receiving any messages on the rear port before it reverts to its default state, including revoking any password access that was enabled. For the rear port this can be set between 1 and 30 minutes.

The next cell down the column controls the baud rate to be used:

```
RP1 Baud rate
9600 bits/s
```

MODBUS communication is asynchronous. Three baud rates are supported by the relay, ‘9600 bits/s’, ‘19200 bits/s’ and ‘38400 bits/s’. It is important that whatever baud rate is selected on the relay is the same as that set on the MODBUS master station.

The next cell down controls the parity format used in the data frames:
The parity can be set to be one of ‘None’, ‘Odd’ or ‘Even’. It is important that whatever parity format is selected on the relay is the same as that set on the MODBUS master station.

The next cell down the column controls the physical media used for the communication:

RP1 Physical link

Copper

The default setting is to select the copper electrical EIA(RS)485 connection. If the optional fiber optic connectors are fitted to the relay, then this setting can be changed to Fiber optic. This cell is also invisible if second rear comms. port is fitted as it is mutually exclusive with the fiber optic connectors.

The next cell down controls the format of the Date/Time (software 30 or later):

MODBUS

IEC time standard

The format can be selected to either “Standard” (as per IEC 60870-5-4 ‘Binary Time 2 a’), the default, or to ‘Reverse’ for compatibility with MICOM product ranges. For further information see Data and time format in section 4.16.

2.2.6 IEC 60870-5 CS 103 communication

The IEC specification IEC 60870-5-103: Telecontrol Equipment and Systems, Part 5: Transmission Protocols Section 103 defines the use of standards IEC 60870-5-1 to IEC 60870-5-5 to perform communication with protection equipment. The standard configuration for the IEC 60870-5-103 protocol is to use a twisted pair connection over distances up to 1000 m. As an option for IEC 60870-5-103, the rear port can be specified to use a fiber optic connection for direct connection to a master station. The relay operates as a slave in the system, responding to commands from a master station. The method of communication uses standardized messages which are based on the VDEW communication protocol.

To use the rear port with IEC 60870-5-103 communication, the relay’s communication settings must be configured. To do this use the keypad and LCD user interface. In the relay menu first check that the **Comms. settings** cell in the **Configuration** column is set to **Visible**, then move to the **Communications** column. Four settings apply to the rear port using IEC 60870-5-103 that are described below.

Move down the **Communications** column from the column heading to the first cell that indicates the communication protocol:

RP1 Protocol

IEC 60870-5-103

The next cell down controls the IEC 60870-5-103 address of the relay:

RP1 address

162
Up to 32 relays can be connected to one IEC 60870-5-103 spur, and therefore it is necessary for each relay to have a unique address so that messages from the master control station are accepted by one relay only. IEC 60870-5-103 uses an integer number between 0 and 254 for the relay address. It is important that no two relays have the same IEC 60870-5-103 address. The IEC 60870-5-103 address is then used by the master station to communicate with the relay.

The next cell down the column controls the baud rate to be used:

<table>
<thead>
<tr>
<th>RP1 Baud rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>9600 bits/s</td>
</tr>
</tbody>
</table>

IEC 60870-5-103 communication is asynchronous. Two baud rates are supported by the relay, ‘9600 bits/s’ and ‘19200 bits/s’. It is important that whatever baud rate is selected on the relay is the same as that set on the IEC 60870-5-103 master station.

The next cell down controls the period between IEC 60870-5-103 measurements:

<table>
<thead>
<tr>
<th>RP1 Meas. Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.00 s</td>
</tr>
</tbody>
</table>

The IEC 60870-5-103 protocol allows the relay to supply measurements at regular intervals. The interval between measurements is controlled by this cell, and can be set between 1 and 60 seconds.

The following cell is not currently used but is available for future expansion:

| RP1 Inactiv timer |

The next cell down the column controls the physical media used for the communication:

<table>
<thead>
<tr>
<th>RP1 Physical link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
</tr>
</tbody>
</table>

The default setting is to select the copper electrical EIA(RS)485 connection. If the optional fiber optic connectors are fitted to the relay, then this setting can be changed to Fiber optic. This cell is also invisible if second rear comms. port is fitted as it is mutually exclusive with the fiber optic connectors.

The next cell down can be used for monitor or command blocking:

| RP1 CS103 Blocking |

There are three settings associated with this cell; these are:

- **Disabled** No blocking selected.
- **Monitor Blocking** When the monitor blocking DDB Signal is active high, either by energizing an opto input or control input, reading of the status information and disturbance records is not permitted. When in this mode the relay returns a **Termination of general interrogation** message to the master station.
- **Command Blocking** When the command blocking DDB signal is active high, either by energizing an opto input or control input, all remote commands are ignored (such as CB Trip/Close and change setting group.). When in this mode the relay returns a **negative acknowledgement of command** message to the master station.
2.3 Second rear communication port

For relays with Courier, MODBUS, IEC 60870-5-103 or DNP3.0 protocol on the first rear communications port there is the hardware option of a second rear communications port, which runs the Courier language. This can be used over one of three physical links: twisted pair K-Bus (non-polarity sensitive), twisted pair EIA(RS)485 (connection polarity sensitive) or EIA(RS)232.

The settings for this port are located immediately below the ones for the first port as described in the Introduction chapter, P24x/EN IT. Move down the settings until the following sub heading is displayed:

<table>
<thead>
<tr>
<th>Rear port2 (RP2)</th>
</tr>
</thead>
</table>

The next cell down indicates the language, which is fixed at Courier for RP2:

<table>
<thead>
<tr>
<th>RP2 Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courier</td>
</tr>
</tbody>
</table>

The next cell down indicates the status of the hardware, e.g.:

| RP2 Card status EIA(RS)232 OK |

The next cell allows for selection of the port configuration:

| RP2 Port config. EIA(RS)232 |

The port can be configured for EIA(RS)232, EIA(RS)485 or K-Bus.

In the case of EIA(RS)232 and EIA(RS)485 the next cell selects the communication mode:

| RP2 Comms. mode IEC 60870 FT1.2 |

The choice is either IEC 60870 FT1.2 for normal operation with 11-bit modems, or 10-bit no parity.

The next cell down controls the comms. port address:

| RP2 Address 255 |

Up to 32 relays can be connected to one K-Bus spur, as shown in Figure 9, it is necessary for each relay to have a unique address so that messages from the master control station are accepted by one relay only. Courier uses an integer number between 0 and 254 for the relay address that is set with this cell. It is important that no two relays have the same Courier address. The Courier address is then used by the master station to communicate with the relay.

The next cell down controls the inactivity timer:

| RP2 Inactivity timer 15 mins. |
The inactivity timer controls how long the relay waits without receiving any messages on the rear port before it reverts to its default state, including revoking any password access that was enabled. For the rear port this can be set between 1 and 30 minutes.

In the case of EIA(RS)232 and EIA(RS)485 the next cell down controls the baud rate. For K-Bus the baud rate is fixed at 64kbit/second between the relay and the KITZ interface at the end of the relay spur.

![RP2 Baud rate](19200)

Courier communications is asynchronous. Three baud rates are supported by the relay, ‘9600 bits/s’, ‘19200 bits/s’ and ‘38400 bits/s’.

![K-Bus Application example](Figure 3: Second rear port K-Bus application)
"EIA(RS)485 Application" example

2 Master stations configuration: SCADA (Px40 1st RP) via CK222, EIA485 2nd rear port via remote PC, Px40 mixture plus front access

Figure 4: Second rear port EIA(RS)485 example

"EIA(RS)232 Application" example

2 Master stations configuration: SCADA (Px40 1st RP) via CK222, EIA232 2nd rear port via remote PC, max EIA232 bus distance 15m, PC local front/rear access

Figure 5: Second rear port EIA(RS)232 example
3 COURIER INTERFACE

3.1 Courier protocol

Courier is an General Electric communication protocol. The concept of the protocol is that a standard set of commands is used to access a database of settings and data within the relay. This allows a generic master to be able to communicate with different slave devices. The application specific aspects are contained in the database itself rather than the commands used to interrogate it, so the master station does not need to be pre-configured.

The same protocol can be used through two physical links K-Bus or EIA(RS)232. K-Bus is based on EIA(RS)485 voltage levels with HDLC FM0 encoded synchronous signaling and its own frame format. The K-Bus twisted pair connection is unpolarized, whereas the EIA(RS)485 and EIA(RS)232 interfaces are polarized.

The EIA(RS)232 interface uses the IEC 60870-5 FT1.2 frame format. The relay supports an IEC 60870-5 FT1.2 connection on the front-port. This is intended for temporary local connection and is not suitable for permanent connection. This interface uses a fixed baud rate, 11-bit frame, and a fixed device address.

The rear interface is used to provide a permanent connection for K-Bus and allows multi-drop connection.

Note: Although K-Bus is based on EIA(RS)485 voltage levels it is a synchronous HDLC protocol using FM0 encoding. It is not possible to use a standard EIA(RS)232 to EIA(RS)485 converter to convert IEC 60870-5 FT1.2 frames to K-Bus. Nor is it possible to connect K-Bus to an EIA(RS)485 computer port. A protocol converter, such as the KITZ101, should be employed for this purpose.

The following documentation should be referred to for a detailed description of the Courier protocol, command-set and link description.

R6509 K-Bus Interface Guide
R6510 IEC 60870 Interface Guide
R6511 Courier Protocol
R6512 Courier User Guide

3.2 Front courier port

The front EIA(RS)232\(^1\) 9 pin port supports the Courier protocol for one to one communication. It is designed for use during installation and commissioning/maintenance and is not suitable for permanent connection. Since this interface is not used to link the relay to a substation communication system, some of the features of Courier are not implemented. These are as follows:

- Automatic extraction of Event Records:
 - Courier Status byte does not support the Event flag.
 - Send Event/Accept Event commands are not implemented.

- Automatic extraction of Disturbance records:
 - Courier Status byte does not support the Disturbance flag.

- Busy Response Layer:
 - Courier Status byte does not support the Busy flag, the only response to a request is the final data.

- Fixed Address:
 - The address of the front Courier port is always 1; the Change Device address command is not supported.

\(^1\) This port is actually compliant to EIA(RS)574; the 9-pin version of EIA(RS)232, see www.tiaonline.org.
3.3 Supported command set

The following Courier commands are supported by the relay:

- **Protocol Layer**
 - Reset Remote Link
 - Poll Status
 - Poll Buffer*

- **Low Level Commands**
 - Send Event*
 - Accept Event*
 - Send Block
 - Store Block Identifier
 - Store Block Footer

- **Menu Browsing**
 - Get Column Headings
 - Get Column Text
 - Get Column Values
 - Get Strings
 - Get Text
 - Get Value
 - Get Column Setting Limits

- **Setting Changes**
 - Enter Setting Mode
 - Preload Setting
 - Abort Setting
 - Execute Setting
 - Reset Menu Cell
 - Set Value

- **Control Commands**
 - Select Setting Group
 - Change Device Address*
 - Set Real Time

 Note: Commands indicated with an * are not supported via the front Courier port.

3.4 Relay courier database

The Courier database is two-dimensional. Each cell in the database is referenced by a row and column address. Both the column and the row can take a range from 0 to 255. Addresses in the database are specified as hexadecimal values, for example, 0A02 is column 0A (10 decimal) row 02. Associated settings or data are part of the same column. Row zero of the column has a text string to identify the contents of the column and to act as a column heading.

The Relay Menu Database contains the complete database definition for the relay and is available on request. For each cell location the following information is stated:

- Cell Text
- Cell Datatype
- Cell value

Note: Although automatic extraction of event and disturbance records is not supported it is possible to manually access this data through the front port.
• Whether the cell is settable, if so
• Minimum value
• Maximum value
• Step size
• Password Level required to allow setting changes
• String information (for Indexed String or Binary flag cells)

3.5 Setting changes
(See R6512, Courier User Guide - Chapter 9)
Courier provides two mechanisms for making setting changes, both of these are supported by the relay. Either method can be used for editing any of the settings within the relay database.

3.5.1 Method 1
This uses a combination of three commands to perform a settings change:
• Enter Setting Mode - Checks that the cell is settable and returns the limits.
• Pre-load Setting - Places a new value to the cell, this value is echoed to ensure that setting corruption has not taken place, the validity of the setting is not checked by this action.
• Execute Setting - Confirms the setting change, if the change is valid then a positive response is returned. If the setting change fails then an error response is returned.
• Abort Setting - This command can be used to abandon the setting change.

This is the most secure method and is ideally suited to on-line editors as the setting limits are taken from the relay before the setting change is made. However, this method can be slow if many settings are being changed as three commands are required for each change.

3.5.2 Method 2
The Set Value command can be used to directly change a setting, the response to this command is either a positive confirm or an error code to indicate the nature of a failure. This command can be used to implement a setting more rapidly then the previous method, however the limits are not extracted from the relay. This method is most suitable for off-line setting editors such as MiCOM S1 Studio, or for the issuing of pre-configured (SCADA) control commands.

3.5.3 Relay settings
There are three categories of settings within the relay database:
• Control and support
• Disturbance recorder
• Protection settings group
Setting changes made to the control and support settings are implemented immediately and stored in non-volatile memory. Changes made to either the Disturbance recorder settings or the Protection Settings Groups are stored in a ‘scratchpad’ memory and are not immediately implemented by the relay.

To action setting changes stored in the scratchpad the Save Changes cell in the Configuration column must be written to. This allows the changes to either be confirmed and stored in non-volatile memory, or the setting changes to be aborted.

3.5.4 Setting transfer mode
If it is necessary to transfer all of the relay settings to or from the relay a cell within the Communication System Data column can be used. This cell (location BF03) when set to 1 makes all of the relay settings visible. Any setting changes made, with the relay set in this mode, are stored in scratchpad memory (including control and support settings). When the
value of BF03 is set back to 0 any setting changes are verified and stored in non-volatile memory.

3.6 Event extraction

Events can be extracted either automatically (rear port only) or manually (either Courier port). For automatic extraction all events are extracted in sequential order using the standard Courier event mechanism, this includes fault/maintenance data if appropriate. The manual approach allows the user to select events, faults, or maintenance data at random from the stored records.

3.6.1 Automatic event extraction

(See Chapter 7 Courier User Guide, publication R6512).

This method is intended for continuous extraction of event and fault information as it is produced. It is only supported via the rear Courier port.

When new event information is created the Event bit is set within the Status byte, this indicates to the Master device that event information is available. The oldest, unextracted event can be extracted from the relay using the Send Event command. The relay responds with the event data, which is either a Courier Type 0 or Type 3 event. The Type 3 event is used for fault records and maintenance records.

Once an event has been extracted from the relay, the Accept Event can be used to confirm that the event has been successfully extracted. If all events have been extracted then the event bit is reset, if there are more events still to be extracted the next event can be accessed using the Send Event command as before.

3.6.2 Event types

Events are created by the relay under the following circumstances:

- Change of state of output contact
- Change of state of opto input
- Protection element operation
- Alarm condition
- Setting change
- Password entered/timed-out
- Fault record (Type 3 Courier Event)
- Maintenance record (Type 3 Courier Event)

3.6.3 Event format

The Send Event command results in the following fields being returned by the relay:

- Cell reference
- Time stamp
- Cell text
- Cell value

The Relay Menu Database contains a table of the events created by the relay and indicates how the contents of the above fields are interpreted. Fault records and Maintenance records returns a Courier Type 3 event, which contains the above fields together with two additional fields:

- Event extraction column
- Event number

These events contain additional information that is extracted from the relay using the referenced extraction column. Row 01 of the extraction column contains a setting that allows the fault/maintenance record to be selected. This setting should be set to the event number value returned within the record; the extended data can be extracted from the relay by uploading the text and data from the column.
3.6.4 Manual event record extraction

Column 01 of the database can be used for manual viewing of event, fault, and maintenance records. The contents of this column depend on the nature of the record selected. It is possible to select events by event number and to directly select a fault record or maintenance record by number.

Event Record selection (Row 01)

This cell can be set to a value between 0 to 249 to select which of the 250 stored events is selected; 0 selects the most recent record; 249 the oldest stored record. For simple event records, (Type 0) cells 0102 to 0105 contain the event details. A single cell is used to represent each of the event fields. If the event selected is a fault or maintenance record (Type 3) then the remainder of the column contains the additional information.

Fault Record Selection (Row 05)

This cell can be used to directly select a fault record using a value between 0 and 4 to select one of up to five stored fault records. (0 is the most recent fault and 4 is the oldest). The column will then contain the details of the fault record selected.

Maintenance Record Selection (Row F0)

This cell can be used to select a maintenance record using a value between 0 and 4 and operates in a similar way to the fault record selection.

Note: If this column is used to extract event information from the relay the number associated with a particular record changes when a new event or fault occurs.

3.7 Disturbance record extraction

The stored disturbance records within the relay are accessible in a compressed format via the Courier interface. The records are extracted using column B4.

Note: Cells required for extraction of uncompressed disturbance records are not supported.

Select Record Number (Row 01)

This cell can be used to select the record to be extracted. Record 0 is the oldest unextracted record, already extracted older records are assigned positive values, and negative values are used for more recent records. To help automatic extraction through the rear port, the Disturbance bit of the Status byte is set by the relay whenever there are unextracted disturbance records.

Once a record has been selected, using the above cell, the time and date of the record can be read from cell 02. The disturbance record itself can be extracted using the block transfer mechanism from cell B00B.

Note: The file extracted from the relay is in a compressed format. It is necessary to use MiCOM S1 Studio to de-compress this file and save the disturbance record in the COMTRADE format.

As has been stated, the rear Courier port can be used to automatically extract disturbance records as they occur. This operates using the standard Courier mechanism defined in Chapter 8 of the Courier User Guide. The front Courier port does not support automatic extraction although disturbance record data can be extracted manually from this port.

3.8 Programmable scheme logic settings

The programmable scheme logic (PSL) settings can be uploaded from and downloaded to the relay using the block transfer mechanism defined in Chapter 12 of the Courier User Guide.

The following cells are used to perform the extraction:

- **B204 Domain**: Used to select either PSL settings (Upload or download) or PSL configuration data (Upload only).
- **B208 Sub-Domain:** Used to select the Protection Setting Group to be uploaded/downloaded.
- **B20C Version:** Used on a download to check the compatibility of the file to be downloaded with the relay.
- **B21C Transfer Mode:** Used to set-up the transfer process.
- **B120 Data Transfer Cell:** Used to perform upload/download.

The programmable scheme-logic settings can be uploaded and downloaded to and from the relay using this mechanism. If it is necessary to edit the settings MiCOM S1 Studio must be used as the data format is compressed. MiCOM S1 Studio also performs checks on the validity of the settings before they are downloaded to the relay.
4 MODBUS INTERFACE

The MODBUS interface is a master/slave protocol and it is defined by MODBUS.org:
See www.modbus.org

4.1 Serial interface

The MODBUS interface uses the first rear EIA(RS)485 (RS485) two-wire port “RP1”. The port is designated “EIA(RS)485/K-Bus Port” on the external connection diagrams.

The interface uses the MODBUS “RTU” mode of communication, rather than the “ASCII” mode since it provides for more efficient use of the communication bandwidth and is in wide spread use. This mode of communication is defined by the MODBUS standard, noted above.

4.1.1 Character framing

The character framing is 1 start bit, 8 bit data, either 1 parity bit and 1 stop bit, or two stop bits. This gives 11 bits per character.

4.1.2 Maximum MODBUS query and response frame size

The maximum query and response frame size is limited to 260 bytes in total. (This includes the frame header and CRC footer, as defined by the MODBUS protocol.)

4.1.3 User configurable communications parameters

The following parameters can be configured for this port using the product’s front panel user interface (in the communications sub-menu):

- Baud rate: 9600, 19200, 38400 bps
- Device address: 1 - 247
- Parity: Odd, even, none.
- Inactivity time: 2 1 - 30 minutes

Note: The MODBUS interface communication parameters are not part of the product’s setting file and cannot be configured with the MiCOM S1 Studio setting support tool.

4.2 Supported MODBUS query functions

The MODBUS protocol provides numerous query functions, of which the product supports the subset in Table 1. The product responds with exception code 01 if any other query function is received by it.

<table>
<thead>
<tr>
<th>Query function code</th>
<th>MODBUS query name</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Read Coil Status</td>
<td>Read status of output contacts (0x addresses)</td>
</tr>
<tr>
<td>02</td>
<td>Read Input Status</td>
<td>Read status of opto-isolated status inputs (1x addresses)</td>
</tr>
<tr>
<td>03</td>
<td>Read Holding Registers</td>
<td>Read setting values (4x addresses)</td>
</tr>
<tr>
<td>04</td>
<td>Read Input Registers</td>
<td>Read measurement values (3x addresses)</td>
</tr>
<tr>
<td>06</td>
<td>Preset Single Register</td>
<td>Write single setting value (4x addresses)</td>
</tr>
<tr>
<td>07</td>
<td>Read Exception Status</td>
<td>Read relay status, same value as register 3x1</td>
</tr>
</tbody>
</table>

2 The inactivity timer is started (or restarted) whenever the active password level is reduced on the entry of a valid password, or a change is made to the setting scratchpad. When the timer expires, the password level is restored to its default level and any pending (uncommitted) setting changes on the scratch pad are discarded. The inactivity timer is disabled when the password level is at its default value and there are no settings pending on the scratchpad. See section 4.13.
SCADA Communications

SCADA Communications

P24x/EN SC/I72

MiCOM P40 Agile P241, P242, P243

(S) 13-25

<table>
<thead>
<tr>
<th>Query function code</th>
<th>MODBUS query name</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>08</td>
<td>Diagnostics</td>
<td>Application defined by the MODBUS protocol specification</td>
</tr>
<tr>
<td>11</td>
<td>Fetch Communication Event Counter</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Fetch Communication Event Log</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Preset Multiple Registers</td>
<td>Write multiple setting values (4x addresses)</td>
</tr>
</tbody>
</table>

Table 1: MODBUS query functions supported by the product

4.3 MODBUS response code interpretation

<table>
<thead>
<tr>
<th>Code</th>
<th>MODBUS response name</th>
<th>Product interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Illegal Function Code</td>
<td>The function code transmitted is not supported.</td>
</tr>
<tr>
<td>02</td>
<td>Illegal Data Address</td>
<td>The start data address in the request is not an allowable value. If any of the addresses in the range cannot be accessed due to password protection then all changes in the request are discarded and this error response is returned. Note: If the start address is correct but the range includes non-implemented addresses this response is not produced.</td>
</tr>
<tr>
<td>03</td>
<td>Illegal Value</td>
<td>A value referenced in the data field transmitted by the master is not within range. Other values transmitted within the same packet are executed if inside range.</td>
</tr>
<tr>
<td>04</td>
<td>Slave Device Failure</td>
<td>An exception arose during the processing of the received query that is not covered by any of the other exception codes in this table.</td>
</tr>
<tr>
<td>05</td>
<td>Acknowledge</td>
<td>Not used.</td>
</tr>
<tr>
<td>06</td>
<td>Slave Device Busy</td>
<td>The write command cannot be implemented due to the product’s internal database being locked by another interface. This response is also produced if the product is busy executing a previous request.</td>
</tr>
</tbody>
</table>

Table 2: MODBUS response code interpretation

4.4 Maximum query and response parameters

Table 3 shows the maximum amount of data that the product can process for each of the supported query functions (see section 4.2) and the maximum amount of data that can be sent in a corresponding response frame. The principal constraint is the maximum query and response frame size, as noted in section 4.1.2. Maximum MODBUS query and response frame size.

<table>
<thead>
<tr>
<th>Query function code</th>
<th>MODBUS query name</th>
<th>Maximum query data request size</th>
<th>Maximum response data size</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Read Coil Status</td>
<td>32 coils</td>
<td>32 coils</td>
</tr>
<tr>
<td>02</td>
<td>Read Input Status</td>
<td>32 inputs</td>
<td>32 inputs</td>
</tr>
<tr>
<td>03</td>
<td>Read Holding Registers</td>
<td>127 registers</td>
<td>127 registers</td>
</tr>
<tr>
<td>04</td>
<td>Read Input Registers</td>
<td>127 registers</td>
<td>127 registers</td>
</tr>
<tr>
<td>06</td>
<td>Preset Single Register</td>
<td>1 register</td>
<td>1 register</td>
</tr>
<tr>
<td>07</td>
<td>Read Exception Status</td>
<td>-</td>
<td>8 coils</td>
</tr>
<tr>
<td>08</td>
<td>Diagnostics</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>Fetch Communication Event Counter</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Query function code</td>
<td>MODBUS query name</td>
<td>Maximum query data request size</td>
<td>Maximum response data size</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>---------------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>12</td>
<td>Fetch Communication Event Log</td>
<td>-</td>
<td>70 bytes</td>
</tr>
<tr>
<td>16</td>
<td>Preset Multiple Registers</td>
<td>127 registers</td>
<td>127 registers</td>
</tr>
</tbody>
</table>

Table 3: Maximum query and response parameters for supported queries

4.5 Register mapping

4.5.1 Conventions

4.5.1.1 Memory pages

The MODBUS specification associates a specific register address space to each query that has a data address field. The address spaces are often called memory pages, because they are analogs to separate memory devices. In fact a simplistic view of the queries in MODBUS is that a specified location in a specified memory device is being read or written. However, it should be borne in mind that the product’s implementation of such queries is not as a literal memory access but as a translation to an internal database query3.

Each MODBUS memory page has a name and an ID. Table 4 provides a summary of the memory pages, their IDs, and their application in the product.

It is common shorthand practice to prefix a decimal register address with the page ID and, for the most part, this is the style used in this document.

<table>
<thead>
<tr>
<th>Memory page ID</th>
<th>MODBUS memory page name</th>
<th>Product application</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x</td>
<td>Coil Status</td>
<td>Read and write access of the Output Relays.</td>
</tr>
<tr>
<td>1x</td>
<td>Input Status</td>
<td>Read only access of the Opto-Isolated Status Inputs.</td>
</tr>
<tr>
<td>3x</td>
<td>Input Registers</td>
<td>Read only data access, such as measurements and records.</td>
</tr>
<tr>
<td>4x</td>
<td>Holding Registers</td>
<td>Read and write data access, such as Product configurations settings and control commands.</td>
</tr>
<tr>
<td>6x</td>
<td>Extended Memory File</td>
<td>Not used/supported.</td>
</tr>
</tbody>
</table>

Table 4: MODBUS "memory" pages reference and application

4.5.1.2 MODBUS register identification

The MODBUS convention is to document register identifiers with ordinal values (first, second, third…) whereas the actual protocol uses memory-page based register addresses that begin with address zero. Therefore, the first register in a memory page is register address zero. The second register is register address 1 and so on. In general, one must be subtracted from a registers identifier to find its equivalent address.

Note: The page number notation is not part of the address.

3 One consequence of this is that the granularity of the register address space (in the 3x and 4x memory pages) is governed by the size of the data item being requested from the internal database. Since this is often more than the 16-bits of an individual register, not all register addresses are valid. See section 4.14 for more details.
Example:

Task:

Obtain the status of the output contacts from the General Electric P243 device at address 1.

The output contact status is a 32-bit binary string held in input registers 3x8 and 3x9 (see section §4.8).

Select MODBUS function code 4 “Read input registers” and request two registers starting at input register address 7. NB the register address is one less than the required register ordinal.

The MODBUS query frame is: 4

```
01 04 00 07 00 02 C0 0A
```

Device Address

Function Code

Start Register Address

Register Count

Check Sum

The frame is transmitted from left to right by the master device. Note that the start register address, register count and check sum are all 16-bit numbers that are transmitted in a high byte - low byte order.

The query may elicit the following response: 4

```
01 04 04 00 00 10 04 F7 87
```

Device Address

Function Code

Data Field Length

First Register

Second Register

Check Sum

The frame was transmitted from left to right by the slave device. The response frame is valid because 8th bit of the function code field is not set. The data field length is 4 bytes since the query was a read of two 16-bit registers. The data field consists of two pairs of bytes in a high byte - low byte order with the first requested registers data coming first. Therefore, the request for the 32-bit output contact status starting at register 3x8 is 00001004h (1000000000100b), which indicates that outputs 3 and 13 are energized and the remaining outputs are de-energized.

4.6 Register map

A complete map of the MODBUS addresses supported by the product is presented in the Relay Menu Database.

The register map tables in this document include an “Equivalent Courier Cell” column. The cell identifiers relate to the product’s internal Courier database and may be used in cross-reference with the Courier Protocol documentation and/or the product’s front panel user interface documentation.

4 The following frame data is shown in hexadecimal 8-bit bytes.
The “Data Format” column specifies the format of the data presented by the associated MODBUS register or registers. Section 4.14 describes the formats used.

The right-hand columns in the tables indicate whether the register is implemented in a particular product model; an asterisk indicates that the model implements the register.

4.7 Measurement values

The following table presents all of the product’s available measurements: analog values and counters. Their values are refreshed approximately every second.

<table>
<thead>
<tr>
<th>Measurement name</th>
<th>Measurement unit</th>
<th>Equivalent courier cell</th>
<th>Start register</th>
<th>End register</th>
<th>Data format</th>
<th>Data size (registers)</th>
<th>P241</th>
<th>P242</th>
<th>P243</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA Magnitude</td>
<td>Amps</td>
<td>0201</td>
<td>3x00200</td>
<td>3x00201</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>IA Phase Angle</td>
<td>Degrees</td>
<td>0202</td>
<td>3x00202</td>
<td></td>
<td>G30</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>IB Magnitude</td>
<td>Amps</td>
<td>0203</td>
<td>3x00203</td>
<td>3x00204</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>IB Phase Angle</td>
<td>Degrees</td>
<td>0204</td>
<td>3x00205</td>
<td></td>
<td>G30</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>IC Magnitude</td>
<td>Amps</td>
<td>0205</td>
<td>3x00206</td>
<td>3x00207</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>IC Phase Angle</td>
<td>Degrees</td>
<td>0206</td>
<td>3x00208</td>
<td></td>
<td>G30</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>IN Derived Mag</td>
<td>Amps</td>
<td>0209</td>
<td>3x00263</td>
<td>3x00264</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>IN Derived Angle</td>
<td>Degrees</td>
<td>020A</td>
<td>3x00265</td>
<td></td>
<td>G30</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>ISEF Magnitude</td>
<td>Amps</td>
<td>020B</td>
<td>3x00209</td>
<td>3x00210</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>ISEF Angle</td>
<td>Degrees</td>
<td>020C</td>
<td>3x00211</td>
<td></td>
<td>G30</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>I1 Magnitude</td>
<td>Amps</td>
<td>020D</td>
<td>3x00212</td>
<td>3x00213</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>I2 Magnitude</td>
<td>Amps</td>
<td>020E</td>
<td>3x00214</td>
<td>3x00215</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>I0 Magnitude</td>
<td>Amps</td>
<td>020F</td>
<td>3x00216</td>
<td>3x00217</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>IA RMS</td>
<td>Amps</td>
<td>0210</td>
<td>3x00218</td>
<td>3x00219</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>IB RMS</td>
<td>Amps</td>
<td>0211</td>
<td>3x00220</td>
<td>3x00221</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>IC RMS</td>
<td>Amps</td>
<td>0212</td>
<td>3x00222</td>
<td>3x00223</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>IN RMS</td>
<td>Amps</td>
<td>0213</td>
<td>3x00224</td>
<td>3x00225</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>VAB Magnitude</td>
<td>Volts</td>
<td>0214</td>
<td>3x00226</td>
<td>3x00227</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>VAB Magnitude</td>
<td>Volts</td>
<td>0214</td>
<td>3x00226</td>
<td>3x00227</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>VAB Phase Angle</td>
<td>Degrees</td>
<td>0215</td>
<td>3x00228</td>
<td></td>
<td>G30</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>VBC Magnitude</td>
<td>Volts</td>
<td>0216</td>
<td>3x00229</td>
<td>3x00230</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>VBC Magnitude</td>
<td>Volts</td>
<td>0216</td>
<td>3x00710</td>
<td>3x00711</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>VBC Phase Angle</td>
<td>Degrees</td>
<td>0217</td>
<td>3x00266</td>
<td></td>
<td>G30</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>VCA Magnitude</td>
<td>Volts</td>
<td>0218</td>
<td>3x00231</td>
<td>3x00232</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>VCA Magnitude</td>
<td>Volts</td>
<td>0218</td>
<td>3x00712</td>
<td>3x00713</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>VCA Phase Angle</td>
<td>Degrees</td>
<td>0219</td>
<td>3x00233</td>
<td></td>
<td>G30</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>VAN Magnitude</td>
<td>Volts</td>
<td>021A</td>
<td>3x00234</td>
<td>3x00235</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>VAN Phase Angle</td>
<td>Degrees</td>
<td>021B</td>
<td>3x00236</td>
<td></td>
<td>G30</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>VBN Magnitude</td>
<td>Volts</td>
<td>021C</td>
<td>3x00237</td>
<td>3x00238</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>VBN Phase Angle</td>
<td>Degrees</td>
<td>021D</td>
<td>3x00239</td>
<td></td>
<td>G30</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>VCN Magnitude</td>
<td>Volts</td>
<td>021E</td>
<td>3x00240</td>
<td>3x00241</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>VCN Phase Angle</td>
<td>Degrees</td>
<td>021F</td>
<td>3x00242</td>
<td></td>
<td>G30</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>VN Magnitude</td>
<td>Volts</td>
<td>0220</td>
<td>3x00243</td>
<td>3x00244</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>VN Angle</td>
<td>Degrees</td>
<td>0221</td>
<td>3x00245</td>
<td></td>
<td>G30</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Vr Antibacks Mag</td>
<td>Volts</td>
<td>0222</td>
<td>3x00289</td>
<td>3x00290</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>V1 Magnitude</td>
<td>Volts</td>
<td>0224</td>
<td>3x00246</td>
<td>3x00247</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>V2 Magnitude</td>
<td>Volts</td>
<td>0225</td>
<td>3x00248</td>
<td>3x00249</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>VAN RMS</td>
<td>Volts</td>
<td>0227</td>
<td>3x00250</td>
<td>3x00251</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>VBN RMS</td>
<td>Volts</td>
<td>0228</td>
<td>3x00252</td>
<td>3x00253</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Measurement name</td>
<td>Measurement unit</td>
<td>Equivalent courier cell</td>
<td>Start register</td>
<td>End register</td>
<td>Data format</td>
<td>Data size (registers)</td>
<td>P241</td>
<td>P242</td>
<td>P243</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>-------------------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>VCN RMS</td>
<td>Volts</td>
<td>0229</td>
<td>3x00254</td>
<td>3x00255</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>VAB RMS</td>
<td>Volts</td>
<td>022A</td>
<td>3x00256</td>
<td>3x00257</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>VBC RMS</td>
<td>Volts</td>
<td>022B</td>
<td>3x00258</td>
<td>3x00259</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>VCA RMS</td>
<td>Volts</td>
<td>022C</td>
<td>3x00260</td>
<td>3x00261</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Frequency</td>
<td>Hertz</td>
<td>022D</td>
<td>3x00262</td>
<td></td>
<td>G30</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>IA-2 Magnitude</td>
<td>Amps</td>
<td>0230</td>
<td>3x00268</td>
<td>3x00269</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>IA-2 Phase Angle</td>
<td>Degrees</td>
<td>0231</td>
<td>3x00270</td>
<td></td>
<td>G30</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>IB-2 Magnitude</td>
<td>Amps</td>
<td>0232</td>
<td>3x00271</td>
<td>3x00272</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>IB-2 Phase Angle</td>
<td>Degrees</td>
<td>0233</td>
<td>3x00273</td>
<td></td>
<td>G30</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>IC-2 Magnitude</td>
<td>Amps</td>
<td>0234</td>
<td>3x00274</td>
<td>3x00275</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>IC-2 Phase Angle</td>
<td>Degrees</td>
<td>0235</td>
<td>3x00276</td>
<td></td>
<td>G30</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>IA Differential</td>
<td>Amps</td>
<td>0236</td>
<td>3x00277</td>
<td>3x00278</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>IB Differential</td>
<td>Amps</td>
<td>0237</td>
<td>3x00279</td>
<td>3x00280</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>IC Differential</td>
<td>Amps</td>
<td>0238</td>
<td>3x00281</td>
<td>3x00282</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>IA Bias</td>
<td>Amps</td>
<td>0239</td>
<td>3x00283</td>
<td>3x00284</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>IB Bias</td>
<td>Amps</td>
<td>023A</td>
<td>3x00285</td>
<td>3x00286</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>IC Bias</td>
<td>Amps</td>
<td>023B</td>
<td>3x00287</td>
<td>3x00288</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>3 Phase Watts</td>
<td>Watts</td>
<td>030A</td>
<td>3x00300</td>
<td>3x00301</td>
<td>G125</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>3 Phase Watts</td>
<td>Watts</td>
<td>030A</td>
<td>3x00714</td>
<td>3x00715</td>
<td>G125</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>3 Phase VAr</td>
<td>VAr</td>
<td>030B</td>
<td>3x00303</td>
<td>3x00304</td>
<td>G125</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>3 Phase VAr</td>
<td>VAr</td>
<td>030B</td>
<td>3x00717</td>
<td>3x00718</td>
<td>G125</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>3 Phase VA</td>
<td>VA</td>
<td>030C</td>
<td>3x00306</td>
<td>3x00307</td>
<td>G125</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Zero Seq Power</td>
<td>VA</td>
<td>030D</td>
<td>3x00309</td>
<td>3x00310</td>
<td>G125</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>3Ph Power Factor</td>
<td>-</td>
<td>030E</td>
<td>3x00312</td>
<td></td>
<td>G30</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>3Ph Power Factor</td>
<td>-</td>
<td>030E</td>
<td>3x00720</td>
<td></td>
<td>G30</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>3 Phase WHours</td>
<td>Wh</td>
<td>0312</td>
<td>3x00313</td>
<td>3x00314</td>
<td>G125</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>3 Phase WHours</td>
<td>Wh</td>
<td>0313</td>
<td>3x00316</td>
<td>3x00317</td>
<td>G125</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>3 Phase VArhours</td>
<td>VArh</td>
<td>0314</td>
<td>3x00319</td>
<td>3x00320</td>
<td>G125</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>3 Phase VArhours</td>
<td>VArh</td>
<td>0315</td>
<td>3x00322</td>
<td>3x00323</td>
<td>G125</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>3 Phase W Fix Demand</td>
<td>Watts</td>
<td>0317</td>
<td>3x00325</td>
<td>3x00326</td>
<td>G125</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>3 Phase VArs Fix Demand</td>
<td>VAr</td>
<td>0318</td>
<td>3x00328</td>
<td>3x00329</td>
<td>G125</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>3 Phase W Peak Demand</td>
<td>Watts</td>
<td>0320</td>
<td>3x00331</td>
<td>3x00332</td>
<td>G125</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>3 Phase VArs Peak Demand</td>
<td>VAr</td>
<td>0321</td>
<td>3x00334</td>
<td>3x00335</td>
<td>G125</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Maximum current</td>
<td>Amps</td>
<td>0326</td>
<td>3x00338</td>
<td>3x00339</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Maximum Voltage</td>
<td>Volts</td>
<td>0327</td>
<td>3x00340</td>
<td>3x00341</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Load as ratio of full load (Ieq/Ith)</td>
<td>Ratio</td>
<td>0401</td>
<td>3x00400</td>
<td></td>
<td>G30</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Thermal State</td>
<td>Percentage</td>
<td>0402</td>
<td>3x00401</td>
<td></td>
<td>G30</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Time to thermal overload trip</td>
<td>Seconds</td>
<td>0403</td>
<td>3x00402</td>
<td>3x00403</td>
<td>G24</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Measurement name</td>
<td>Measurement unit</td>
<td>Equivalent courier cell</td>
<td>Start register</td>
<td>End register</td>
<td>Data format</td>
<td>Data size (registers)</td>
<td>P241</td>
<td>P242</td>
<td>P243</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------</td>
<td>-------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>RTD 1 Temperature</td>
<td>Celsius</td>
<td>0405</td>
<td>3x00404</td>
<td>G10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD 2 Temperature</td>
<td>Celsius</td>
<td>0406</td>
<td>3x00405</td>
<td>G10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD 3 Temperature</td>
<td>Celsius</td>
<td>0407</td>
<td>3x00406</td>
<td>G10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD 4 Temperature</td>
<td>Celsius</td>
<td>0408</td>
<td>3x00407</td>
<td>G10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD 5 Temperature</td>
<td>Celsius</td>
<td>0409</td>
<td>3x00408</td>
<td>G10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD 6 Temperature</td>
<td>Celsius</td>
<td>041A</td>
<td>3x00409</td>
<td>G10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD 7 Temperature</td>
<td>Celsius</td>
<td>041B</td>
<td>3x00410</td>
<td>G10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD 8 Temperature</td>
<td>Celsius</td>
<td>041C</td>
<td>3x00411</td>
<td>G10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD 9 Temperature</td>
<td>Celsius</td>
<td>041D</td>
<td>3x00412</td>
<td>G10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD 10 Temperature</td>
<td>Celsius</td>
<td>041E</td>
<td>3x00413</td>
<td>G10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of hot starts allowed</td>
<td>-</td>
<td>040F</td>
<td>3x00414</td>
<td>G1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of cold starts allowed</td>
<td>-</td>
<td>0410</td>
<td>3x00415</td>
<td>G1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time to next start</td>
<td>Seconds</td>
<td>0411</td>
<td>3x00416</td>
<td>3x00417</td>
<td>G24</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last start time</td>
<td>Seconds</td>
<td>0411</td>
<td>3x00416</td>
<td>3x00417</td>
<td>G24</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last start current</td>
<td>Amps</td>
<td>0414</td>
<td>3x00420</td>
<td>3x00421</td>
<td>G24</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of motor starts</td>
<td>-</td>
<td>0415</td>
<td>3x00422</td>
<td>G1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of emergency restarts</td>
<td>-</td>
<td>0417</td>
<td>3x00423</td>
<td>G1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of reacceleration</td>
<td>-</td>
<td>0419</td>
<td>3x00425</td>
<td>G1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor running hours</td>
<td>Hours</td>
<td>041B</td>
<td>3x00427</td>
<td>3x00428</td>
<td>G125</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD Open Cct</td>
<td>-</td>
<td>041D</td>
<td>3x00429</td>
<td>G10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD Short Cct</td>
<td>-</td>
<td>041E</td>
<td>3x00430</td>
<td>G10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD Data error</td>
<td>-</td>
<td>041F</td>
<td>3x00431</td>
<td>G110</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Num RTD hottest measurement</td>
<td>-</td>
<td>0421</td>
<td>3x00432</td>
<td>G1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hottest RTD measurement</td>
<td>Celsius</td>
<td>0422</td>
<td>3x00433</td>
<td>G10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog Input 1 measurement</td>
<td>-</td>
<td>0424</td>
<td>3x00434</td>
<td>3x00435</td>
<td>G125</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog Input 2 measurement</td>
<td>-</td>
<td>0425</td>
<td>3x00436</td>
<td>3x00437</td>
<td>G125</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog Input 3 measurement</td>
<td>-</td>
<td>0426</td>
<td>3x00438</td>
<td>3x00439</td>
<td>G125</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog Input 4 measurement</td>
<td>-</td>
<td>0427</td>
<td>3x00440</td>
<td>3x00441</td>
<td>G125</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of control trips</td>
<td>-</td>
<td>0501</td>
<td>3x00500</td>
<td>G1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip Ith></td>
<td>-</td>
<td>0502</td>
<td>3x00501</td>
<td>G1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip Icc>1</td>
<td>-</td>
<td>0503</td>
<td>3x00502</td>
<td>G1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip Icc>2</td>
<td>-</td>
<td>0504</td>
<td>3x00531</td>
<td>G1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip ISEF>1</td>
<td>-</td>
<td>0505</td>
<td>3x00503</td>
<td>G1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip ISEF>2</td>
<td>-</td>
<td>0506</td>
<td>3x00504</td>
<td>G1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip IEFD>1</td>
<td>-</td>
<td>0507</td>
<td>3x00532</td>
<td>G1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip IEFD>2</td>
<td>-</td>
<td>0508</td>
<td>3x00533</td>
<td>G1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip I2>1</td>
<td>-</td>
<td>0509</td>
<td>3x00505</td>
<td>G1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip I2>2</td>
<td>-</td>
<td>050A</td>
<td>3x00506</td>
<td>G1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement name</td>
<td>Measurement unit</td>
<td>Equivalent courier cell</td>
<td>Start register</td>
<td>End register</td>
<td>Data format</td>
<td>Data size (registers)</td>
<td>P241</td>
<td>P242</td>
<td>P243</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Nb of Trip P0></td>
<td>-</td>
<td>050B</td>
<td>3x00507</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip V<1</td>
<td>-</td>
<td>050C</td>
<td>3x00508</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip V<2</td>
<td>-</td>
<td>050D</td>
<td>3x00509</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip F<1</td>
<td>-</td>
<td>050E</td>
<td>3x00510</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip F<2</td>
<td>-</td>
<td>050F</td>
<td>3x00511</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip P<1</td>
<td>-</td>
<td>0510</td>
<td>3x00512</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip P<2</td>
<td>-</td>
<td>0511</td>
<td>3x00534</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip Cos PHI < Lead</td>
<td>-</td>
<td>0512</td>
<td>3x00513</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip Cos PHI < Lag</td>
<td>-</td>
<td>0513</td>
<td>3x00536</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip Rev P></td>
<td>-</td>
<td>0514</td>
<td>3x00535</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip V>1</td>
<td>-</td>
<td>0515</td>
<td>3x00514</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip V>2</td>
<td>-</td>
<td>0516</td>
<td>3x00515</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip VN>1</td>
<td>-</td>
<td>0517</td>
<td>3x00516</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip VN>2</td>
<td>-</td>
<td>0518</td>
<td>3x00517</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Prolonged start</td>
<td>-</td>
<td>0519</td>
<td>3x00518</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Locked rotor-strt</td>
<td>-</td>
<td>051A</td>
<td>3x00519</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Locked rotor-run</td>
<td>-</td>
<td>051B</td>
<td>3x00520</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip RTD 1</td>
<td>RTD</td>
<td>051C</td>
<td>3x00521</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip RTD 2</td>
<td>-</td>
<td>051D</td>
<td>3x00522</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip RTD 3</td>
<td>-</td>
<td>051E</td>
<td>3x00523</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip RTD 4</td>
<td>-</td>
<td>051F</td>
<td>3x00524</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip RTD 5</td>
<td>-</td>
<td>0520</td>
<td>3x00525</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip RTD 6</td>
<td>-</td>
<td>0521</td>
<td>3x00526</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip RTD 7</td>
<td>-</td>
<td>0522</td>
<td>3x00527</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip RTD 8</td>
<td>-</td>
<td>0523</td>
<td>3x00528</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip RTD 9</td>
<td>-</td>
<td>0524</td>
<td>3x00529</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip RTD 10</td>
<td>-</td>
<td>0525</td>
<td>3x00530</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip Diff</td>
<td>-</td>
<td>0526</td>
<td>3x00537</td>
<td>G1</td>
<td>1</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip Clio1</td>
<td>-</td>
<td>0527</td>
<td>3x00538</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip Clio2</td>
<td>-</td>
<td>0528</td>
<td>3x00539</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip Clio3</td>
<td>-</td>
<td>0529</td>
<td>3x00540</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb of Trip Clio4</td>
<td>-</td>
<td>052A</td>
<td>3x00541</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb FFail1 Trip</td>
<td>-</td>
<td>052B</td>
<td>3x00542</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb FFail2 Trip</td>
<td>-</td>
<td>052C</td>
<td>3x00543</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip Icc>3</td>
<td>-</td>
<td>052D</td>
<td>3x00544</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip Icc>4</td>
<td>-</td>
<td>052E</td>
<td>3x00545</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip V2>1</td>
<td>-</td>
<td>052F</td>
<td>3x00546</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip V2>2</td>
<td>-</td>
<td>0530</td>
<td>3x00547</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb Trip Vdip</td>
<td>-</td>
<td>0531</td>
<td>3x00548</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB Operations</td>
<td>-</td>
<td>0601</td>
<td>3x00600</td>
<td>G1</td>
<td>1</td>
<td>* * *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total IA Broken</td>
<td>Amps</td>
<td>0602</td>
<td>3x00601</td>
<td>3x00602</td>
<td>G24</td>
<td>2</td>
<td>* * *</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.8 Binary status information

Binary status information is available for the product's optically-isolated status inputs (“optos”), relay contact outputs, alarm flags, control inputs, internal digital data bus (“DDB”), and the front panel 25-pin test port. 5

The product's internal digital data bus consists of 2048 binary-status flags. The allocation of the points in the DDB are largely product and version specific.

The relay-contact status information is available from the 0x “Coil Status” MODBUS page and from the 3x “Input Register” MODBUS page.

The current state of the optically isolated status inputs is available from the 1x “Input Status” MODBUS page and from the 3x “Input Register” MODBUS page. A single register at 3x00007 provides the status of the first 16 inputs.

The 0x “Coil Status” and 1x “Input Status” pages allow individual or blocks of binary status flags to be read. The resultant data is left aligned and transmitted in a big-endian (high order to low order) format in the response frame. Relay contact 1 is mapped to coil 1, contact 2 to coil 2 and so on. Similarly, opto-input 1 is mapped to input 1, opto-input 2 to input 2 and so on.

The following table presents the available 3x and 4x binary status information.

<table>
<thead>
<tr>
<th>Name</th>
<th>Equivalent courier cell</th>
<th>Start register</th>
<th>End register</th>
<th>Data format</th>
<th>Data size (registers)</th>
<th>P241</th>
<th>P242</th>
<th>P243</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Status</td>
<td></td>
<td>3x00001</td>
<td></td>
<td>G26</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Opto I/P Status</td>
<td>0020</td>
<td>3x00007</td>
<td></td>
<td>G8</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Relay O/P Status</td>
<td>0021</td>
<td>3x00008</td>
<td>3x00009</td>
<td>G9</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Alarm Status 1</td>
<td>0050</td>
<td>3x00011</td>
<td>3x00012</td>
<td>G96</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Alarm Status 2</td>
<td>0051</td>
<td>3x00013</td>
<td>3x00014</td>
<td>G111</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Alarm Status 3</td>
<td>0052</td>
<td>3x00015</td>
<td>3x00016</td>
<td>G303</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Ctrl I/P Status</td>
<td>1201</td>
<td>4x00950</td>
<td>4x00951</td>
<td>G202</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Test Port Status</td>
<td>0F03</td>
<td>311022</td>
<td>311022</td>
<td>G124</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB 31 - 0</td>
<td>0F20</td>
<td>311023</td>
<td>311024</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB 63 - 32</td>
<td>0F21</td>
<td>311025</td>
<td>311026</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB 95 - 64</td>
<td>0F22</td>
<td>311027</td>
<td>311028</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB 127 - 96</td>
<td>0F23</td>
<td>311029</td>
<td>311030</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB 159 - 128</td>
<td>0F24</td>
<td>311031</td>
<td>311032</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB 191 - 160</td>
<td>0F25</td>
<td>311033</td>
<td>311034</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB 223 - 192</td>
<td>0F26</td>
<td>311035</td>
<td>311036</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB 255 - 224</td>
<td>0F27</td>
<td>311037</td>
<td>311038</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB 287 - 256</td>
<td>0F28</td>
<td>311039</td>
<td>311040</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB 319 - 288</td>
<td>0F29</td>
<td>311041</td>
<td>311042</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB 351 - 320</td>
<td>0F2A</td>
<td>311043</td>
<td>311044</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

5 The test port allows the product to be configured to map up to eight of its digital data bus signals to eight output pins. The usual application is to control test equipment. However, since the test port output status is available on the MODBUS interface, it could be used to efficiently collect up to eight DDB signals.
<table>
<thead>
<tr>
<th>Name</th>
<th>Equivalent courier cell</th>
<th>Start register</th>
<th>End register</th>
<th>Data format</th>
<th>Data size (registers)</th>
<th>P241</th>
<th>P242</th>
<th>P243</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDB 383 - 352</td>
<td>0F2B</td>
<td>311045</td>
<td>311046</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB 415 - 384</td>
<td>0F2C</td>
<td>311047</td>
<td>311048</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB 447 - 416</td>
<td>0F2D</td>
<td>311049</td>
<td>311050</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB 479 - 448</td>
<td>0F2E</td>
<td>311051</td>
<td>311052</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB 511 - 480</td>
<td>0F2F</td>
<td>311053</td>
<td>311054</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB 543 - 512</td>
<td>0F30</td>
<td>311055</td>
<td>311056</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB 575 - 544</td>
<td>0F31</td>
<td>311057</td>
<td>311058</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB 607 - 576</td>
<td>0F32</td>
<td>311059</td>
<td>311060</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB 639 - 608</td>
<td>0F33</td>
<td>311061</td>
<td>311062</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB 671 - 640</td>
<td>0F34</td>
<td>311063</td>
<td>311064</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB 703 - 672</td>
<td>0F35</td>
<td>311065</td>
<td>311066</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB 735 - 704</td>
<td>0F36</td>
<td>311067</td>
<td>311068</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB 767 - 736</td>
<td>0F37</td>
<td>311069</td>
<td>311070</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB 799 - 768</td>
<td>0F38</td>
<td>311071</td>
<td>311072</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB 831 - 800</td>
<td>0F39</td>
<td>311073</td>
<td>311074</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB 863 - 832</td>
<td>0F3A</td>
<td>311075</td>
<td>311076</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB 895 - 864</td>
<td>0F3B</td>
<td>311077</td>
<td>311078</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB 927 - 896</td>
<td>0F3C</td>
<td>311079</td>
<td>311080</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB 959 - 928</td>
<td>0F3D</td>
<td>311081</td>
<td>311082</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB 991 - 960</td>
<td>0F3E</td>
<td>311083</td>
<td>311084</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB 1023 - 992</td>
<td>0F3F</td>
<td>311085</td>
<td>311086</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB element 1055 - 1024</td>
<td>0F40</td>
<td>311087</td>
<td>311088</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB element 1087 - 1056</td>
<td>0F41</td>
<td>311089</td>
<td>311090</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB element 1119 - 1088</td>
<td>0F42</td>
<td>311091</td>
<td>311092</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB element 1151 - 1120</td>
<td>0F43</td>
<td>311093</td>
<td>311094</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB element 1183 - 1152</td>
<td>0F44</td>
<td>311095</td>
<td>311096</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB element 1215 - 1184</td>
<td>0F45</td>
<td>311097</td>
<td>311098</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB element 1247 - 1216</td>
<td>0F46</td>
<td>311099</td>
<td>311100</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB element 1279 - 1248</td>
<td>0F47</td>
<td>311101</td>
<td>311102</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB element 1311 - 1280</td>
<td>0F48</td>
<td>311103</td>
<td>311104</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB element 1343 - 1312</td>
<td>0F49</td>
<td>311105</td>
<td>311106</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB element 1375 - 1344</td>
<td>0F4A</td>
<td>311107</td>
<td>311108</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB element 1407 - 1376</td>
<td>0F4B</td>
<td>311109</td>
<td>311110</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB element 1439 - 1408</td>
<td>0F4C</td>
<td>311111</td>
<td>311112</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB element 1471 - 1440</td>
<td>0F4D</td>
<td>311113</td>
<td>311114</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>
Table 6: Binary status information available in the P240 product range

<table>
<thead>
<tr>
<th>Name</th>
<th>Equivalent courier cell</th>
<th>Start register</th>
<th>End register</th>
<th>Data format</th>
<th>Data size (registers)</th>
<th>P241</th>
<th>P242</th>
<th>P243</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDB element 1503 - 1472</td>
<td>0F4E</td>
<td>311115</td>
<td>311116</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB element 1535 - 1504</td>
<td>0F4F</td>
<td>311117</td>
<td>311118</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB element 1567 - 1536</td>
<td>0F50</td>
<td>311119</td>
<td>311120</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB element 1599 - 1568</td>
<td>0F51</td>
<td>311121</td>
<td>311122</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB element 1631 - 1600</td>
<td>0F52</td>
<td>311123</td>
<td>311124</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB element 1663 - 1632</td>
<td>0F53</td>
<td>311125</td>
<td>311126</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB element 1695 - 1664</td>
<td>0F54</td>
<td>311127</td>
<td>311128</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB element 1727 - 1696</td>
<td>0F55</td>
<td>311129</td>
<td>311130</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB element 1759 - 1728</td>
<td>0F56</td>
<td>311131</td>
<td>311132</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB element 1791 - 1760</td>
<td>0F57</td>
<td>311133</td>
<td>311134</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB element 1823 - 1792</td>
<td>0F58</td>
<td>311135</td>
<td>311136</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB element 1855 - 1824</td>
<td>0F59</td>
<td>311137</td>
<td>311138</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB element 1887 - 1856</td>
<td>0F5A</td>
<td>311139</td>
<td>311140</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB element 1919 - 1888</td>
<td>0F5B</td>
<td>311141</td>
<td>311142</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB element 1951 - 1920</td>
<td>0F5C</td>
<td>311143</td>
<td>311144</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB element 1983 - 1952</td>
<td>0F5D</td>
<td>311145</td>
<td>311146</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB element 2015 - 1984</td>
<td>0F5E</td>
<td>311147</td>
<td>311148</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>DDB element 2047 - 2016</td>
<td>0F5F</td>
<td>311149</td>
<td>311150</td>
<td>G27</td>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

4.9 Measurement and binary status 3x register sets

The data available from the 3x input registers is arranged into register sets. A register set is a fixed collection of values in a contiguous block of register addresses. The advantage of this is that multiple values may be read with a single MODBUS query, function code 4 “Read Input Registers”, up to the maximum data limits of the query (see section 4.4).

The definition of a register-set is specified by the selection of a start and end address, which can span multiple contiguous values in the 3x Register. The only rule being that a register set must not result in an attempt to read only part of a multi-register data type (see section 4.14). It is permissible for a register set to span unused register locations, in which case a value of zero is returned for each such register location.

Some examples of useful register sets are:

- 3x200 to 3x288 provides a selection of measurements.
- 311023 to 311150 provide the DDB status
- 3x404 to 3x413 provide the ten RTD measurement values
There are many other possibilities dependent on your application and an appraisal of the 3x Register Map. The capabilities of the MODBUS master device, performance targets, and communications latencies may also influence the degree to which multiple values are read as register sets, as opposed to individually.

4.10 Controls

The following table presents MODBUS 4x "Holding Registers" that allow the external system to control aspects of the product’s behavior, configuration, records, or items of plant connected to the product such as circuit breakers.

The column **Command or setting** indicates whether the control is a self-resetting "Command" or a state based "Setting".

“Command” controls automatically return to their default value when the control action has been completed. For example, writing the “trip” value to the “CB Trip/Close” control will result in the controlled circuit breaker opening (if CB remote control is enabled, the CB has a valid state, and it was closed). The value of the “CB Trip/Close” register will automatically return to “no operation”. This may lead to problems with masters that attempt to verify write requests by reading back the written value.

“Setting” controls maintain the written value, assuming that it was accepted. For example the “Active Setting Group” register reports the current active group on reads and accepts writes with a valid setting group number to change the active group to the one specified. (This assumes that setting group selection by optically isolated status inputs has not been enabled and that the specified group is enabled).

Entries without a defined setting range, as per the “min.”, “max.” and "step" columns, are binary-string values whose pattern is defined by its stated data type.

4.11 Event extraction

The product is capable of storing 512 event records in battery backed memory. An event record consists of a time stamp, a record type, and a set of information fields. The record type and the information fields record the event that occurred at the time captured by the time stamp.

The product has several classes of event record:

- Alarm events
- Opto-isolated status input events
- Relay contact output events
- Protection/DDB operation events
- Fault data capture events
- General events

Note: The product provides an “event filtering” feature that may be used to prevent specific events from being logged. The event filter is configured in the “Record Control” section of the product’s menu database in the MiCOM S1 Studio configuration tool.

The product supports two methods of event extraction providing either automatic or manual extraction of the stored event, fault, and maintenance records.

It is important to appreciate that the product stores event, fault, and maintenance records in three separate queues. As entries are added to the fault and maintenance queues a corresponding event is added to the event queue. Each queue is of different length and each queue may be individually cleared (see section 4.11.4). It is therefore possible to have a fault event or a maintenance event entry in the event queue with no corresponding entry in the associated queue because it has been overwritten or deleted.

The manual extraction procedure (section 4.11.1) allows each of these three queues to be read independently.
The automatic extraction procedure (section 4.11.2) reads records from the event queue. If the event record is either a fault or a maintenance record then the records extended data is read too, if it is available from their queues.

Note: Version 31 of the product introduced a new set of 3x registers for the presentation of the event and fault record data. These registers are used throughout the text of the following sub-sections. For legacy compatibility, the original registers are still provided. These are described as previous MODBUS address in the Relay Menu Database. They should not be used for new installations. See section 4.11.5 for additional information.

4.11.1 Manual extraction procedure

There are three registers available to manually select stored records, there are also three read only registers allowing the number of stored records to be determined.

- **4x00100** - Select Event, 0 to 249
- **4x00101** - Select Fault, 0 to 4
- **4x00102** - Select Maintenance Record, 0 to 4

For each of the above registers, a value of zero represents the most recent stored record. The following registers can be read to indicate the numbers of the various types of record stored.

- **3x10000** - Number of stored event records
- **3x10001** - Number of stored fault records
- **3x10002** - Number of stored maintenance records

Each fault or maintenance record logged causes an event record to be created by the product. If this event record is selected the additional registers showing the fault or maintenance record details are also populated.

4.11.2 Automatic extraction procedure

Automatic event-record extraction allows records to be extracted as they occur. Event records are extracted in sequential order, including any fault or maintenance data that may be associated with an event.

The MODBUS master can determine whether the product has any events stored that have not yet been extracted. This is performed by reading the product’s status register **3x00001** (G26 data type). If the event bit, of this register, is set then the product contains event records that have not yet been extracted.

To select the next event for sequential extraction, the master station writes a value of one to the record selection register **4x00400** (G18 data type). The event data together with any fault/maintenance data can be read from the registers specified in 4.11.3. Once the data has been read, the event record can be marked as having been read by writing a value of two to register **4x00400**. Alternatively, since the G18 data type consists of bit fields, it is possible to both mark the current record as having been read and to automatically select the next unread record by writing a value of three to the register.

When the last (most recent) record has been accepted the event flag in the status register (3x00001) is reset. If the last record was accepted, by writing a value of three to the record selection register (4x00400), then a dummy record appears in the event-record registers, with an “Event Type” value of 255. Attempting to select another record, when none are available, results in a MODBUS exception code 3 - “Invalid value” (see section 4.3).

One possible event record extraction procedure is shown in Figure 6.
4.11.3 Record data

The location and format of the registers used to access the record data is the same whether they have been selected using manual or automatic extraction mechanisms detailed above.
<table>
<thead>
<tr>
<th>Description</th>
<th>Register</th>
<th>Length (registers)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Stamp</td>
<td>3x10003</td>
<td>4</td>
<td>See G12 data type in the Relay Menu Database.</td>
</tr>
<tr>
<td>Event Type</td>
<td>3x10007</td>
<td>1</td>
<td>Indicates the type of the event record. See G13 data type (additionally, a value of 255 indicates that the end of the event log has been reached).</td>
</tr>
<tr>
<td>Event Value</td>
<td>3x10008</td>
<td>2</td>
<td>Contains the associated status register value, as a string of binary flags, for relay-contact, opto-input, alarm, and protection events. Otherwise, it has a value of zero. When a status value is supplied, the value represents the recorded value of the event types associated register pair, as indicated by the Event Origin value.</td>
</tr>
<tr>
<td>Event Origin</td>
<td>3x10010</td>
<td>1</td>
<td>The Event Origin value indicates the MODBUS Register pair where the change occurred. Possible values are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30011: Alarm Status 1 event</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30013: Alarm Status 2 event</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30015: Alarm Status 3 event</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30723: Relay contact event (2 registers: DDB 0-31 status)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30727: Status input event (2 registers: DDB 64-95 status)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40537 to 40548: Protection events (Indicates the 32-bit DDB status word that was the origin of the event)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>For General events, Fault events, and Maintenance events a value of zero is returned.</td>
</tr>
<tr>
<td>Event Index</td>
<td>3x10011</td>
<td>1</td>
<td>The Event Index value is used to distinguish between events with the same Event Type and Event Origin. The registers value depends on the type of the event:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>For protection events, the value is the ID of the DDB that caused the event.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>For alarm events, the value is the ID of the alarm that caused the event.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>In both cases, the value includes the direction of the state transition in the most significant bit. This direction bit is 1 for a 0-1 (low to high) change, and 0 for a 1-0 (high to low) change.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>For all other types of events, it has a value of zero.</td>
</tr>
<tr>
<td>Additional Data</td>
<td>3x10012</td>
<td>1</td>
<td>Indicates whether the record has additional data. Indicates that there is no additional data.</td>
</tr>
<tr>
<td>Present</td>
<td></td>
<td></td>
<td>Indicates that fault record data can be read from 3x10020 to 3x10999.</td>
</tr>
</tbody>
</table>

Note: To obtain fault record data, event record must be extracted.

2: Indicates that maintenance record data can be read from registers 3x36 to 3x39.

6 The protection-event status information is the value of the DDB status word that contains the protection DDB that caused the event.

7 Subtracting 3000 from the Event Origin value results in the MODBUS 3x memory-page register ID, subtracting one from this results in the MODBUS register address - see section 4.5.1.2. The resultant register address can be used in a function code 4 MODBUS query.

8 The exact number of fault record registers depends on the individual product - see Relay Menu Database, P24x/EN MD.
If a fault record or maintenance record is directly selected using the manual mechanism, then the data can be read from the fault or maintenance data register ranges specified above. The event record data in registers 3x10003 to 3x10012 is not valid.

The general procedure for decoding an event record is to use the value of the “Event Type” field combined with the value of the “Event Index” field to uniquely identify the event. The exceptions to this are event types 4, 5, 7, 8, & 9.

Event types 4 “Relay Contact Output Events” and 5 “Opto-Isolated Status Input Events” only provide the value of the input or output status register (as indicated by the Event Origin value) at the time the event occurred. If event transition information for each input or output is required then this must be deduced by comparing the event value with the previous event value (for identically typed events records).

Event type 7 “General Event” events are solely identified by their “Event Value”.

Event types 8 “Fault Record” and 9 “Maintenance Record” require additional registers to be read when the associated additional data is available. The Fault record registers in the range 3x10020 to 3x10999 (the exact number of registers depends on the individual product) are clearly documented in the 3x register-map in the Relay Menu Database. The two additional 32-bit maintenance record register-pairs consist of a maintenance record type (register pair 3x36/7) and a type-specific error code (register pair 3x38/9). Table 8: lists the different types of maintenance record available from the product.

<table>
<thead>
<tr>
<th>Maintenance record</th>
<th>Front panel text</th>
<th>Record type 3x00036</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power on test errors (non-fatal)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watchdog 1 failure (fast)</td>
<td>Fast WDog Error</td>
<td>0</td>
</tr>
<tr>
<td>Battery fail</td>
<td>Battery Failure</td>
<td>1</td>
</tr>
<tr>
<td>Battery-backed RAM failure</td>
<td>BBRAM Failure</td>
<td>2</td>
</tr>
<tr>
<td>Field voltage failure</td>
<td>Field Volt Fail</td>
<td>3</td>
</tr>
<tr>
<td>Ribbon bus check failure</td>
<td>Bus Reset Error</td>
<td>4</td>
</tr>
<tr>
<td>Watchdog 2 failure (slow)</td>
<td>Slow WDog Error</td>
<td>5</td>
</tr>
<tr>
<td>Continuous self-test errors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRAM bus failure</td>
<td>SRAM Failure Bus</td>
<td>6</td>
</tr>
<tr>
<td>SRAM cell failure</td>
<td>SRAM Failure Blk.</td>
<td>7</td>
</tr>
<tr>
<td>Flash EPROM checksum failure</td>
<td>FLASH Failure</td>
<td>8</td>
</tr>
<tr>
<td>Program code verify failure</td>
<td>Code Verify Fail</td>
<td>9</td>
</tr>
<tr>
<td>Battery-backed RAM failure</td>
<td>BBRAM Failure</td>
<td>10</td>
</tr>
<tr>
<td>Battery fail</td>
<td>Battery Failure</td>
<td>11</td>
</tr>
<tr>
<td>Field Voltage failure</td>
<td>Field Volt Fail</td>
<td>12</td>
</tr>
<tr>
<td>EEPROM failure</td>
<td>EEPROM Failure</td>
<td>13</td>
</tr>
<tr>
<td>Fatal software exception</td>
<td>Software Failure</td>
<td>14</td>
</tr>
<tr>
<td>Incorrect hardware configuration</td>
<td>H/W Verify Fail</td>
<td>15</td>
</tr>
<tr>
<td>Software exception (typically non-fatal)</td>
<td>Non Standard</td>
<td>16</td>
</tr>
<tr>
<td>Analog module failure</td>
<td>Ana. Sample Fail</td>
<td>17</td>
</tr>
<tr>
<td>Ethernet card error</td>
<td>NIC Soft Error</td>
<td>18</td>
</tr>
</tbody>
</table>

Table 8: Maintenance record types

9 As noted at the beginning of section 4.11, it should not be assumed that the additional data will be available for fault and maintenance record events.
4.11.4 Event record deletion
It is possible to independently delete (“clear”) the stored event, fault, and maintenance record queues. This is accomplished by writing a value of 1, 2, or 3 to register 4x401 (G6 data type), respectively.

This register also provides an option to reset the product’s front panel indications, which has the same effect as pressing the front panel “Clear” key when viewing alarm indications using the front panel user interface. This is accomplished by writing a value of 4 to register 4x401.

See also section 4.12.4 for details about deleting disturbance records.

4.11.5 Event record support
A set of 3x registers for the presentation of the event and fault record data are described in this section.

Table 9 describes the event record registers used in the event record discussions in the prior sub-sections.

The fault record data between registers exist between 3x113 and 3x199, and 3x490 and 3x499.

<table>
<thead>
<tr>
<th>Description</th>
<th>Obsolete register</th>
<th>Length (registers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of stored event records</td>
<td>3x00100</td>
<td>1</td>
</tr>
<tr>
<td>Number of stored fault records</td>
<td>3x00101</td>
<td>1</td>
</tr>
<tr>
<td>Number of stored maintenance records</td>
<td>3x00102</td>
<td>1</td>
</tr>
<tr>
<td>Time Stamp</td>
<td>3x00103</td>
<td>4</td>
</tr>
<tr>
<td>Event Type</td>
<td>3x00107</td>
<td>1</td>
</tr>
<tr>
<td>Event Value</td>
<td>3x00108</td>
<td>2</td>
</tr>
<tr>
<td>Event Origin</td>
<td>3x00110</td>
<td>1</td>
</tr>
<tr>
<td>Event Index</td>
<td>3x00111</td>
<td>1</td>
</tr>
<tr>
<td>Additional Data Present</td>
<td>3x00112</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 9: Event record 3x registers

4.12 Disturbance record extraction
The product provides facilities for both manual and automatic extraction of disturbance records. The two methods differ only in the mechanism for selecting a disturbance record, the method for extracting the data and the format of the data are identical.

Note: The record format and extraction procedures have changed for version “20” of the product software and are not compatible with prior versions.

Records extracted are presented in IEEE COMTRADE format. This involves extracting two files: an ASCII text configuration file, and a binary data file.

Each file is extracted by repeatedly reading a data-page until all of the file’s data has been transferred. The data-page is made up of 127 registers; providing a maximum of 254 bytes per register block request.
4.12.1 Interface registers

The following set of registers is presented to the master station to support the extraction of uncompressed disturbance records:

<table>
<thead>
<tr>
<th>Register</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3x00001</td>
<td>Status register</td>
<td>Provides the status of the product as bit flags:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Out of service</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Minor self test failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Event</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Time synchronization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Disturbance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Trip</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Alarm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Unused</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A ‘1’ in bit “b4” indicates the presence of one or more disturbance records.</td>
</tr>
<tr>
<td>3x00800</td>
<td>Number of stored disturbances</td>
<td>Indicates the total number of disturbance records currently stored in the product, both extracted and unextracted.</td>
</tr>
<tr>
<td>3x00801</td>
<td>Unique identifier of the oldest disturbance record</td>
<td>Indicates the unique identifier value for the oldest disturbance record stored in the product. This is an integer value used in conjunction with the ‘Number of stored disturbances’ value to calculate a value for manually selecting records.</td>
</tr>
<tr>
<td>4x00250</td>
<td>Manual disturbance record selection register</td>
<td>This register is used to manually select disturbance records. The values written to this cell are an offset of the unique identifier value for the oldest record. The offset value, which ranges from 0 to the No of stored disturbances - 1, is added to the identifier of the oldest record to generate the identifier of the required record.</td>
</tr>
<tr>
<td>4x00400</td>
<td>Record selection command register</td>
<td>This register is used during the extraction process and has a number of commands. These are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Select next event</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Accept event</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Select next disturbance record</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Accept disturbance record</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Select next page of disturbance data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Select data file</td>
</tr>
<tr>
<td>3x00930 to 3x00933</td>
<td>Record time stamp</td>
<td>These registers return the timestamp of the disturbance record.</td>
</tr>
<tr>
<td>3x00802</td>
<td>Number of registers in data page</td>
<td>This register informs the master station of the number of registers in the data page that are populated.</td>
</tr>
<tr>
<td>3x00803 to 3x00929</td>
<td>Data page registers</td>
<td>These 127 registers are used to transfer data from the product to the master station.</td>
</tr>
<tr>
<td>3x00934</td>
<td>Disturbance record status register</td>
<td>The disturbance record status register is used during the extraction process to indicate to the master station when data is ready for extraction. See next table.</td>
</tr>
<tr>
<td>4x00251</td>
<td>Data file format selection</td>
<td>This is used to select the required data file format. This is reserved for future use.</td>
</tr>
</tbody>
</table>

Table 10: Disturbance record extraction registers
The Disturbance Record status register reports one of the following values:

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idle</td>
<td>This is the state reported when no record is selected; such as after power on or after a record has been marked as extracted.</td>
</tr>
<tr>
<td>Busy</td>
<td>The product is currently processing data.</td>
</tr>
<tr>
<td>Page ready</td>
<td>The data page has been populated and the master can now safely read the data.</td>
</tr>
<tr>
<td>Configuration complete</td>
<td>All of the configuration data has been read without error.</td>
</tr>
<tr>
<td>Record complete</td>
<td>All of the disturbance data has been extracted.</td>
</tr>
<tr>
<td>Disturbance overwritten</td>
<td>An error occurred during the extraction process where the disturbance being extracted was overwritten by a new record.</td>
</tr>
<tr>
<td>No unextracted</td>
<td>An attempt was made by the master station to automatically select the next oldest unextracted disturbance when all records have been extracted.</td>
</tr>
<tr>
<td>disturbances</td>
<td></td>
</tr>
<tr>
<td>Not a valid disturbance</td>
<td>An attempt was made by the master station to manually select a record that did not exist in the product.</td>
</tr>
<tr>
<td>Command out of sequence</td>
<td>The master station issued a command to the product that was not expected during the extraction process.</td>
</tr>
</tbody>
</table>

Table 11: Disturbance record status register (3x934) values

4.12.2 Extraction procedure

The following procedure must be used to extract disturbance records from the product. The procedure is split into four sections:

1. Selection of a disturbance - either manually or automatically
2. Extraction of the configuration file
3. Extraction of the data file
4. Accepting the extracted record (automatic extraction only)
4.12.2.1 Manual extraction procedure

The procedure used to extract a disturbance manually is shown in Figure 7. The manual method of extraction does not allow for the acceptance of disturbance records.

Figure 7: Manual selection of a disturbance record
4.12.2.2 Automatic extraction procedure - option 1

There are two methods that can be used for automatically extracting disturbances. The procedure for the first method is shown Figure 8. This also shows the acceptance of the disturbance record once the extraction is complete.

Figure 8: Automatic selection of a disturbance - option 1
4.12.2.3 Automatic extraction procedure - option 2

The second method that can be used for automatic extraction is shown in Figure 9. This also shows the acceptance of the disturbance record once the extraction is complete.
Figure 9: Automatic selection of a disturbance - option 2
4.12.2.4 Extracting the disturbance data

Extraction of a selected disturbance record is a two-stage process that involves reading the configuration file first followed by the data file.

Figure 10 shows how the configuration file is read:

Figure 10: Extracting the COMTRADE configuration file
Figure 11 shows how the data file is extracted:

![Diagram]

Figure 11: Extracting the COMTRADE binary data file

During the extraction of a COMTRADE file, an error may occur that will be reported in the disturbance record status register, 3x934. This can be caused by the product overwriting the record being extracted or by the master issuing a command that is not within the bounds of the extraction procedure.
4.12.3 Storage of extracted data

The extracted data needs to be written to two separate files. The first is the configuration file, which is in ASCII text format, and the second is the data file, which is in a binary format.

4.12.3.1 Storing the configuration file

As the configuration data is extracted from the product, it should be stored to an ASCII text file with a `.cfg` file extension. Each register in the page is a G1 format 16-bit unsigned integer that is transmitted in big-endian byte order. The master must write the configuration file page-data to the file in ascending register order with each register’s high order byte written before its low order byte, until all the pages have been processed.

4.12.3.2 Storing the binary data file

As the binary data is extracted from the product, it should be stored to a binary file with the same name as the configuration file, but with a `.dat` file extension instead of the `.cfg` extension. Each register in the page is a G1-format 16-bit unsigned integer that is transmitted in big-endian byte order. The master must write the page data to a file in ascending register order with each register’s high order byte written before its low order byte until all the pages have been processed.

4.12.4 Disturbance record deletion

All of the disturbance records stored in the product can be deleted ("cleared") by writing 5 to the record control register 4x401 (G6 data type). See also section 4.11.4 for details about event record deletion.

4.13 Setting changes

The product settings can be split into two categories:

- Control and support settings
- Disturbance record settings and protection setting groups

Changes to settings within the control and support area are executed immediately. Changes to the protection setting groups or the disturbance recorder settings are stored in a temporary ‘scratchpad’ area and must be confirmed before they are implemented. All the product settings are 4x page registers. The following points should be noted when changing settings:

- Settings implemented using multiple registers must be written to using a multi-register write operation. The product does not support write access to sub-parts of multi-register data types.
- The first address for a multi-register write must be a valid address. If there are unmapped addresses within the range being written to then the data associated with these addresses are discarded.
- If a write operation is performed with values that are out of range then an “illegal data” response code is produced. Valid setting values within the same write operation are executed.
- If a write operation is performed attempting to change registers that require a higher level of password access than is currently enabled then all setting changes in the write operation are discarded.

4.13.1 Password protection

The product’s settings can be subject to Password protection. The level of password protection required to change a setting is indicated in the 4x register-map table in the Relay Menu Database. Level 2 is the highest level of password access, level 0 indicates that no password is required.

The following registers are available to control Password protection:

- 4x00001 & 4x00002 Password Entry
- 4x00022 Default Password Level
- 4x00023 & 4x00024 Setting to Change Password Level 1
• 4x00025 & 4x00026 Setting to Change Password Level 2
• 3x00010 Current Access Level (read only)

4.13.2 Control and support settings
Control and support settings are committed immediately when a value is written to such a register. The MODBUS registers in this category are:
• 4x00000-4x00599
• 4x00700-4x00999
• 4x02049 to 4x02052
• 4x10000-4x10999

4.13.2.1 Time synchronization
The value of the product’s real time clock can be set by writing the desired time (see section 4.16) to registers 4x02049 through 4x02052. These registers are standard to General Electric MiCOM products, which facilitates the use of broadcast of a time synchronization packet -being a block write to the time setting registers sent to slave address zero.

When the product’s time has been set using these registers the Time Synchronized flag in the MODBUS Status Register (3x1: type G26) is set. The product automatically clears this flag if more than five minutes has elapsed since these registers were last written to.

A “Time synchronization” event is logged if the new time value is more than two seconds different from the current value.

4.13.3 Disturbance recorder configuration settings
Disturbance recorder configuration-settings are written to a scratchpad memory area. A confirmation procedure is required to commit the contents of the scratchpad to the disturbance recorder's set-up, which ensures that the recorders configuration is consistent at all times. The contents of the scratchpad memory can be discarded with the abort procedure. The scratchpad confirmation and abort procedures are described in section 4.13.5.

The disturbance recorder configuration registers are in the range:
• 4x00600-4x00699

4.13.4 Protection settings
Protection configuration-settings are written to a scratchpad memory area. A confirmation procedure is required to commit the contents of the scratchpad to the product’s protection functions, which ensures that their configuration is consistent at all times. The contents of the scratchpad memory can be discarded with the abort procedure. The scratchpad confirmation and abort procedures are described in section 4.13.5.

The product supports four groups of protection settings. One protection-group is active and the other three are either dormant or disabled. The active protection-group can be selected by writing to register 4x00404. An illegal data response is returned if an attempt is made to set the active group to one that has been disabled.

The MODBUS registers for each of the four groups are repeated in the following ranges:
• Group 1 4x01000-4x02999, 10 4x11000-4x12999
• Group 2 4x03000-4x04999, 4x13000-4x14999
• Group 3 4x05000-4x06999, 4x15000-4x16999
• Group 4 4x07000-4x08999, 4x17000-4x18999

10 Registers 4x02049 to 4x02052 are not part of protection setting group #1 and therefore do not repeat in any of the other protection setting groups. These registers are for time synchronization purposes and are standard for most General Electric products. See section 4.13.2.1.
4.13.5 Scratchpad management

Register 4x00405 can be used to either confirm or abort the setting changes within the scratchpad area. In addition to the basic editing of the protection setting groups, the following functions are provided:

- Default values can be restored to a setting group or to all of the product settings by writing to register 4x00402.
- It is possible to copy the contents of one setting group to another by writing the source group to register 4x00406 and the target group to 4x00407.
- The setting changes performed by either of the two operations defined above are made to the scratchpad area. These changes must be confirmed by writing to register 4x00405.

4.14 Register data types

The product maps one or more MODBUS registers to data-typed information contained within an internal database. These data-types are referred to as G-Types since they have a ‘G’ prefixed identifier. The Relay Menu Database gives a complete definition of the all of the G-Types used in the product.

In general, the data types are transmitted in high byte to low byte order, which is sometimes called “Big Endian format”. This may require the MODBUS master to reorder the received bytes into a format compliant with its byte-order and register order (for multi-register G-Types) conventions. Most MODBUS masters provide byte-swap and register-swap device (or data point) configuration to cope with the plethora of implementations.

The product’s data-types are atomic in nature. This means that the multi-register types cannot be read (or written) on an individual register basis. All of the registers for a multi-register data-typed item must be read (or written) with a single block read (or write) command.

The following subsections provide some additional notes for a few of the more complex G-Types.

4.15 Numeric setting (data types G2 & G35)

Numeric settings are integer representations of real (non-integer) values. The register value is the number of setting increments (or steps) that the real value is away from the settings real minimum value. This is expressed by the following formula:

\[S_{\text{real}} = S_{\text{min}} + (S_{\text{inc}} \times S_{\text{numeric}}) \]

Where:

- \(S_{\text{real}} \) - Setting real value
- \(S_{\text{min}} \) - Setting real minimum value
- \(S_{\text{inc}} \) - Setting real increment (step) value
- \(S_{\text{numeric}} \) - Setting numeric (register) value

For example, a setting with a real value setting range of 0.01 to 10 in steps of 0.01 would have the following numeric setting values:

<table>
<thead>
<tr>
<th>Real value (Sreal)</th>
<th>Numeric value (Snumeric)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0</td>
</tr>
<tr>
<td>0.02</td>
<td>1</td>
</tr>
<tr>
<td>1.00</td>
<td>99</td>
</tr>
</tbody>
</table>

Table 12: Example of numeric settings

The G2 numeric data type uses 1 register as an unsigned 16-bit integer, whereas the G35 numeric data type uses 2 registers as an unsigned 32-bit integer. The G2 data type therefore provides a maximum setting range of \(2^{16} \times S_{\text{inc}} \). Similarly the G35 data type provides a maximum setting range of \(2^{32} \times S_{\text{inc}} \).
4.16 Date and time format (data type G12)

The date-time data type G12 allows real date and time information to be conveyed down to a resolution of 1ms. The data-type is used for record time-stamps and for time synchronization (see section 4.13.2.1).

The structure of the data type is shown in Table 13 and is compliant with the IEC 60870-5-4 “Binary Time 2a” format.

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit position</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>m7 m6 m5 m4 m3 m2 m1 m0</td>
</tr>
<tr>
<td>2</td>
<td>m15 m14 m13 m12 m11 m10 m9 m8</td>
</tr>
<tr>
<td>3</td>
<td>IV R I5 I4 I3 I2 I1 I0</td>
</tr>
<tr>
<td>4</td>
<td>SU R R H4 H3 H2 H1 H0</td>
</tr>
<tr>
<td>5</td>
<td>W2 W1 W0 D4 D3 D2 D1 D0</td>
</tr>
<tr>
<td>6</td>
<td>R R R R M3 M2 M1 M0</td>
</tr>
<tr>
<td>7</td>
<td>R Y6 Y5 Y4 Y3 Y2 Y1 Y0</td>
</tr>
</tbody>
</table>

Table 13: G12 date & time data type structure

Where:

m = 0…59,999ms
I = 0…59 minutes
H = 0…23 Hours
W = 1…7 Day of week; Monday to Sunday, 0 for not calculated
D = 1…31 Day of Month
M = 1…12 Month of year; January to December
Y = 0…99 Years (year of century)
R = Reserved bit = 0
SU = Summertime: 0=standard time, 1=summer time
IV = Invalid value: 0=valid, 1=invalid
range = 0 ms…99 years

The seven bytes of the structure are packed into four 16-bit registers. Two packing formats are provided: standard and reverse. The prevailing format is selected by the G238 setting in the “Date and Time” menu column or by register 4x306.11

The standard packing format is the default and complies with the IEC 60870-5-4 requirement that byte 1 is transmitted first, followed by byte 2 through to byte 7, followed by a null (zero) byte to make eight bytes in total. Since register data is usually transmitted in big-endian format (high order byte followed by low order byte), byte 1 is in the high-order byte position followed by byte 2 in the low-order position for the first register. The last register contains just byte 7 in the high order position and the low order byte has a value of zero.

The reverse packing format is the exact byte transmission order reverse of the standard format. That is, the null (zero) byte is sent as the high-order byte of the first register and byte 7 as the register’s low-order byte. The second register’s high-order byte contains byte 6 and byte 5 in its low order byte.

Both packing formats are fully documented in the Relay Menu Database in G12 data type.

The principal application of the reverse format is for date-time packet format consistency when a mixture of MiCOM Px40 series products are being used. This is especially true

11 This menu cell does not exist in P240 software revisions prior to C1.0 (40). Versions prior to this use just the standard time format.
when there is a requirement for broadcast time synchronization with a mixture of such MiCOM products.

The data type provides only the year of century value; the century must be deduced. Simplistically the century could be imposed as 20 for applications not dealing with dates stored in this format from the previous (20th) century. Alternatively, the century can be calculated as the one that produces the nearest time value to the current date. For example: 30-12-99 is 30-12-1999 when received in 1999 & 2000, but is 30-12-2099 when received in 2050. This technique allows 2 digit years to be accurately converted to 4 digits in a ±50 year window around the current datum.

The invalid bit has two applications:
1. It can indicate that the date-time information is considered inaccurate, but is the best information available.
2. Date-time information is not available.

The summertime bit is used to indicate that summertime (day light saving) is being used and, more importantly, to resolve the alias and time discontinuity which occurs when summertime starts and ends. This is important for the correct time correlation of time stamped records.

Note: The value of the summertime bit does not affect the time displayed by the product).

The day of the week field is optional and if not calculated is set to zero.

This data type (and therefore the product) does not cater for time zones so the end user must determine the time zone used by the product. UTC (universal coordinated time) is commonly used and avoids the complications of daylight saving time-stamp.

4.17 Power and energy measurement data formats (G29 & G125)
The power and energy measurements are available in data format G29 integer format (software version A3.1c and earlier) and the G125 IEEE754 floating point format (software A3.1d and later). The G125 format is preferred over the older G29 format.

4.17.1 Data type G29
Data type G29 consists of three registers. The first register is the per-unit power or energy measurement and is of type G28, which is a signed 16-bit quantity. The second and third registers contain a multiplier to convert the per unit value to a real value.

The multiplier is of type G27, which is an unsigned 32-bit quantity. Therefore, the overall value conveyed by the G29 data type must be calculated as G29=G28×G27.

The product calculates the G28 per unit power or energy value as G28=((measured secondary quantity) / (CT secondary) × (110 V / (VT secondary)). Since data type G28 is a signed 16-bit integer, its dynamic range is constrained to ±32768. This limitation should be borne in mind for the energy measurements, as the G29 value saturates a long time before the equivalent G125 does.

The associated G27 multiplier is calculated as G27=(CT primary) × (VT primary / 110 V) when primary value measurements are selected, and as G27=(CT secondary) × (VT secondary / 110 V) when secondary value measurements are selected.

Note: The G29 values must be read in whole multiples of three registers. It is not possible to read the G28 and G27 parts with separate read commands.
Example:

For A-Phase Power (Watts) (registers 3x00300 - 3x00302) for a 110 V nominal, In = 1 A, VT ratio = 110 V:110 V and CT ratio = 1 A:1 A.

Applying A-phase 1A @ 63.51V

\[
\text{A-phase Watts} = \frac{(63.51 \times 1)}{1} \times \frac{110}{110} = 63.51 \text{ Watts}
\]

The G28 part of the value is the truncated per unit quantity, which is equal to 64 (40h).

The multiplier is derived from the VT and CT ratios set in the product, with the equation \(((\text{CT Primary}) \times (\text{VT Primary}) / 110 \text{ V}))\). Therefore, the G27 part of the value equals 1 and the overall value of the G29 register set is \(64 \times 1 = 64 \text{ W}\).

The registers would contain:

- 3x00300 - 0040h
- 3x00301 - 0000h
- 3x00302 - 0001h

Using the previous example with a VT ratio = 110,000 V:110 V and CT ratio = 10,000 A:1 A the G27 multiplier would be \(10,000 \times 110,000 / 110 = 10,000,000\). The overall value of the G29 register set is \(64 \times 10,000,000 = 640 \text{ MW}\).

Note: There is an actual error of 49 MW in this calculation due to loss of resolution.

The registers would contain:

- 3x00300 - 0040h
- 3x00301 - 0098h
- 3x00302 - 9680h

4.17.2 Data type G125

Data type G125 is a short float IEEE754 floating point format, which occupies 32-bits in two consecutive registers. The most significant 16-bits of the format are in the first (low order) register and the least significant 16-bits in the second register.

The value of the G125 measurement is as accurate as the product’s ability to resolve the measurement after it has applied the secondary or primary scaling factors as required. It does not suffer from the truncation errors or dynamic range limitations associated with the G29 data format.
5 IEC 60870-5-103 INTERFACE

The IEC 60870-5-103 interface is a master/slave interface with the relay as the slave device. The relay conforms to compatibility level 2; compatibility level 3 is not supported.

The following IEC 60870-5-103 facilities are supported by this interface:

- Initialization (Reset)
- Time Synchronization
- Event Record Extraction
- General Interrogation
- Cyclic Measurements
- General Commands
- Disturbance Record Extraction
- Private Codes

5.1 Physical connection and link layer

Two connection options are available for IEC 60870-5-103, either the rear EIA(RS)485 port or an optional rear fiber optic port. If the fiber optic port is fitted, the active port can be selected using the front panel menu or the front Courier port. However the selection is only effective following the next relay power up.

For either of the two modes of connection it is possible to select both the relay address and baud rate using the front panel menu/front Courier. Following a change to either of these two settings a reset command is required to re-establish communications, see reset command description below.

5.2 Initialization

Whenever the relay has been powered up, or if the communication parameters have been changed a reset command is required to initialize the communications. The relay responds to either of the two reset commands (Reset CU or Reset FCB), the difference being that the Reset CU clears any unsent messages in the relays transmit buffer.

The relay responds to the reset command with an identification message ASDU 5, the Cause of Transmission COT of this response is either Reset CU or Reset FCB depending on the nature of the reset command. The content of ASDU 5 is described in the IEC 60870-5-103 section of the Relay Menu Database.

In addition to ASDU 5 identification message, if the relay has been powered up it also produces a power-up event.

5.3 Time synchronization

The relay time and date can be set using the time synchronization feature of the IEC 60870-5-103 protocol. The relay corrects for the transmission delay as specified in IEC 60870-5-103. If the time synchronization message is sent as a send/confirm message then the relay responds with a confirm. Whether the time-synchronization message is sent as a send/confirm or a broadcast (send/no reply) message, a time synchronization Class 1 event is generated/produced.

If the relay clock is synchronized using the IRIG-B input, it is not possible to set the relay time using the IEC 60870-5-103 interface. If the time is set using the interface, the relay creates an event with the current date and time from the internal clock, which is synchronized to IRIG-B.

5.4 Spontaneous events

Events are categorized using the following information:

- Function Type
- Information Number

The IEC 60870-5-103 profile contains a complete listing of all events produced by the relay.
5.5 General interrogation

The GI request can be used to read the status of the relay, the function numbers, and information numbers that are returned during the GI cycle.

5.6 Cyclic measurements

The relay produces measured values using ASDU 9 on a cyclical basis; this can be read from the relay using a Class 2 poll (note ADSU 3 is not used). The rate at which the relay produces new measured values can be controlled using the Measurement Period setting. This setting can be edited from the front panel menu/front Courier port and is active immediately following a change.

Note: The measurands transmitted by the relay are sent as a proportion of 2.4 times the rated value of the analog value.

5.7 Commands

A list of the supported commands are contained in the Relay Menu Database, which is a standalone document available on request. The relay responds to other commands with an ASDU 1, with a Cause of Transmission (COT) indicating 'negative acknowledgement'.

5.8 Test mode

Using either the front panel menu or the front Courier port, it is possible to disable the relay output contacts to allow secondary injection testing to be performed. This is interpreted as 'test mode' by the IEC 60870-5-103 standard. An event is produced to indicate both entry to and exit from test mode. Spontaneous events and cyclic measured data transmitted while the relay is in test mode has a COT of 'test mode'.

5.9 Disturbance records

The disturbance records are stored in uncompressed format and can be extracted using the standard mechanisms described in IEC 60870-5-103.

Note: IEC 60870-5-103 only supports up to 8 records.

5.10 Blocking of monitor direction

The relay supports a facility to block messages in the Monitor direction and also in the Command direction. Messages can be blocked in the Monitor and Command directions using the menu commands, Communications - CS103 Blocking - Disabled/Monitor Blocking/Command Blocking or DDB signals Monitor Blocked and Command Blocked.
IEC 61850 ETHERNET INTERFACE

6.1 Introduction
IEC 61850 is the international standard for Ethernet-based communication in substations. It enables integration of all protection, control, measurement and monitoring functions within a substation, and additionally provides the means for interlocking and inter-tripping. It combines the convenience of Ethernet with the security which is essential in substations today.

The MiCOM protection relays can integrate with the PACIS substation control systems, to complete General Electric Automation's offer of a full IEC 61850 solution for the substation. The majority of MiCOM Px4x relay types can be supplied with Ethernet, in addition to traditional serial protocols. Relays which have already been delivered with UCA2.0 on Ethernet can be easily upgraded to IEC 61850.

6.2 What is IEC 61850?
IEC 61850 is an international standard, comprising 14 parts, which defines a communication architecture for substations.

- The standard defines and offers much more than just a protocol. It provides:
 - Standardized models for IEDs and other equipment within the substation
 - Standardized communication services (the methods used to access and exchange data)
 - Standardized formats for configuration files
 - Peer-to-peer (such as relay to relay) communication

The standard includes mapping of data onto Ethernet. Using Ethernet in the substation offers many advantages, most significantly including:

- High-speed data rates (currently 100 Mbits/s, rather than 10's of kbits/s or less used by most serial protocols)
- Multiple masters (called “clients”)
- Ethernet is an open standard in every-day use

General Electric has been involved in the Working Groups which formed the standard, building on experience gained with UCA2.0, the predecessor of IEC 61850.

6.2.1 Interoperability
A major benefit of IEC 61850 is interoperability. IEC 61850 standardizes the data model of substation IEDs. This responds to the utilities’ desire of having easier integration for different vendors’ products, i.e. interoperability. It means that data is accessed in the same manner in different IEDs from either the same or different IED vendors, even though, for example, the protection algorithms of different vendors’ relay types remain different.

When a device is described as IEC 61850-compliant, this does not mean that it is interchangeable, but does mean that it is interoperable. You cannot simply replace one product with another, however the terminology is pre-defined and anyone with prior knowledge of IEC 61850 should be able very quickly integrate a new device without the need for mapping of all of the new data. IEC 61850 brings improved substation communications and interoperability, at a lower cost to the end user.

6.2.2 The data model
To ease understanding, the data model of any IEC 61850 IED can be viewed as a hierarchy of information. The categories and naming of this information is standardized in the IEC 61850 specification.
The levels of this hierarchy can be described as follows:

- **Physical Device** – Identifies the actual IED within a system. Typically the device’s name or IP address can be used (for example `Feeder_1` or `10.0.0.2`).

- **Logical Device** – Identifies groups of related Logical Nodes within the Physical Device. For the MiCOM relays, 5 Logical Devices exist: Control, Measurements, Protection, Records, System.

- **Wrapper/Logical Node Instance** – Identifies the major functional areas within the IEC 61850 data model. Either 3 or 6 characters are used as a prefix to define the functional group (wrapper) while the actual functionality is identified by a 4 character Logical Node name suffixed by an instance number. For example, XCBR1 (circuit breaker), MMXU1 (measurements), FrqPTOF2 (overfrequency protection, stage 2).

- **Data Object** – This next layer is used to identify the type of data you will be presented with. For example, Pos (position) of Logical Node type XCBR.

- **Data Attribute** – This is the actual data (measurement value, status, description, etc.). For example, stVal (status value) indicating actual position of circuit breaker for Data Object type Pos of Logical Node type XCBR.
6.3 **IEC 61850 in MiCOM relays**

IEC 61850 is implemented in MiCOM relays by use of a separate Ethernet card. This card manages the majority of the IEC 61850 implementation and data transfer to avoid any impact on the performance of the protection.

To communicate with an IEC 61850 IED on Ethernet, it is necessary only to know its IP address. This can then be configured into either:

- An IEC 61850 client (or master), for example a PACiS computer (MiCOM C264) or HMI,
- An MMS browser, with which the full data model can be retrieved from the IED, without any prior knowledge

6.3.1 Capability

The IEC 61850 interface provides the following capabilities:

1. **Read access to measurements**

 All measurands are presented using the measurement Logical Nodes, in the ‘Measurements’ Logical Device. Reported measurement values are refreshed by the relay once per second, in line with the relay user interface.

2. **Generation of unbuffered reports on change of status/measurement**

 Unbuffered reports, when enabled, report any change of state in statuses and/or measurements (according to deadband settings).

3. **Support for time synchronization over an Ethernet link**

 Time synchronization is supported using SNTP (Simple Network Time Protocol); this protocol is used to synchronize the internal real time clock of the relays.

4. **GOOSE peer-to-peer communication**

 GOOSE communications of statuses are included as part of the IEC 61850 implementation. Please see section 6.6 for more details.

5. **Disturbance record extraction**

 Extraction of disturbance records, by file transfer, is supported by the MiCOM relays. The record is extracted as an ASCII format COMTRADE file.

6. **Controls**

 The following control services are available:

 - Direct Control
 - Direct Control with enhanced security
 - Select Before Operate (SBO) with enhanced security

 Controls shall be applied to open and close circuit breakers via XCBR.Pos and DDB signals ‘Control Trip’ and ‘Control Close’.

 System/LLN0. LLN0.LEDRs shall be used to reset any trip LED indications.

7. **Reports**

 Reports only include data objects that have changed and not the complete dataset. The exceptions to this are a General Interrogation request and integrity reports.

 - Buffered Reports

 Eight Buffered Report Control Blocks, (BRCB), are provided in SYSTEM/LLN0 in Logical Device ‘System’

 Buffered reports are configurable to use any configurable dataset located in the same Logical device as the BRCB (i.e. SYSTEM/LLN0)

 - Unbuffered Reports

 Sixteen Unbuffered Report Control Blocks, (URCB) are provided in SYSTEM/LLN0 in Logical Device ‘System’
Unbuffered reports are configurable to use any configurable dataset located in the same Logical device as the URCB (i.e. SYSTEM/LLN0).

8. Configurable Data Sets
 It is possible to create and configure datasets in any Logical Node using the IED Configurator. The maximum number of datasets is specified in an IEDs ICD file. An IED is capable of handling 100 datasets.

9. Published GOOSE message
 Eight GOCBs are provided in SYSTEM/LLN0.

10. Uniqueness of control
 Uniqueness of control mechanism is implemented in the P24x to have consistency with the PACiS mechanism. This requires the relay to subscribe to the OrdRun signal from all devices in the system and be able to publish such a signal in a GOOSE message.

11. Select Active Setting Group
 Functional protection groups can be enabled or disabled using private mod/beh attributes in Protection/LLN0.OcpMod object. Setting groups are selectable using the Setting Group Control Block class, (SGCB). The Active Setting Group can be selected using the System/LLN0.SP.SGCB.ActSG data attribute in Logical Device ‘System’.

12. Quality for GOOSE
 It is possible to process the quality attributes of any Data Object in an incoming GOOSE message. Devices that do not support IEC 61850 Quality flags shall send quality attributes as all zeros.

13. Address List
 An Address List document (to be titled ADL) is produced for each IED which shows the mapping between the IEC 61850 data model and the internal data model of the IED. It includes a mapping in the reverse direction, which may be more useful. This document is separate from the PICS/MICS document.

14. Originator of Control
 Originator of control mechanism is implemented for operate response message and in the data model on the ST of the related control object, consistent with the PACiS mechanism.

 Setting changes (such as protection settings) are not supported in the current IEC 61850 implementation. To keep this process as simple as possible, such setting changes are done using MiCOM S1 Studio Settings & Records program. This can be done as previously using the front port serial connection of the relay, or now optionally over the Ethernet link if preferred (this is known as “tunneling”).

6.3.2 IEC 61850 configuration

One of the main objectives of IEC 61850 is to allow IEDs to be directly configured from a configuration file generated at system configuration time. At the system configuration level, the capabilities of the IED are determined from an IED capability description file (ICD) which is provided with the product. Using a collection of these ICD files from varying products, the entire protection of a substation can be designed, configured and tested (using simulation tools) before the product is even installed into the substation.

To aid in this process, the MiCOM S1 Studio Support Software provides an IED Configurator tool which allows the pre-configured IEC 61850 configuration file (an SCD file or CID file) to be imported and transferred to the IED. Alongside this, the requirements of manual configuration are satisfied by allowing the manual creation of configuration files for MiCOM relays based on their original IED capability description (ICD file).

Other features include the extraction of configuration data for viewing and editing, and a sophisticated error checking sequence which ensures that the configuration data is valid for sending to the IED and that the IED functions in the context of the substation.

To aid the user, some configuration data is available in the **IED CONFIGURATOR** column of the relay user interface, allowing read-only access to basic configuration data.
6.3.2.1 Configuration banks

To promote version management and minimize down-time during system upgrades and maintenance, the MiCOM relays have incorporated a mechanism consisting of multiple configuration banks. These configuration banks are categorized as:

- Active Configuration Bank
- Inactive Configuration Bank

Any new configuration sent to the relay is automatically stored into the inactive configuration bank, therefore not immediately affecting the current configuration. Both active and inactive configuration banks can be extracted at anytime.

When the upgrade or maintenance stage is complete, the IED Configurator tool can be used to transmit a command (to a single IED) authorizing the activation of the new configuration contained in the inactive configuration bank, by switching the active and inactive configuration banks. This technique ensures that the system down-time is minimized to the start-up time of the new configuration. The capability to switch the configuration banks is also available using the IED CONFIGURATOR column.

For version management, data is available in the IED CONFIGURATOR column in the relay user interface, displaying the SCL Name and Revision attributes of both configuration banks.

6.3.2.2 Network connectivity

Note: This section presumes a prior knowledge of IP addressing and related topics. Further details on this topic may be found on the Internet (search for IP Configuration) and in numerous relevant books.

Configuration of the relay IP parameters (IP Address, Subnet Mask, Gateway) and SNTP time synchronization parameters (SNTP Server 1, SNTP Server 2) is performed by the IED Configurator tool, so if these parameters are not available using an SCL file, they must be configured manually.

If the assigned IP address is duplicated elsewhere on the same network, the remote communications operates in an indeterminate way. However, the relay will check for a conflict on every IP configuration change and at power up. An alarm is raised if an IP conflict is detected.

The relay can be configured to accept data from networks other than the local network by using the ‘Gateway’ setting.

6.4 The data model of MiCOM relays

The data model naming adopted in the Px40 relays has been standardized for consistency. Therefore, the Logical Nodes are allocated to one of the five Logical Devices, as appropriate, and the wrapper names used to instantiate Logical Nodes are consistent between Px40 relays.

The data model is described in the Model Implementation Conformance Statement (MICS) document, which is available separately. The MICS document provides lists of Logical Device definitions, Logical Node definitions, Common Data Class and Attribute definitions, Enumeration definitions, and MMS data type conversions. It generally follows the format used in Parts 7-3 and 7-4 of the IEC 61850 standard.

6.5 The communication services of MiCOM relays

The IEC 61850 communication services which are implemented in the Px40 relays are described in the Protocol Implementation Conformance Statement (PICS) document, which is available separately. The PICS document provides the Abstract Communication Service Interface (ACSI) conformance statements as defined in Annex A of Part 7-2 of the IEC 61850 standard.
6.6 Peer-to-peer (GSE) communications

The implementation of IEC 61850 Generic Substation Event (GSE) sets the way for cheaper and faster inter-relay communications. The generic substation event model provides the possibility for a fast and reliable system-wide distribution of input and output data values. The generic substation event model is based on the concept of an autonomous decentralization, providing an efficient method allowing the simultaneous delivery of the same generic substation event information to more than one physical device through the use of multicast services.

The use of multicast messaging means that IEC 61850 GOOSE uses a publisher-subscriber system to transfer information around the network*. When a device detects a change in one of its monitored status points it publishes (i.e. sends) a new message. Any device that is interested in the information subscribes (i.e. listens) to the data it contains.

Note: * Multicast messages cannot be routed across networks without specialized equipment.

Each new message is re-transmitted at user-configurable intervals until the maximum interval is reached, to overcome possible corruption due to interference, and collisions. In practice, the parameters which control the message transmission cannot be calculated. Time must be allocated to the testing of GSE schemes before or during commissioning, in just the same way a hardwired scheme must be tested.

6.6.1 Scope

A maximum of 64 virtual inputs are available within the PSL which can be mapped directly to a published dataset in a GOOSE message (Configurable dataset is supported).

Each GOOSE signal contained in a subscribed GOOSE message can be mapped to any of the 64 virtual inputs within the PSL. The virtual inputs allow the mapping to internal logic functions for protection control, directly to output contacts or LEDs for monitoring.

The MiCOM relay can subscribe to all GOOSE messages but only the following data types can be decoded and mapped to a virtual input:

- BOOLEAN
- BSTR2
- INT16
- INT32
- INT8
- UINT16
- UINT32
- UINT8

6.6.2 IEC 61850 GOOSE configuration

All GOOSE configuration is performed using the IED Configurator tool available in the MiCOM S1 Studio Support Software.

All GOOSE publishing configuration can be found under the ‘GOOSE Publishing’ tab in the configuration editor window. All GOOSE subscription configuration can be found under the ‘GOOSE SUBSCRIBE’ tab in the configuration editor window. Care should be taken to ensure that the configuration is correct, to ensure efficient GOOSE scheme operation.

Settings to enable GOOSE signaling and to apply Test Mode are available via the relay user interface.

6.7 Ethernet functionality

Settings relating to a failed Ethernet link are available in the COMMUNICATIONS column of the relay user interface.
6.7.1 Ethernet disconnection
IEC 61850 ‘Associations’ are unique and made to the relay between the client (master) and server (IEC 61850 device). In the event that the Ethernet is disconnected, such associations are lost, and need to be re-established by the client. The TCP_KEEPALIVE function is implemented in the relay to monitor each association, and terminate any which are no longer active.

6.7.2 Redundant Ethernet communication ports
For information regarding the Redundant Ethernet communication ports, refer to the standalone document Px4x/EN REB/B11.

6.7.3 Loss of power
The relay allows the re-establishment of associations by the client without a negative impact on the relay’s operation after having its power removed. As the relay acts as a server in this process, the client must request the association. Uncommitted settings are cancelled when power is lost, and reports requested by connected clients are reset and must be re-enabled by the client when it next creates the new association to the relay.
7 SECOND REAR COMMUNICATIONS PORT (COURIER)

Relays with Courier, MODBUS or IEC 60870-5-103 protocol on the first rear communications port have the option of a second rear port, running the Courier language. The second port is designed typically for dial-up modem access by protection engineers/operators, when the main port is reserved for SCADA communication traffic. Communication is via one of three physical links: K-Bus, EIA(RS)485 or EIA(RS)232. The port supports full local or remote protection and control access by MiCOM S1 Studio software.

When changing the port configuration between K-Bus, EIA(RS)485 and EIA(RS)232 it is necessary to reboot the relay to update the hardware configuration of the second rear port.

There is also provision for the EIA(RS)485 and EIA(RS)232 protocols to be configured to operate with a modem, using an IEC 60870 10 bit frame.

<table>
<thead>
<tr>
<th>Port configuration</th>
<th>Valid communication protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-Bus</td>
<td>K-Bus</td>
</tr>
<tr>
<td>EIA(RS)232</td>
<td>IEC 60870 FT1.2, 11-bit frame</td>
</tr>
<tr>
<td></td>
<td>IEC 60870, 10-bit frame</td>
</tr>
<tr>
<td>EIA(RS)485</td>
<td>IEC 60870 FT1.2, 11-bit frame</td>
</tr>
<tr>
<td></td>
<td>IEC 60870, 10-bit frame</td>
</tr>
</tbody>
</table>

Table 14: Available physical links and their corresponding valid protocols

If both rear communications ports are connected to the same bus, care should be taken to ensure their address settings are not the same, to avoid message conflicts.

7.1 Courier protocol

The following documentation should be referred to for a detailed description of the Courier protocol, command set and link description.

- R6509 K-Bus Interface Guide
- R6510 IEC 60870 Interface Guide
- R6511 Courier Protocol
- R6512 Courier User Guide

The second rear communications port is functionally the same as detailed in section 2.2 for a Courier rear communications port, with the following exceptions:

7.2 Event extraction

Automatic event extraction is not supported when the first rear port protocol is Courier, MODBUS or CS103.

7.3 Disturbance record extraction

Automatic disturbance record extraction is not supported when the first rear port protocol is Courier, MODBUS or CS103.

7.4 Connection to the second rear port

The second rear Courier port connects via the 9-way female D-type connector (SK4) in the middle of the card end plate (in between IRIG-B connector and lower D-type). The connection is compliant to EIA(RS)574.

For IEC 60870-5-2 over EIA(RS)232.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No Connection</td>
</tr>
<tr>
<td>2</td>
<td>RxD</td>
</tr>
<tr>
<td>3</td>
<td>TxD</td>
</tr>
<tr>
<td>4</td>
<td>DTR#</td>
</tr>
</tbody>
</table>
Pin Connection

<table>
<thead>
<tr>
<th>Pin</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>No Connection</td>
</tr>
<tr>
<td>7</td>
<td>RTS#</td>
</tr>
<tr>
<td>8</td>
<td>CTS#</td>
</tr>
<tr>
<td>9</td>
<td>No Connection</td>
</tr>
</tbody>
</table>

Table 15: EIA (RS)232 pin designation

For K-bus or IEC 60870-5-2 over EIA(RS)485

<table>
<thead>
<tr>
<th>Pin*</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>EIA(RS)485 - 1 (+ ve)</td>
</tr>
<tr>
<td>7</td>
<td>EIA(RS)485 - 2 (- ve)</td>
</tr>
</tbody>
</table>

Table 16: EIA (RS)485 pin designation

* - All other pins unconnected.
- These pins are control lines for use with a modem.

Note 1: Connector pins 4 and 7 are used by both the EIA(RS)232 and EIA(RS)485 physical layers, but for different purposes. Therefore, the cables should be removed during configuration switches.

Note 2: For the EIA(RS)485 protocol an EIA(RS)485 to EIA(RS)232 converter is required to connect a modem or PC running MiCOM S1 Studio, to the relay. A CK222 is recommended.

Note 3: EIA(RS)485 is polarity sensitive, with pin 4 positive (+) and pin 7 negative (-).

Note 4: The K-Bus protocol can be connected to a PC via a KITZ101 or 102.
8 SK5 PORT CONNECTION

The lower 9-way D-type connector (SK5) is currently unsupported. Do not connect to this port.
SYMBOLS AND GLOSSARY
Symbols and Glossary

MiCOM P40 Agile P241, P242, P243
TABLES

Table 1: List of principle symbols 10
Table 2: Logic timers 12
Table 3: Logic gates 13
<table>
<thead>
<tr>
<th>Symbols</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| < | Less than:
Used to indicate an "under" threshold, such as undercurrent (current dropout). |
| < 1 | First stage (under) |
| < 2 | Second stage (under) |
| > | Greater than:
Used to indicate an "over" threshold, such as overcurrent (current overload). |
| > 1 | First stage (over) |
| > 2 | Second stage (under) |
| & | Logical "AND":
Used in logic diagrams to show an AND-gate function. |
| 1 | Logical "OR":
Used in logic diagrams to show an OR-gate function. |
| o | A small circle on the input or output of a logic gate:
Indicates a NOT (invert) function. |
| 52a | A circuit breaker closed auxiliary contact:
The contact is in the same state as the breaker primary contacts. |
| 52b | A circuit breaker open auxiliary contact:
The contact is in the opposite state to the breaker primary contacts. |
| Σ | “Sigma”:
Used to indicate a summation, such as cumulative current interrupted. |
| τ | “Tau”:
Used to indicate a time constant, often associated with thermal characteristics. |
| Θn | Nth thermal state of the machine |
| A | Initial thermal state of the machine in percentage of full thermal capacity |
| Antibkspin | Anti Backspin |
| ADC | Analog to Digital Converter |
| BU | Backup:
Typically a back-up protection element. |
| C/O | A changeover contact having normally closed and normally open connections:
Often called a "form C" contact. |
| CB | Circuit breaker. |
| CB Aux. | Circuit breaker auxiliary contacts:
Indication of the breaker open/closed status. |
| CBF | Circuit breaker failure protection. |
| Cct | Circuit |
| Char Angle | Characteristic angle |
| CLI0 | Current loop input /Output:
0-1 mA/0-10 mA/0-20 mA/4-20 mA transducer inputs and outputs
CLI = current loop input - 0-1 mA/0-10 mA/0-20 mA/4-20 mA transducer input
CLO = current loop output - 0-1 mA/0-10 mA/0-20 mA/4-20 mA transducer output |
| CT | Current transformer. |
| CTRL. | Abbreviation of “Control”:
As used for the Control Inputs function. |
| CTS | Current transformer supervision:
To detect CT input failure. |
| DDB | Digital data bus within the programmable scheme logic:
A logic point that has a zero or 1 status. DDB signals are mapped in logic to customize the relay’s operation. |
Symbols and Glossary

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEF</td>
<td>Directional earth fault protection: A directionized earth (ground) fault aided scheme.</td>
</tr>
<tr>
<td>Dly</td>
<td>Time delay.</td>
</tr>
<tr>
<td>DT</td>
<td>Abbreviation of “Definite Time”: An element which always responds with the same constant time delay on operation.</td>
</tr>
<tr>
<td>E/F</td>
<td>Earth fault: Directly equivalent to ground fault.</td>
</tr>
<tr>
<td>EMC</td>
<td>Electro magnetic compatibility</td>
</tr>
<tr>
<td>FFail</td>
<td>A field failure (loss of excitation) element: Could be labeled 40 in ANSI terminology.</td>
</tr>
<tr>
<td>FLC</td>
<td>Full load current: The nominal rated current for the circuit.</td>
</tr>
<tr>
<td>F<</td>
<td>An underfrequency element: Could be labeled 81U in ANSI terminology.</td>
</tr>
<tr>
<td>Fwd.</td>
<td>Indicates an element responding to a flow in the “Forward” direction.</td>
</tr>
<tr>
<td>F<</td>
<td>An undercurrent element: Responds to current dropout.</td>
</tr>
<tr>
<td>F></td>
<td>A phase over current element: Could be labeled 50/51 in ANSI terminology.</td>
</tr>
<tr>
<td>IED</td>
<td>Intelligent Electronic Device</td>
</tr>
<tr>
<td>I0</td>
<td>Zero sequence current: Equals one third of the measured neutral/residual current.</td>
</tr>
<tr>
<td>I1</td>
<td>Positive sequence current.</td>
</tr>
<tr>
<td>I2</td>
<td>Negative sequence current.</td>
</tr>
<tr>
<td>I1</td>
<td>Positive sequence current.</td>
</tr>
<tr>
<td>I2</td>
<td>Negative sequence current.</td>
</tr>
<tr>
<td>Ieq</td>
<td>Equivalent thermal current</td>
</tr>
<tr>
<td>Ith</td>
<td>Thermal current threshold</td>
</tr>
<tr>
<td>I2></td>
<td>Negative sequence over current element Could be labeled 46OC in ANSI terminology.</td>
</tr>
<tr>
<td>I2pol</td>
<td>Negative sequence polarizing current.</td>
</tr>
<tr>
<td>IA</td>
<td>Phase A current: Might be phase L1, red phase.. or other, in customer terminology.</td>
</tr>
<tr>
<td>IB</td>
<td>Phase B current: Might be phase L2, yellow phase.. or other, in customer terminology.</td>
</tr>
<tr>
<td>IC</td>
<td>Phase C current: Might be phase L3, blue phase.. or other, in customer terminology.</td>
</tr>
<tr>
<td>Symbols</td>
<td>Explanation</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>ID</td>
<td>Abbreviation of “Identifier”: Often a label used to track a software version installed.</td>
</tr>
<tr>
<td>IDMT</td>
<td>Inverse definite minimum time: A characteristic whose trip time depends on the measured input (e.g. current) according to an inverse-time curve.</td>
</tr>
<tr>
<td>In</td>
<td>The rated nominal current of the relay: Software selectable as 1 amp or 5 amp to match the line CT input.</td>
</tr>
<tr>
<td>IN</td>
<td>Neutral current, or residual current: This results from an internal summation of the three measured phase currents.</td>
</tr>
<tr>
<td>IN></td>
<td>A neutral (residual) over current element: Detects earth (ground) faults. Could be labeled 50N/51N in ANSI terminology.</td>
</tr>
<tr>
<td>Inh</td>
<td>An inhibit signal.</td>
</tr>
<tr>
<td>ISEF></td>
<td>A sensitive Earth Fault over current element: Detects earth (ground) faults. Could be labeled 50N/51N in ANSI terminology.</td>
</tr>
<tr>
<td>Inst.</td>
<td>An element with “instantaneous” operation: i.e. having no deliberate time delay.</td>
</tr>
<tr>
<td>I/O</td>
<td>Abbreviation of “Inputs and Outputs”: Used in connection with the number of opto coupled inputs and output contacts within the relay.</td>
</tr>
<tr>
<td>I/P</td>
<td>Abbreviation of “Input”.</td>
</tr>
<tr>
<td>K</td>
<td>Thermal coefficient</td>
</tr>
<tr>
<td>LCD</td>
<td>Liquid crystal display: The front-panel text display on the relay.</td>
</tr>
<tr>
<td>LD</td>
<td>Abbreviation of “Level Detector”: An element responding to a current or voltage below its set threshold.</td>
</tr>
<tr>
<td>LED</td>
<td>Light emitting diode: Red or green indicator on the relay front-panel.</td>
</tr>
<tr>
<td>MCB</td>
<td>A “miniature circuit breaker”: Used instead of a fuse to protect VT secondary circuits.</td>
</tr>
<tr>
<td>N</td>
<td>Indication of “Neutral” involvement in a fault: i.e. a ground (earth) fault.</td>
</tr>
<tr>
<td>Nb</td>
<td>Number</td>
</tr>
<tr>
<td>N/A</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>N/C</td>
<td>A normally closed or “break” contact: Often called a “form B” contact.</td>
</tr>
<tr>
<td>NLR</td>
<td>Non Linear Resistor (Metrosil)</td>
</tr>
<tr>
<td>N/O</td>
<td>A normally open or “make” contact: Often called a “form A” contact.</td>
</tr>
<tr>
<td>NPS</td>
<td>Negative phase sequence.</td>
</tr>
<tr>
<td>NXT</td>
<td>Abbreviation of “Next”: In connection with hotkey menu navigation.</td>
</tr>
<tr>
<td>NVD</td>
<td>Neutral voltage displacement: Equivalent to residual over voltage protection.</td>
</tr>
<tr>
<td>O/P</td>
<td>Abbreviation of “output”.</td>
</tr>
<tr>
<td>Opto</td>
<td>An opto coupled logic input: Alternative terminology: binary input.</td>
</tr>
<tr>
<td>Symbols</td>
<td>Explanation</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>-P></td>
<td>A reverse power (W) element: Could be labeled 32R in ANSI terminology.</td>
</tr>
<tr>
<td>P></td>
<td>An overpower (W) element: Could be labeled 32O in ANSI terminology.</td>
</tr>
<tr>
<td>P<</td>
<td>A low forward power (W) element: Could be labeled 32L in ANSI terminology.</td>
</tr>
<tr>
<td>P1</td>
<td>Used in IEC terminology to identify the primary CT terminal polarity: Replace by a dot when using ANSI standards.</td>
</tr>
<tr>
<td>P2</td>
<td>Used in IEC terminology to identify the primary CT terminal polarity: The non-dot terminal.</td>
</tr>
<tr>
<td>PCB</td>
<td>Printed Circuit Board.</td>
</tr>
<tr>
<td>Ph</td>
<td>Abbreviation of “Phase”: Used in distance settings to identify settings that relate to phase-phase faults.</td>
</tr>
<tr>
<td>Pol</td>
<td>Abbreviation of “Polarizing”: Typically the polarizing voltage used in making directional decisions.</td>
</tr>
<tr>
<td>PN></td>
<td>A Wattmetric earth fault element: Calculated using residual voltage and current quantities.</td>
</tr>
<tr>
<td>PSL</td>
<td>Programmable scheme logic: The part of the relay’s logic configuration that can be modified by the user, using the graphical editor within MiCOM S1 software.</td>
</tr>
<tr>
<td>Prol</td>
<td>Prolonged</td>
</tr>
<tr>
<td>Pu</td>
<td>Per Unit</td>
</tr>
<tr>
<td>R</td>
<td>Resistance (Ω).</td>
</tr>
<tr>
<td>R Gnd.</td>
<td>A distance zone resistive reach setting: Used for ground (earth) faults.</td>
</tr>
<tr>
<td>RCA</td>
<td>Abbreviation of “Relay Characteristic Angle”: The center of the directional characteristic.</td>
</tr>
<tr>
<td>Rev.</td>
<td>Indicates an element responding to a flow in the “reverse” direction.</td>
</tr>
<tr>
<td>RMS</td>
<td>The equivalent a.c. current: Taking into account the fundamental, plus the equivalent heating effect of any harmonics. Abbreviation of “root mean square”.</td>
</tr>
<tr>
<td>RP</td>
<td>Abbreviation of “Rear Port”: The communication ports on the rear of the relay.</td>
</tr>
<tr>
<td>RTD</td>
<td>Resistance temperature device.</td>
</tr>
<tr>
<td>Rx</td>
<td>Abbreviation of “Receive”: Typically used to indicate a communication receive line/pin.</td>
</tr>
<tr>
<td>Reacc</td>
<td>Reacceleration</td>
</tr>
<tr>
<td>RL</td>
<td>Lead/Wire resistance</td>
</tr>
<tr>
<td>Rst</td>
<td>Stabilizing resistor</td>
</tr>
<tr>
<td>RTU</td>
<td>Remote Terminal Unit</td>
</tr>
<tr>
<td>S1</td>
<td>Used in IEC terminology to identify the secondary CT terminal polarity: Replace by a dot when using ANSI standards.</td>
</tr>
<tr>
<td>S2</td>
<td>Used in IEC terminology to identify the secondary CT terminal polarity: The non-dot terminal. Also used to signify negative sequence apparent power, S2 = V2 x I2.</td>
</tr>
<tr>
<td>Sen</td>
<td>Sensitive</td>
</tr>
<tr>
<td>SEF</td>
<td>Sensitive Earth Fault Protection.</td>
</tr>
<tr>
<td>SCADA</td>
<td>Supervisory Control and Data Acquisition</td>
</tr>
<tr>
<td>Start</td>
<td>Same as Pickup</td>
</tr>
<tr>
<td>Symbols</td>
<td>Explanation</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>t</td>
<td>A time delay.</td>
</tr>
<tr>
<td>T</td>
<td>Ambient temperature in degrees Celsius</td>
</tr>
<tr>
<td>T1</td>
<td>Thermal characteristic time constant during over load</td>
</tr>
<tr>
<td>T2</td>
<td>Thermal characteristic time constant during start up period</td>
</tr>
<tr>
<td>Tr</td>
<td>Thermal characteristic time constant during cooling down period (stopping)</td>
</tr>
<tr>
<td>tau</td>
<td>Operating time</td>
</tr>
<tr>
<td>tn</td>
<td>Elapsed time often used in comparison with a set time</td>
</tr>
<tr>
<td>TCS</td>
<td>Trip circuit supervision.</td>
</tr>
</tbody>
</table>
| TD | The time dial multiplier setting:
Applied to inverse-time curves (ANSI/IEEE). |
| TE | A standard for measuring the width of a relay case:
One inch = 5TE units. |
| Thermal I> | A stator thermal overload element:
Could be labeled 49 in ANSI terminology. |
| TMS | The time multiplier setting applied to inverse-time curves (IEC). |
| Tx | Abbreviation of “Transmit”:
Typically used to indicate a communication transmit line/pin. |
| V | Voltage. |
| V< | An undervoltage element:
Could be labeled 27 in ANSI terminology. |
| V> | An overvoltage element:
Could be labeled 59 in ANSI terminology. |
| V0 | Zero sequence voltage:
Equals one third of the measured neutral/residual voltage. |
| V1 | Positive sequence voltage. |
| V2 | Negative sequence voltage. |
| V2> | A negative phase sequence (NPS) over voltage element:
Could be labeled 47 in ANSI terminology. |
| V2pol | Negative sequence polarizing voltage. |
| VA | Phase A voltage:
Might be phase L1, red phase.. or other, in customer terminology. |
| VB | Phase B voltage:
Might be phase L2, yellow phase.. or other, in customer terminology. |
| VC | Phase C voltage:
Might be phase L3, blue phase.. or other, in customer terminology. |
| Vk | IEC knee point voltage of a current transformer. |
| Vn | The rated nominal voltage of the relay:
To match the line VT input. |
| VN> | A residual (neutral) over voltage element:
Could be labeled 59N in ANSI terminology. |
| Vrem. | Remanent voltage, phase to phase measurement, connected on the Motor side, used in Antibackspin protection. |
| Vres. | Neutral voltage displacement, or residual voltage. |
| Vs | Residual voltage- Voltage output of an open delta VT secondary |
| VT | Voltage setting used for high impedance differential protection |
| VT | Voltage transformer. |
Symbols and Glossary

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vx</td>
<td>An auxiliary supply voltage: Typically the substation battery voltage used to power the relay.</td>
</tr>
<tr>
<td>Z<</td>
<td>An under impedance element: Could be labeled 21 in ANSI terminology.</td>
</tr>
<tr>
<td>Z0</td>
<td>Zero sequence impedance.</td>
</tr>
<tr>
<td>Z1</td>
<td>Positive sequence impedance.</td>
</tr>
<tr>
<td>Z2</td>
<td>Negative sequence impedance.</td>
</tr>
</tbody>
</table>

Table 1: List of principle symbols
<table>
<thead>
<tr>
<th>Logic symbols</th>
<th>Explanation</th>
<th>Time chart</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Delay on pick-up timer, t</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delay on drop-off timer, t</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delay on pick-up/drop-off timer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pulse timer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pulse pick-up falling edge</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pulse pick-up raising edge</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Latch</td>
<td></td>
</tr>
<tr>
<td>Logic symbols</td>
<td>Explanation</td>
<td>Time chart</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Dwell Timer</td>
<td>Dwell timer</td>
<td></td>
</tr>
<tr>
<td>Straight</td>
<td>Straight (non latching): Hold value until input reset signal</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Logic timers
Symbols and Glossary

AND GATE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Truth Table</th>
<th>Symbol</th>
<th>Truth Table</th>
<th>Symbol</th>
<th>Truth Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>A & B</td>
<td>(Y)</td>
<td>A & B</td>
<td>(Y)</td>
<td>A & B</td>
<td>(Y)</td>
</tr>
<tr>
<td>(0 \ 0)</td>
<td>0</td>
<td>(0 \ 0)</td>
<td>0</td>
<td>(0 \ 0)</td>
<td>1</td>
</tr>
<tr>
<td>0 \ 1)</td>
<td>1</td>
<td>0 \ 1)</td>
<td>1</td>
<td>1 \ 0)</td>
<td>1</td>
</tr>
<tr>
<td>1 \ 1)</td>
<td>1</td>
<td>1 \ 1)</td>
<td>1</td>
<td>1 \ 1)</td>
<td>1</td>
</tr>
</tbody>
</table>

OR GATE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Truth Table</th>
<th>Symbol</th>
<th>Truth Table</th>
<th>Symbol</th>
<th>Truth Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 1 Y</td>
<td>()</td>
<td>A 1 Y</td>
<td>()</td>
<td>A 1 Y</td>
<td>()</td>
</tr>
<tr>
<td>(0 \ 0)</td>
<td>0</td>
<td>(0 \ 0)</td>
<td>0</td>
<td>(0 \ 0)</td>
<td>1</td>
</tr>
<tr>
<td>0 \ 1)</td>
<td>0</td>
<td>0 \ 1)</td>
<td>0</td>
<td>1 \ 0)</td>
<td>1</td>
</tr>
<tr>
<td>1 \ 1)</td>
<td>1</td>
<td>1 \ 1)</td>
<td>1</td>
<td>1 \ 1)</td>
<td>1</td>
</tr>
</tbody>
</table>

S – R FLIP-FLOP

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Truth Table</th>
<th>Symbol</th>
<th>Truth Table</th>
<th>Symbol</th>
<th>Truth Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>A S R Q</td>
<td>(Y)</td>
<td>A S R Q</td>
<td>(Y)</td>
<td>A S R Q</td>
<td>(Y)</td>
</tr>
<tr>
<td>(0 \ 0 \ 0 \ 0)</td>
<td>0</td>
<td>(0 \ 0 \ 0 \ 0)</td>
<td>0</td>
<td>(0 \ 0 \ 0 \ 0)</td>
<td>1</td>
</tr>
<tr>
<td>0 \ 1 \ 0 \ 1)</td>
<td>0</td>
<td>0 \ 1 \ 0 \ 1)</td>
<td>0</td>
<td>1 \ 0 \ 1 \ 0)</td>
<td>1</td>
</tr>
<tr>
<td>1 \ 0 \ 1 \ 1)</td>
<td>1</td>
<td>1 \ 0 \ 1 \ 1)</td>
<td>1</td>
<td>1 \ 1 \ 1 \ 1)</td>
<td>1</td>
</tr>
</tbody>
</table>

Warning: To avoid ambiguity, do not use the standard S-R gate unless specifically required.

EXCLUSIVE OR GATE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Truth Table</th>
<th>Symbol</th>
<th>Truth Table</th>
<th>Symbol</th>
<th>Truth Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B X</td>
<td>(Y)</td>
<td>A B X</td>
<td>(Y)</td>
<td>A B X</td>
<td>(Y)</td>
</tr>
<tr>
<td>(0 \ 0)</td>
<td>1</td>
<td>(0 \ 0)</td>
<td>1</td>
<td>(0 \ 0)</td>
<td>1</td>
</tr>
<tr>
<td>0 \ 1)</td>
<td>1</td>
<td>0 \ 1)</td>
<td>1</td>
<td>1 \ 0)</td>
<td>1</td>
</tr>
<tr>
<td>1 \ 1)</td>
<td>0</td>
<td>1 \ 1)</td>
<td>0</td>
<td>1 \ 1)</td>
<td>0</td>
</tr>
</tbody>
</table>

PROGRAMMABLE GATE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Truth Table</th>
<th>Symbol</th>
<th>Truth Table</th>
<th>Symbol</th>
<th>Truth Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B C 2</td>
<td>(Y)</td>
<td>A B C 2</td>
<td>(Y)</td>
<td>A B C 2</td>
<td>(Y)</td>
</tr>
<tr>
<td>(0 \ 0 \ 1 \ 1)</td>
<td>0</td>
<td>(0 \ 0 \ 1 \ 1)</td>
<td>0</td>
<td>(0 \ 0 \ 1 \ 1)</td>
<td>1</td>
</tr>
<tr>
<td>0 \ 1 \ 0 \ 1)</td>
<td>1</td>
<td>0 \ 1 \ 0 \ 1)</td>
<td>1</td>
<td>1 \ 0 \ 1 \ 0)</td>
<td>0</td>
</tr>
<tr>
<td>1 \ 0 \ 1 \ 1)</td>
<td>1</td>
<td>1 \ 0 \ 1 \ 1)</td>
<td>1</td>
<td>1 \ 1 \ 0 \ 0)</td>
<td>0</td>
</tr>
<tr>
<td>1 \ 1 \ 1 \ 1)</td>
<td>1</td>
<td>1 \ 1 \ 1 \ 1)</td>
<td>1</td>
<td>1 \ 1 \ 1 \ 1)</td>
<td>1</td>
</tr>
</tbody>
</table>

NOT GATE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Truth Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Y</td>
<td>()</td>
</tr>
<tr>
<td>(0 \ 1)</td>
<td>1</td>
</tr>
<tr>
<td>(1 \ 0)</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3: Logic gates
INSTALLATION
Installation

MiCOM P40 Agile P241, P242, P243
CONTENTS

1 RECEIPT OF RELAYS 5
2 HANDLING OF ELECTRONIC EQUIPMENT 6
3 STORAGE 7
4 UNPACKING 8
5 RELAY MOUNTING 9
 5.1 Rack mounting 9
 5.2 Panel mounting 10
6 RELAY WIRING 12
 6.1 Medium and heavy duty terminal block connections 12
 6.1.1 Terminal block ingress protection 12
 6.2 EIA(RS)485 port 13
 6.3 Ethernet port for IEC 61850 (if applicable) 13
 6.4 RTD connections (if applicable) 14
 6.5 Current loop input output (CLIO) connections (if applicable) 15
 6.6 IRIG-B connections (if applicable) 15
 6.7 EIA(RS)232 port 15
 6.8 Download/monitor port 15
 6.9 Second EIA(RS)232/485 port 15
 6.9.1 Connection to the second rear port 15
 6.10 Protective conductor (earth) connection 16
7 ANALOGUE INPUTS 18
 7.1 CTs inputs for the phase and earth currents 18
 7.1.1 3 CTs and core balance CT configuration 18
 7.1.2 3CTs configuration 19
 7.1.3 2 CTs and core balance CT configuration 19
 7.2 VT inputs 20
 7.2.1 Three phase VTs configuration 20
 7.2.2 Two phase VTs and residual VT configuration 21
 7.2.3 Two Phase VTs and Anti-Backspin (Vremanent phase-phase) VT configuration 21
8 P24X CASE DIMENSIONS 23
9 P24X EXTERNAL CONNECTION DIAGRAMS 25

FIGURES

Figure 1: Location of battery isolation strip 9
Figure 2: Rack mounting of relays 10
Figure 3: Example—fitted IP2x shields (cabling omitted for clarity) 13
Figure 4: 3 CT and core balance CT configuration 18
Figure 5: 3 CT configuration 19
Figure 6: 2 CTs and core balance CT configuration 19
Figure 7: Three phase VTs configuration 20
Figure 8: Two phase VTs and residual VT configuration 21
Figure 9: Two phase VTs and Anti-Backspin (remanent phase-phase) VT configuration 22
Figure 10: P241 case dimensions (40TE case) 23
Figure 11: P242 case dimensions (60TE case) 24
Figure 12: P243 case dimensions (80TE case) 24

TABLES

Table 1: Blanking plates 10
Table 2: M4 90° crimp ring terminals 12
Table 3: Signals on the Ethernet connector 14
Table 4: Second rear port RS232 connection 16
Table 5: Second rear port RS485 connection 16
RECEIPT OF RELAYS

Protective relays, although generally of robust construction, require careful treatment prior to installation on site. On receipt, examine the relays immediately to ensure there has been no external damage in transit. If the relay has been damaged, make a claim to the transport contractor and notify Areva promptly.

Relays that are supplied unmounted and not intended for immediate installation should be returned to their protective polythene bags and delivery carton. Section 3 gives more information about the storage of relays.
2 HANDLING OF ELECTRONIC EQUIPMENT

A person’s normal movements can easily generate electrostatic potentials of several thousand volts. Discharge of these voltages into semiconductor devices when handling electronic circuits can cause serious damage that, although not always immediately apparent, will reduce the reliability of the circuit. This is particularly important to consider where the circuits use complementary metal oxide semiconductors (CMOS), as is the case with these relays.

The relay’s electronic circuits are protected from electrostatic discharge when housed in the case. Do not expose them to risk by removing the front panel or printed circuit boards unnecessarily.

Each printed circuit board incorporates the highest practicable protection for its semiconductor devices. However, if it becomes necessary to remove a printed circuit board, the following precautions should be taken to preserve the high reliability and long life for which the relay has been designed and manufactured.

1. Before removing a printed circuit board, ensure that you are at the same electrostatic potential as the equipment by touching the case.
2. Handle analog input modules by the front panel, frame or edges of the circuit boards. Printed circuit boards should only be handled by their edges. Avoid touching the electronic components, printed circuit tracks or connectors.
3. Do not pass the module to another person without first ensuring you are both at the same electrostatic potential. Shaking hands achieves equipotential.
4. Place the module on an anti-static surface, or on a conducting surface that is at the same potential as yourself.
5. If it is necessary to store or transport printed circuit boards removed from the case, place them individually in electrically conducting anti-static bags.

In the unlikely event that you are making measurements on the internal electronic circuitry of a relay in service, it is preferable that you are earthed to the case with a conductive wrist strap. Wrist straps should have a resistance to ground between 500 kΩ to 10 MΩ. If a wrist strap is not available you should maintain regular contact with the case to prevent a build-up of electrostatic potential. Instrumentation which may be used for making measurements should also be earthed to the case whenever possible.

More information on safe working procedures for all electronic equipment can be found in BS EN 100015: Part 1:1992. It is strongly recommended that detailed investigations on electronic circuitry or modification work should be carried out in a special handling area such as described in the aforementioned British Standard document.
3 STORAGE

If the relays are not installed immediately on receipt, store them in a place free from dust and moisture in their original cartons. Keep any de-humidifier bags included in the packing. The de-humidifier crystals lose their efficiency if the bag is exposed to ambient conditions. Restore the crystals by gently heating the bag for about an hour before replacing it in the carton.

To prevent battery drain during transportation and storage a battery isolation strip is fitted during manufacture. With the lower access cover open, presence of the battery isolation strip can be checked by a red tab protruding from the positive side.

On subsequent unpacking, make sure that any dust that has collected on the carton does not fall inside. In locations of high humidity the carton and packing may become impregnated with moisture and the de-humidifier crystals will lose their efficiency.

Prior to installation, relays should be stored at a temperature of between –25º to +70ºC (-13ºF to +158ºF).
4 UNPACKING

When unpacking and installing the relays, take care not to damage any of the parts and make sure that additional components are not accidentally left in the packing or lost. Do not discard any User’s CDROM or technical documentation - this should accompany the relay to its destination substation.

Note: With the lower access cover open, the red tab of the battery isolation strip will be seen protruding from the positive side of the battery compartment. Do not remove this strip because it prevents battery drain during transportation and storage and will be removed as part of the commissioning tests.

Relays must only be handled by skilled persons.

The site should be well lit to facilitate inspection, clean, dry and reasonably free from dust and excessive vibration. This particularly applies to installations that are being carried out at the same time as construction work.
5 RELAY MOUNTING

MiCOM relays are dispatched either individually or as part of a panel/rack assembly.

Individual relays are normally supplied with an outline diagram showing the dimensions for panel cut-outs and hole centers. This information can also be found in the product publication.

Secondary front covers can also be supplied as an option item to prevent unauthorized changing of settings and alarm status. They are available in sizes 40TE (GN0037 001) and 60TE/80TE (GN0038 001) for P24xxxxxxxxxxxxxA/C and sizes 40TE (GN0242 001) and 60TE/80TE (GN0243 001) for P24xxxxxxxxxxxJ/K.

The relay is designed so the fixing holes in the mounting flanges are only accessible when the access covers are open.

If you include a P991 or MMLG test block with the relays, when viewed from the front position the test block on the right-hand side of the associated relay. This minimizes the wiring between the relay and test block, and allows the correct test block to be easily identified during commissioning and maintenance tests.

![Figure 1: Location of battery isolation strip](image)

If you need to test the relay for the correct operation during the installation, remove the battery isolation strip. If commissioning of the scheme is not imminent, refit the strip to prevent unnecessary battery drain during transportation and installation. The red tab of the isolation strip protrudes from the positive side of the battery compartment when the lower access cover is open. To remove the isolation strip, hold the battery in place and pull the red tab. To refit the battery isolation strip, insert it between the battery compartment positive terminal, with the red tab protruding. See Figure 1.

5.1 Rack mounting

MiCOM relays may be rack mounted using single tier rack frames (our part number FX0021 101), as shown in Figure 2. These frames have been designed to have dimensions in accordance with IEC 60297 and are supplied pre-assembled ready to use. On a standard 483 mm rack system this enables combinations of widths of case up to a total equivalent of size 80TE to be mounted side by side.

The two horizontal rails of the rack frame have holes drilled at approximately 26 mm intervals and the relays are attached via their mounting flanges using M4 Taptite self-tapping screws.
with captive 3 mm thick washers (also known as a SEMS unit). These fastenings are available in packs of 5 (our part number ZA0005 104).

Note: Conventional self-tapping screws, including those supplied for mounting MiDOS relays, have marginally larger heads which can damage the front cover molding if used.

Once the tier is complete, the frames are fastened into the racks using mounting angles at each end of the tier.

Figure 2: Rack mounting of relays

Relays can be mechanically grouped into single tier (4U) or multi-tier arrangements by means of the rack frame. This enables schemes using products from the MiCOM and MiDOS product ranges to be pre-wired together prior to mounting.

Where the case size summation is less than 80TE on any tier, or space is to be left for installation of future relays, blanking plates may be used. These plates can also be used to mount ancillary components. Table 1 shows the sizes that can be ordered.

Note: Blanking plates are only available in black.

Further details on mounting MiDOS relays can be found in publication R7012, “MiDOS Parts Catalogue and Assembly Instructions”.

<table>
<thead>
<tr>
<th>Case size summation</th>
<th>Blanking plate part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>5TE</td>
<td>GJ2028 101</td>
</tr>
<tr>
<td>10TE</td>
<td>GJ2028 102</td>
</tr>
<tr>
<td>15TE</td>
<td>GJ2028 103</td>
</tr>
<tr>
<td>20TE</td>
<td>GJ2028 104</td>
</tr>
<tr>
<td>25TE</td>
<td>GJ2028 105</td>
</tr>
<tr>
<td>30TE</td>
<td>GJ2028 106</td>
</tr>
<tr>
<td>35TE</td>
<td>GJ2028 107</td>
</tr>
<tr>
<td>40TE</td>
<td>GJ2028 108</td>
</tr>
</tbody>
</table>

Table 1: Blanking plates

5.2 Panel mounting

The relays can be flush mounted into panels using M4 SEMS Taptite self-tapping screws with captive 3 mm thick washers (also known as a SEMS unit). These fastenings are available in packs of 5 (our part number ZA0005 104).
Note: Conventional self-tapping screws, including those supplied for mounting MiDOS relays, have marginally larger heads which can damage the front cover molding if used. Alternatively tapped holes can be used if the panel has a minimum thickness of 2.5 mm.

For applications where relays need to be semi-projection or projection mounted, a range of collars are available. Further details can be obtained from the Contracts Department of Areva.

Where several relays are to be mounted in a single cut-out in the panel, it is advised that they are mechanically grouped together horizontally and/or vertically to form rigid assemblies prior to mounting in the panel.

Note: It is not advised that MiCOM relays are fastened using pop rivets as this will not allow the relay to be easily removed from the panel in the future if repair is necessary.
6 RELAY WIRING

This section serves as a guide to selecting the appropriate cable and connector type for each terminal on the MiCOM relay.

![Warning] Before carrying out any work on the equipment the user should be familiar with the contents of the Safety Section/Safety Guide Pxxx-SG-4LM-2 or later issue and the ratings on the equipment’s rating label.

6.1 Medium and heavy duty terminal block connections

Loose relays are supplied with sufficient M4 screws for making connections to the rear mounted terminal blocks using ring terminals, with a recommended maximum of two ring terminals per relay terminal.

If required, Areva can supply M4 90° crimp ring terminals in three different sizes depending on wire size (see Table 2). Each type is available in bags of 100.

<table>
<thead>
<tr>
<th>Part number</th>
<th>Wire size</th>
<th>Insulation color</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZB9124 901</td>
<td>0.25 – 1.65 mm² (22 – 16 AWG)</td>
<td>Red</td>
</tr>
<tr>
<td>ZB9124 900</td>
<td>1.04 – 2.63 mm² (16 – 14 AWG)</td>
<td>Blue</td>
</tr>
<tr>
<td>ZB9124 904</td>
<td>2.53 – 6.64 mm² (12 – 10 AWG)</td>
<td>Uninsulated*</td>
</tr>
</tbody>
</table>

Table 2: M4 90° crimp ring terminals

*To maintain the terminal block insulation requirements for safety, an insulating sleeve should be fitted over the ring terminal after crimping.

The following minimum wire sizes are recommended:

- Current Transformers: 2.5 mm²
- Auxiliary Supply, Vx: 1.5 mm²
- EIA(RS)485 Port: See separate section
- Other Circuits: 1.0 mm²

Due to the limitations of the ring terminal, the maximum wire size that can be used for any of the medium or heavy duty terminals is 6.0 mm² using ring terminals that are not pre-insulated. Where it is required to only use pre-insulated ring terminals, the maximum wire size that can be used is reduced to 2.63 mm² per ring terminal. If a larger wire size is required, two wires should be used in parallel, each terminated in a separate ring terminal at the relay.

The wire used for all connections to the medium and heavy duty terminal blocks, except the first rear EIA(RS)485 port and second rear EIA(RS)232/485 port, should have a minimum voltage rating of 300 Vrms.

It is recommended that the auxiliary supply wiring should be protected by a 16 A high rupture capacity (HRC) fuse of type NIT or TIA. For safety reasons, current transformer circuits must never be fused. Other circuits should be appropriately fused to protect the wire used.

Each opto input has selectable filtering. This allows use of a pre-set filter of ½ cycle which renders the input immune to induced noise on the wiring: although this method is secure it can be slow, particularly for intertripping. This can be improved by switching off the ½ cycle filter in which case one of the following methods to reduce ac noise should be considered. The first method is to use double pole switching on the input, the second is to use screened twisted cable on the input circuit. The recognition time of the opto inputs without the filtering is <2 ms and with the filtering is <12 ms.

6.1.1 Terminal block ingress protection

IP2x shields and side cover panels are designed to provide IP20 ingress protection for MiCOM terminal blocks. The shields and covers may be attached during installation or retrofitted to upgrade existing installations—see figure below. More information is available at your local sales office or through our Contact Centre.
6.2 EIA(RS)485 port
Connections to the first rear EIA(RS)485 port are made using ring terminals. It is recommended that a 2-core screened cable be used with a maximum total length of 1000 m or 200 nF total cable capacitance.

A typical cable specification would be:
- Each core: 16/0.2 mm copper conductors PVC insulated
- Nominal conductor area: 0.5 mm² per core
- Screen: Overall braid, PVC sheathed

6.3 Ethernet port for IEC 61850 (if applicable)
Fiber Optic Port
The relays can have 100 Mbps Ethernet port. FO connection is recommended for use in permanent connections in a substation environment. The 100 Mbit port uses type ST connector, compatible with fiber multimode 50/125 µm or 62.5/125 µm – 13000 nm.

RJ-45 Metallic Port
The user can connect to either a 10Base-T or a 100Base-TX Ethernet hub; the port will automatically sense which type of hub is connected. Due to possibility of noise and interference on this part, it is recommended that this connection type be used for short-term connections and over short distance. Ideally, where the relays and hubs are located in the same cubicle.

The connector for the Ethernet port is a shielded RJ-45. Table 3 shows the signals and pins on the connector.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal name</th>
<th>Signal definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TXP</td>
<td>Transmit (positive)</td>
</tr>
<tr>
<td>2</td>
<td>TXN</td>
<td>Transmit (negative)</td>
</tr>
</tbody>
</table>
Table 3: Signals on the Ethernet connector

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal name</th>
<th>Signal definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>RXP</td>
<td>Receive (positive)</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>Not used</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>Not used</td>
</tr>
<tr>
<td>6</td>
<td>RXN</td>
<td>Receive (negative)</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>Not used</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>Not used</td>
</tr>
</tbody>
</table>

6.4 RTD connections (if applicable)

Where RTD inputs are available on a MiCOM relay, the connections are made using screw clamp connectors on the rear of the relay that can accept wire sizes between 0.1 mm² and 1.5 mm². The connections between the relay and the RTDs must be made using a screened 3-core cable with a total resistance less than 10 Ω. The cable should have a minimum voltage rating of 300 Vrms.

A 3-core cable should be used even for 2-wire RTD applications, as it allows for the cable’s resistance to be removed from the overall resistance measurement. In such cases the third wire is connected to the second wire at the point the cable is joined to the RTD.

The screen of each cable must only be earthed at one end, preferably at the relay end and must be continuous. Multiple earthing of the screen can cause circulating current to flow along the screen, which induces noise and is unsafe.

It is recommended to minimize noise pick-up in the RTD cables by keeping them close to earthed metal casings and avoiding areas of high electromagnetic and radio interference. The RTD cables should not be run adjacent to or in the same conduit as other high voltage or current cables.

A typical cable specification would be:

- Each core: 7/0.2 mm copper conductors heat resistant PVC insulated
- Nominal conductor area: 0.22 mm² per core
- Screen: Nickel-plated copper wire braid heat resistant PVC sheathed

The extract below may be useful in defining cable recommendations for the RTDs:

Noise pick up by cables can be categorized into three types:

- Resistive
- Capacitive
- Inductive

Resistive coupling requires there to be an electrical connection to the noise source. So assuming that the wire and cable insulation is sound and that the junctions are clean then this can be dismissed.

Capacitive coupling requires there to be sufficient capacitance for the impedance path to the noise source to be small enough to allow for significant coupling. This is a function of the dielectric strength between the signal cable on the noise source and the potential (i.e. power) of the noise source.

Inductive coupling occurs when the signal cable is adjacent to a cable/wire carrying the noise or it is exposed to a radiated EMF.

Standard screened cable is normally used to protect against capacitively coupled noise, but in order for it to be effective the screen must only be bonded to the system ground at one point, otherwise a current could flow and the noise would be coupled in to the signal wires of the cable. There are different types of screening available, but basically there are two types: aluminum foil wrap and tin-copper braid.

Foil screens are good for low to medium frequencies and braid is good for high frequencies. High-fidelity screen cables provide both types.
Protection against magnetic inductive coupling requires very careful cable routing and magnetic shielding. The latter can be achieved with steel-armored cable and the use of steel cable trays. It is important the armor of the cable is grounded at both ends so that the EMF of the induced current cancels the field of the noise source and shields the cables conductors from it. (However, the design of the system ground must be considered and care taken to not bridge two isolated ground systems since this could be hazardous and defeat the objectives of the original ground design). The cable should be laid in the cable trays as close as possible to the metal of the tray and under no circumstance should any power cable be in or near to the tray. (Power cables should only cross the signal cables at 90 degrees and never be adjacent to them).

Clearly, both the capacitive and inductive screens must be contiguous from the RTD probes to the relay terminals.

The best types of cable are those provided by the RTD manufactures. These tend to be three conductors (a so call “triad”) which are screened with foil. Such triad cables are available in armored forms as well as multi-triad armored forms.

6.5 **Current loop input output (CLIO) connections (if applicable)**

Where current loop inputs and outputs are available on a MiCOM relay, the connections are made using screw clamp connectors, as per the RTD inputs, on the rear of the relay which can accept wire sizes between 0.1 mm² and 1.5 mm². It is recommended that connections between the relay and the current loop inputs and outputs are made using a screened cable. The wire should have a minimum voltage rating of 300 Vrms.

6.6 **IRIG-B connections (if applicable)**

The IRIG-B input has a BNC connection. It is recommended that the cable and connector have a characteristic impedance of 50 Ω. It is also recommended that connections between the IRIG-B equipment and the relay are made using coaxial cable 50 Ω characteristic impedance with a halogen free, fire retardant sheath, type RG59LSF.

6.7 **EIA(RS)232 port**

Short term connections to the EIA(RS)232 port, located behind the bottom access cover, can be made using a screened multi-core communication cable up to 15 m long, or a total capacitance of 2500 pF. The cable should be terminated at the relay end with a 9-way, metal shelled, D-type male plug. Section 1.9 of *P24x/EN GS* of this manual details the pin allocations.

6.8 **Download/monitor port**

Short term connections to the download/monitor port, located behind the bottom access cover, can be made using a screened 25-core communication cable up to 4 m long. The cable should be terminated at the relay end with a 25-way, metal shelled, D-type male plug. Section 1.9 of *P24x/EN GS* and section 3.5 of *P24x/EN CM* of this manual details the pin allocations.

6.9 **Second EIA(RS)232/485 port**

Relays with Courier, MODBUS, IEC 60870-5-103 or DNP3 protocol on the first rear communications port have the option of a second rear port, running Courier language. The second rear communications port can be used over one of three physical links: twisted pair K-Bus (non-polarity sensitive), twisted pair EIA(RS)485 (connection polarity sensitive) or EIA(RS)2321.

6.9.1 **Connection to the second rear port**

The second rear Courier port connects via a 9-way female D-type connector (SK4) in the middle of the card end plate (in between IRIG-B connector and lower D-type). The connection is compliant to EIA(RS)574.

For IEC 60870-5-2 over EIA(RS)232/574

1. This port is actually compliant to EIA(RS)574; the 9-pin version of EIA(RS)232, see www.tiaonline.org.
Table 4: Second rear port RS232 connection

Connections to the second rear port configured for EIA(RS)232 operation can be made using a screened multi-core communication cable up to 15 m long, or a total capacitance of 2500 pF. The cable should be terminated at the relay end with a 9-way, metal shelled, D-type male plug. The table above details the pin allocations.

For K-bus or IEC 60870-5-2 over EIA(RS)485

<table>
<thead>
<tr>
<th>Pin</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No Connection</td>
</tr>
<tr>
<td>2</td>
<td>RxD</td>
</tr>
<tr>
<td>3</td>
<td>TxD</td>
</tr>
<tr>
<td>4</td>
<td>DTR#</td>
</tr>
<tr>
<td>5</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>No Connection</td>
</tr>
<tr>
<td>7</td>
<td>RTS#</td>
</tr>
<tr>
<td>8</td>
<td>CTS#</td>
</tr>
<tr>
<td>9</td>
<td>No Connection</td>
</tr>
</tbody>
</table>

Table 5: Second rear port RS485 connection

* - All other pins unconnected.

- These pins are control lines for use with a modem.

Note 1: Connector pins 4 and 7 are used by both the EIA(RS)232/574 and EIA(RS)485 physical layers, but for different purposes. Therefore, the cables should be removed during configuration switches.

Note 2: For the EIA(RS)485 protocol an EIA(RS)485 to EIA(RS)232/574 converter will be required to connect a modem or PC running MiCOM S1 Studio, to the relay. A CK222 is recommended.

Note 3: EIA(RS)485 is polarity sensitive, with pin 4 positive (+) and pin 7 negative (-).

Note 4: The K-Bus protocol can be connected to a PC via a KITZ101 or 102.

Note 5: It is recommended that a 2-core screened cable be used. To avoid exceeding the second communications port flash clearances it is recommended that the length of cable between the port and the communications equipment should be less than 300 m. This length can be increased to 1000 m or 200nF total cable capacitance if the communications cable is not laid in close proximity to high current carrying conductors. The cable screen should be earthed at one end only.

A typical cable specification would be:

- Each core: 16/0.2 mm copper conductors PVC insulated
- Nominal conductor area: 0.5 mm² per core
- Screen: Overall braid, PVC sheathed

6.10 Protective conductor (earth) connection

Every relay must be connected to the local earth bar using the M4 earth studs in the bottom left hand corner of the relay case. The minimum recommended wire size is 2.5 mm² and should have a ring terminal at the relay end. Due to the limitations of the ring terminal, the
maximum wire size that can be used for any of the medium or heavy duty terminals is 6.0 mm² per wire. If a greater cross-sectional area is required, two parallel connected wires, each terminated in a separate ring terminal at the relay, or a metal earth bar could be used.

Note: To prevent any possibility of electrolytic action between brass or copper earth conductors and the rear panel of the relay, precautions should be taken to isolate them from one another. This could be achieved in a number of ways, including placing a nickel-plated or insulating washer between the conductor and the relay case, or using tinned ring terminals.
7 ANALOGUE INPUTS

The MiCOM P241/2 relay has 3 phase current inputs, one earth current input and 3 phase voltage inputs. The P243 has 6 phase current inputs, one earth current input and 3 phase voltage inputs.

7.1 CTs inputs for the phase and earth currents

The phase and earth current inputs can be set independently to 1 A or 5 A. The choice of the CTs ratio is done in the menu ‘CT and VT ratios’ of the MiCOM P24x relay.

The following figures present different configurations of CTs and VTs: only the 5 A current inputs are indicated.

Connections of the earth and phase cts must be done in accordance with the ct ratio selected in the “CT and VT Ratios” menu.

Each time a change is realized, the relay must be reset and then restarted (power supply must be cut off and then restored).

7.1.1 3 CTs and core balance CT configuration

This configuration is a classical configuration, P241 example:

![Diagram of 3 CT and core balance CT configuration](image-url)
7.1.2 3CTs configuration

Due to this configuration, the earth current input is the arithmetic sum of the 3 phase currents. This configuration is mainly used when a core balanced CT is not available. P241 example:

![Diagram of 3 CT configuration](image)

Figure 5: 3 CT configuration

It is possible to realize the summation of the 3 phase currents internally. The protection function is called Derived E/F and must be selected in the CONFIGURATION menu.

7.1.3 2 CTs and core balance CT configuration

The proper configuration for the use of 2 CTs to detect phase current is shown below, P241 example:

![Diagram of 2 CTs and core balance CT configuration](image)

Figure 6: 2 CTs and core balance CT configuration
This type of configuration will create a negative phase sequence current in case of unbalanced conditions due to an external fault. The protection functions “thermal overload” and “Neg.Seq.O/C” will then be affected by this configuration, since they take into account the negative phase sequence current component.

7.2 VT inputs

Three configurations can be used for the phase voltage inputs: the choice of the configuration is realized in the CT AND VT RATIOS – VT connecting mode menu of the MiCOM P24x relay.

7.2.1 Three phase VTs configuration

P241 example:

![Diagram of three phase VTs configuration](image)

Figure 7: Three phase VTs configuration
7.2.2 Two phase VTs and residual VT configuration

P241 example:

![Diagram of two phase VTs and residual VT configuration]

Figure 8: Two phase VTs and residual VT configuration

7.2.3 Two Phase VTs and Anti-Backspin (Vremanent phase-phase) VT configuration

P241 example:
Figure 9: Two phase VTs and Anti-Backspin (remanent phase-phase) VT configuration

Note: To measure the motor generated voltage when under backspin condition (back emf), the VT used for remanent voltage measurement should be connected upstream the motor and downstream the motor CB.
Figure 10: P241 case dimensions (40TE case)
Figure 11: P242 case dimensions (60TE case)

Figure 12: P243 case dimensions (80TE case)
P24X EXTERNAL CONNECTION DIAGRAMS

<table>
<thead>
<tr>
<th>Model</th>
<th>External Connection Diagram Title</th>
<th>Drawing-Sheet</th>
<th>Issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>COMMS OPTIONS MICOM P40 PLATFORM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P241</td>
<td>EXTERNAL CONNECTION DIAG: MOTOR PROTECTION RELAY 40TE (8 I/P & 7 O/P)</td>
<td>10P4001-1</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td>EXTERNAL CONNECTION DIAG: MOTOR PROTECTION RELAY 40TE (8 I/P & 7 O/P)</td>
<td>10P4001-1</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>EXTERNAL CONNECTION DIAG: MOTOR PROTECTION RELAY 40TE (8 I/P & 7 O/P)</td>
<td>10P4001-2</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>EXTERNAL CONNECTION DIAG: MOTOR PROTECTION RELAY 40TE (8 I/P & 7 O/P)</td>
<td>10P4001-3</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>EXTERNAL CONNECTION DIAG: MOTOR PROTECTION RELAY 40TE (8 I/P & 7 O/P + CLIOI)</td>
<td>10P4001-7-1</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>EXTERNAL CONNECTION DIAG: MOTOR PROTECTION RELAY 40TE (8 I/P & 7 O/P + CLIOI)</td>
<td>10P4001-7-2</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>EXTERNAL CONNECTION DIAG: MOTOR PROTECTION RELAY 40TE (12 I/P & 11 O/P)</td>
<td>10P4001-7-3</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>EXTERNAL CONNECTION DIAG: MOTOR PROTECTION RELAY 40TE (12 I/P & 11 O/P)</td>
<td>10P4001-7-3</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>EXTERNAL CONNECTION DIAG: MOTOR PROTECTION RELAY 60TE (16 I/P & 16 O/P + RTD & CLIO)</td>
<td>10P4001-7-1</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>EXTERNAL CONNECTION DIAG: MOTOR PROTECTION RELAY 60TE (16 I/P & 16 O/P + RTD & CLIO)</td>
<td>10P4001-7-2</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>EXTERNAL CONNECTION DIAG: MOTOR PROTECTION RELAY 60TE (16 I/P & 16 O/P + RTD & CLIO)</td>
<td>10P4001-7-2</td>
<td>G</td>
</tr>
<tr>
<td>P242</td>
<td>EXTERNAL CONNECTION DIAG: MOTOR PROTECTION RELAY 60TE (16 I/P & 16 O/P + RTD & CLIO)</td>
<td>10P4001-7-1</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>EXT. CONNECTION DIAG: MOTOR PROTECTION RELAY (BOTE) WITH BIASED DIFFERENTIAL (16 I/P & 16 O/P + CLIO & RTD)</td>
<td>10P4001-7-2</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>EXT. CONNECTION DIAG: MOTOR PROTECTION RELAY (BOTE) WITH BIASED DIFFERENTIAL (16 I/P & 16 O/P + CLIO & RTD)</td>
<td>10P4001-7-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EXT. CONNECTION DIAG: MOTOR PROTECTION RELAY (BOTE) WITH HIGH IMPEDANCE DIFF TIAL (16 I/P & 16 O/P + RTD & CLIO)</td>
<td>10P4001-7-2</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>EXT. CONNECTION DIAG: MOTOR PROTECTION RELAY (BOTE) WITH HIGH IMPEDANCE DIFF TIAL (16 I/P & 16 O/P + RTD & CLIO)</td>
<td>10P4001-7-2</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>EXT. CONN. DIAG: MOTOR PROTECTION RELAY (BOTE) BIASED WITH DIFF TIAL VEE CONNECT VTI (16 I/P & 16 O/P + RTD & CLIO)</td>
<td>10P4001-7-5</td>
<td>F</td>
</tr>
</tbody>
</table>
PART DESCRIPTION

<table>
<thead>
<tr>
<th>PART</th>
<th>DESCRIPTION</th>
<th>MATERIAL</th>
</tr>
</thead>
</table>

- **Part:** REAR PORT 1
- **Description:** Connections and indicators for rear port 1.

- **Part:** ING-B BOARD
- **Description:** Connections and indicators for the ING-B board.

- **Part:** REDUNDANT COPPER PORT ETHERNET BOARD
- **Description:** Connections and indicators for the redundant copper port ethernet board.

- **Part:** DUAL PORT REDUNDANT ETHERNET BOARD
- **Description:** Connections and indicators for the dual port redundant ethernet board.

External Connection Diagram

Title: EXTERNAL CONNECTION DIAGRAM: COMMS OPTIONS MICOM PX40 PLATFORM

Date: 20/03/2018

Name: S Wootton

Part No: 10PX4001

ECN No: 0005362

Revision: K

Sub-contractor Reference: Grid Solutions

User: A20022917

Site: 1

Status: IN WORK
2. Residual voltage measurement requires a 5-limb VT or 3 single phase VTs.

3. C.T. connections are shown 1A connected and are typical only.

4. OPTO inputs 1 and 2 must be used for setting group changes if this option is selected in the relay menu.

5. For COMMS options see drawing 10P4001.

6. Direction of forward current flow for operation of the directional EF + SEF protection.

NOTES 1.

(a) C.T. SHORTING LINKS

(b) PIN TERMINAL (P.C.B. TYPE)
3. C.T. CONNECTIONS ARE SHOWN 1A CONNECTED AND ARE TYPICAL ONLY.

4. OPTO INPUTS 1 AND 2 MUST BE USED FOR SETTING GROUP CHANGES IF THIS OPTION IS SELECTED IN THE RELAY MENU.

5. FOR COMMS OPTIONS SEE DRAWING 10Px4001.

6. DIRECTION OF FORWARD CURRENT FLOW FOR OPERATION OF THE DIRECTIONAL EF + SEF PROTECTION.
CUSTOMER SETTING

- CB closed 3ph
- CB open 3ph
- Speed input
- Emergency Restart
- Reset Thermal
- Reset Latches
- Close
- Trip

DEFAULT SETTING

OPTO 1
- D1
- D2
- D3
- D4
- D5
- D6
- D7
- D8
- D9

OPTO 2
- D10
- D11

OPTO 3
- D12
- D13

OPTO 4
- D14
- D15

OPTO 5
- D16
- D17

OPTO 6
- D18

SEE NOTE 4

NOTE 4:

4. OPTO INPUTS 1 AND 2 MUST BE USED FOR SETTING GROUP.

CHANGES IF THIS OPTION IS SELECTED IN THE RELAY MENU.

RTD Inputs

<table>
<thead>
<tr>
<th>RTD 1</th>
<th>RTD 2</th>
<th>RTD 3</th>
<th>RTD 4</th>
<th>RTD 5</th>
<th>RTD 6</th>
<th>RTD 7</th>
<th>RTD 8</th>
<th>RTD 9</th>
<th>RTD 10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

OPTO 1

- D1
- D2
- D3
- D4
- D5
- D6
- D7
- D8
- D9

OPTO 2

- D10
- D11

OPTO 3

- D12
- D13

OPTO 4

- D14
- D15

OPTO 5

- D16
- D17

OPTO 6

- D18

WATCHDOG CONTACT

<table>
<thead>
<tr>
<th>RELAY 1</th>
<th>RELAY 2</th>
<th>RELAY 3</th>
<th>RELAY 4</th>
<th>RELAY 5</th>
<th>RELAY 6</th>
<th>RELAY 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Close</td>
<td>General Start</td>
<td>General Trip</td>
<td>Time between Start</td>
<td>Hot Start Nb.</td>
<td>Cold Start Nb.</td>
<td>3Ph Volt. Alarm</td>
</tr>
</tbody>
</table>

DEFAULT SETTING

<table>
<thead>
<tr>
<th>CUSTOMER SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Used</td>
</tr>
<tr>
<td>Not Used</td>
</tr>
<tr>
<td>Not Used</td>
</tr>
</tbody>
</table>
1. C.T. SHORTING LINKS
2. RESIDUAL VOLTAGE MEASUREMENT REQUIRES A 5 LIMB VT OR 3 SINGLE PHASE VTs.
3. C.T. CONNECTIONS ARE SHOWN 1A CONNECTED AND ARE TYPICAL ONLY.
4. INPUTS 1 AND 2 MUST BE USED FOR SETTING GROUP CHANGES IF THIS OPTION IS SELECTED IN THE RELAY MENU.
5. FOR COMMS OPTIONS SEE DRAWING 10Px4001.
6. DIRECTION OF FORWARD CURRENT FLOW FOR OPERATION OF THE DIRECTIONAL EF + SEF PROTECTION.
7. FOR 0-1mA, 0-20mA, 4-20mA RANGE USE 20mA INPUTS & OUTPUTS FOR 0-1mA RANGE USE 1mA INPUTS & OUTPUTS.
4. OPTO INPUTS 1 AND 2 MUST BE USED FOR SETTING GROUP
CHANGES IF THIS OPTION IS SELECTED IN THE RELAY MENU.

CUSTOMER SETTING

DEFAULT SETTING

CB closed 3ph
CB open 3ph
Speed input
Emergency Restart
Reset Thermal
Reset Latches
Close
Trip

OPTO 1

OPTO 2

OPTO 3

OPTO 4

OPTO 5

OPTO 6

OPTO 7

OPTO 8

COMMON CONNECTION

SEE NOTE 4

WATCHEDOG CONTACT

WATCEHDG CONTACT

RELAY 1

RELAY 2

RELAY 3

RELAY 4

RELAY 5

RELAY 6

RELAY 7

CONTROL CLOSE

GENERAL START

GENERAL TRIP

HOT START Nb.
COLD START Nb.
3Ph Volt. Alarm
Thermal lockout

NOT USED

NOT USED

NOT USED

NOT USED

DEFAULT SETTING

CUSTOMER SETTING

CONTROL CLOSE

GENERAL START

GENERAL TRIP

TIME BETWEEN START

NOT USED

NOT USED

NOT USED

NOT USED

OPTO INPUTS 1 AND 2 MUST BE USED FOR SETTING GROUP
CHANGES IF THIS OPTION IS SELECTED IN THE RELAY MENU.
1. C.T. shorting links
2. Residual voltage measurement requires 1A 5 limb VT or 3 single phase VT's.
3. C.T. Connections are shown 1A connected and are typical only.
4. For Comms options see Drawing 10P2401.
5. Direction of forward current flow for operation of the Directional EF + SEF protection.

Field voltage output removed. CID HONG-98JC6A.

External connection diag: Motor protection relay 40TE (12 I/P & 11 O/P)

NOTE 2

B

NOTE 3

C

NOTE 4

D

NOTE 5

E

PHASE ROTATION

A

DIRECTION OF FORWARD CURRENT FLOW
4. OPTO INPUTS 1 AND 2 MUST BE USED FOR SETTING GROUP CHANGES IF THIS OPTION IS SELECTED IN THE RELAY MENU.
4. OPTO INPUTS 1 AND 2 MUST BE USED FOR SETTING GROUP CHANGES IF THIS OPTION IS SELECTED IN THE RELAY MENU.

<table>
<thead>
<tr>
<th>Customer Setting</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTO 1</td>
<td>Clp closed 3ph</td>
</tr>
<tr>
<td>OPTO 2</td>
<td>Clp open 3ph</td>
</tr>
<tr>
<td>OPTO 3</td>
<td>Speed input</td>
</tr>
<tr>
<td>OPTO 4</td>
<td>Emergency Restart</td>
</tr>
<tr>
<td>OPTO 5</td>
<td>Reset Thermal</td>
</tr>
<tr>
<td>OPTO 6</td>
<td>Reset Latches</td>
</tr>
<tr>
<td>OPTO 7</td>
<td>Close</td>
</tr>
<tr>
<td>OPTO 8</td>
<td>Trip</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Customer Setting</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTO 9</td>
<td>L9 Not Used</td>
</tr>
<tr>
<td>OPTO 10</td>
<td>L10 Not Used</td>
</tr>
<tr>
<td>OPTO 11</td>
<td>L11 Not Used</td>
</tr>
<tr>
<td>OPTO 12</td>
<td>L12 Not Used</td>
</tr>
<tr>
<td>OPTO 13</td>
<td>L13 Not Used</td>
</tr>
<tr>
<td>OPTO 14</td>
<td>L14 Not Used</td>
</tr>
<tr>
<td>OPTO 15</td>
<td>L15 Not Used</td>
</tr>
<tr>
<td>OPTO 16</td>
<td>L16 Not Used</td>
</tr>
</tbody>
</table>

SEE NOTE 4

DEFAULT SETTING
CUSTOMER SETTING

- RTD 1
- RTD 2
- RTD 3
- RTD 4
- RTD 5
- RTD 6
- RTD 7
- RTD 8
- RTD 9
- RTD 10

- CLIO INPUT 1
- CLIO INPUT 2
- CLIO INPUT 3
- CLIO INPUT 4

DEFAULT SETTING
CUSTOMER SETTING

- WATCHDOG CONTACT

RELAY 1 Control Close
RELAY 2 General Start
RELAY 3 General Alarm
RELAY 4 General Alarm
RELAY 5 Not Used
RELAY 6 Not Used
RELAY 7 Not Used
RELAY 8 Not Used
RELAY 9 Not Used
RELAY 10 Not Used
RELAY 11 Not Used
RELAY 12 Not Used
RELAY 13 Not Used
RELAY 14 Not Used
RELAY 15 Not Used
RELAY 16 Not Used

CUSTOMER SETTING

- RTD 1
- RTD 2
- RTD 3
- RTD 4
- RTD 5
- RTD 6
- RTD 7
- RTD 8
- RTD 9
- RTD 10

CUSTOMER SETTING

- WATCHDOG CONTACT

REMARKS

10P24301

DATE: 25/11/2010

SHEET: 2

SHEET: 3
Brandon's note: This is a complex schematic diagram for a motor protection relay with high impedance differential protection. It shows various connections and inputs/outputs for different types of protection, such as directional overcurrent, directional earth fault, and residual voltage measurement. The diagram includes notes on how to configure the relay for different protection modes and the use of inputs and outputs for communication and auxiliary supplies. The schematic is annotated with symbols for common connections, directional current flow, and neutral and busbar symbols. The diagram also includes notes on the physical layout and location of various contacts and terminals. Overall, the diagram provides a comprehensive overview of the relay's operation and configuration options.
NOTE 1: MiCOM P243 (PART)

PHASE ROTATION
A
B
C

NOTE 2
A
b
c
C
B
A
C
B
A

NOTE 3
D24
D23
D22
D20

NOTE 4
(b)

NOTE 5
- +

NOTE 6
SENITIVE DIRECTION OF FORWARD CURRENT FLOW. NOTE 6

NOTE 7
2. DERIVED NEUTRAL POINT. SEE P24X/EN T/- - FOR DETAILS OF RESISTORS
6. DIRECTION OF FORWARD CURRENT FLOW FOR OPERATION OF
4. OPTO INPUTS 1 AND 2 MUST BE USED FOR SETTING GROUP CHANGES
3. C.T. CONNECTIONS ARE SHOWN 1A CONNECTED AND ARE TYPICAL ONLY.
7. FOR 0-1mA RANGE USE 1mA INPUTS & OUTPUTS.
C.T. SHORTING LINKS
IF THIS OPTION IS SELECTED IN THE RELAY MENU.
PIN TERMINAL (P.C.B. TYPE)

FIELD VOLTAGE OUTPUT REMOVED. CID HONG-98JC6A

EXT. CONN. DIAG: MOTOR PROTECTION RELAY (80TE) BIASED WITH DIFF' TIAL VEE CONNECT VTs (16 I/P & 16 O/P + RTD & CLIO)

ALSTOM GRID UK LTD
Substation Automation Solutions
(STAFFORD)

ALSTOM

DO NOT SCALE
FIRMWARE AND SERVICE MANUAL VERSION HISTORY
<table>
<thead>
<tr>
<th>Software Version</th>
<th>Hardware Suffix</th>
<th>Original Date of Issue</th>
<th>Description of Changes</th>
<th>S1 Compatibility</th>
<th>Technical Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3.0 (00)</td>
<td>A</td>
<td>Jul 1999</td>
<td>✓ Original issue of software</td>
<td>V2.09 or later</td>
<td>TG1.1555</td>
</tr>
<tr>
<td>P241 only</td>
<td></td>
<td></td>
<td>✓ Inclusion of momentary warning message on the user interface if there is an error correlating ambient air by RTD to the RTD number by the user</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Modification of texts in language file (.dfn) regarding “stall-rotor-start/run” and “RTD invalid conf”</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Resolved dependency of active group and it’s relevant data during fault on MiCOM S1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Addition of cells and modbus addresses required by south park and SINCOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Alteration of platform task priorities to comply with common architecture. CO 50300.C0642</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Resolved overflow problem in zero volt check to offset DC in system platform</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3.1 (00)</td>
<td>A</td>
<td>Jul 1999</td>
<td>✓ Original issue of software</td>
<td>V2.09 or later</td>
<td>TG1.1555</td>
</tr>
<tr>
<td>P241 only</td>
<td></td>
<td></td>
<td>✓ Inclusion of momentary warning message on the user interface if there is an error correlating ambient air by RTD to the RTD number by the user</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Modification of texts in language file (.dfn) regarding “stall-rotor-start/run” and “RTD invalid conf”</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Resolved dependency of active group and it’s relevant data during fault on MiCOM S1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Addition of cells and modbus addresses required by south park and SINCOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Alteration of platform task priorities to comply with common architecture. CO 50300.C0642</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Resolved overflow problem in zero volt check to offset DC in system platform</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software Version</td>
<td>Hardware Suffix</td>
<td>Original Date of Issue</td>
<td>Description of Changes</td>
<td>S1 Compatibility</td>
<td>Technical Documentation</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>------------------</td>
<td>------------------------</td>
</tr>
</tbody>
</table>
| A3.1(02) | A | Nov1999 | ✓ Resolved problem of asynchronism between analog and digital channels on disturbance record (10 ms time shift was corrected)
| | | | ✓ Resolved resetting RTD trip and alarm flags when RTD protection is disabled
| | | | ✓ Resolved problem of filtering of some of the measured quantities in fault record column
| | | | ✓ Minimum delay setting on loss of load protection function is changed and step size is reduced to 0.01 s (initially 0.1 s)
| | | | ✓ Resolved problem of 3 phase power factor calculation
| | | | ✓ Bug fix related to reset number of start
| | | | ✓ Bug fix related to RTD trip counters
| | | | ✓ Resolved problem of correlation of the motor running hours with mapping of opto CB closed
| | | | ✓ Resolved problem of saving the fan number for VDEW in BBRAM (every 3 seconds)
| | | | ✓ Resolved problem when disabling the commissioning test with the port status
| | | | ✓ Resolved problem on default language for MiCOM S1 front port courier
| | | | ✓ Resolved problem of not including accountability of secondary phase CT ratio in normalization table
| | | | ✓ Corrected for calculation of thermal coefficient K
| B | A | Nov1999 | ✓ Resolved problem of restoring state of trip LED after re-boot of relay
| | | | ✓ Resolved incorrect dependency of emergency re-start cell on courier
| | | | ✓ Resolved problem in the out-of-step element to take into account the sign of Sin(θ) as well
| | | | ✓ Resolved problem in display of negative power factor

VH
P24x/EN VH/I72 Firmware and Service Manual
Version History Version History
(VH) 16-

MiCOM P40 Agile P241, P242, P243

A3.1(02) P241 only

V2.09 or later TG1.1555

V2.09 or later TG1.1555
Version History

<table>
<thead>
<tr>
<th>Software Version</th>
<th>Hardware Suffix</th>
<th>Original Date of Issue</th>
<th>Description of Changes</th>
<th>S1 Compatibility</th>
<th>Technical Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major</td>
<td>Minor</td>
<td></td>
<td>✓ Resolved incorrect dependency of emergency re-start cell on courier</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Resolved problem of 3 phase reactive power calculation</td>
<td>V2.09 or later</td>
<td>TG1.1555</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec1999</td>
<td>✓ Inclusion of an alarm threshold on energy measurement facility</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Inclusion of a second stage in short circuit protection function</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Inclusion of derived earth fault protection function</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Inclusion of a second stage in loss of load/under power protection function</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Inclusion of reverse power protection function</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Version History

<table>
<thead>
<tr>
<th>Software Version</th>
<th>Hardware Suffix</th>
<th>Original Date of Issue</th>
<th>Description of Changes</th>
<th>S1 Compatibility</th>
<th>Technical Documentation</th>
</tr>
</thead>
</table>
| A4.0(03) P241 only | A | Feb2000 | ✓ Power supply regulator for RTD circuit is changed to 78M05 to establish secure supply
✓ Modification to RTD PCB (01-ZN001001 issue D)
✓ Resolved sequencing errors on platform RTD PCB ZN0010001 for acquisition of measurement at the boundary of 25 degree Celsius
✓ Resolved problem in a modbus method function to cater for data type G10
✓ Resolved problem of restoring trip LED state after re-boot of relay
✓ Resolved initialization problem related to state of LEDs during the first boot of relay
✓ Resolved problem of text inversion in stall protection function | V2.09 or later | TG1.1555 |
| A3.1(04) P241 only | D | Jul2000 | ✓ Inclusion of two new cells to describe events: location and index
✓ Modification to modbus address for event recorder
✓ Modification of modbus address in "System Data" column
✓ Modification of modbus address in "RTD protection" column
✓ Data type G29 (three 16 bit registers) is replaced with data type G125 (short float IEEE754 floating point format) to avoid truncation error on measurements
✓ Default text is changed
✓ Modbus cell address dedicated to Ubc phase angle measurement is changed to 30266
✓ Resolved problem of inappropriate measurement algorithm of reverse 3 phase active and reactive power measurement | V2.09 or later | TG1.1555 |
<table>
<thead>
<tr>
<th>Software Version</th>
<th>Hardware Suffix</th>
<th>Original Date of Issue</th>
<th>Description of Changes</th>
<th>S1 Compatibility</th>
<th>Technical Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Minor</td>
<td></td>
<td></td>
<td>✓ Two new cells for describing events (location and index) are Added</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Modbus addresses are modified in system data column</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Modbus addresses are modified in RTD protection column</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Data type G29 (three 16 bit registers) is replaced with data type G125 (short float IEEE754 floating point format) to avoid truncation error on measurements such as KWh</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Default text is changed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Data types G4, G18 and G26 are modified</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Modbus cell address dedicated to Ubc phase angle measurement is changed to 30266</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Modbus addressing problem for event file is resolved to be compliant with other Px40 products</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Data types G4, G18 and G26 are modified</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Modbus cell address dedicated to Ubc phase angle measurement is changed to 30266</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Version History

A4.0(06)

Relay type: P241/2/3/…

<table>
<thead>
<tr>
<th>Software Version</th>
<th>Hardware Suffix</th>
<th>Original Date of Issue</th>
<th>Description of Changes</th>
<th>S1 Compatibility</th>
<th>Technical Documentation</th>
</tr>
</thead>
</table>
| A4.0(06) P241 only | A | Oct2000 | ✓ Modbus addressing problem for event file is resolved to be compliant with other Px40 products
✓ Resolved problem of opto reset latches not turning off trip LED to be compliant with other Px40 products
✓ Resolved problem of inappropriate measurement algorithm of reverse 3 phase active and reactive power measurement
✓ Resolved problem of timer initialization on 51LR protection function
✓ Inclusion of the option "reset energies" in "measurement 2" column
✓ Resolved problem of incorrect calculation methodology in measurement of time to next start
✓ Resolved problem of not resetting on software counter used for "emergency re-start"
✓ Resolved problem of counting methodology for the "number of hot(cold) starts"
✓ Resolved problem of visibility on LCD
✓ Resolved missing modbus address (operand) of the cell 091D
✓ Resolved courier coordinate cell error regarding second stage overcurrent pickup setting
✓ Resolved correlation problem between relay output 3 operation and CB operating time counter
✓ Hysteresis for under/over frequency protection function is reduced to 0.05 Hz | V2.09 or later | TG1.1555 |

<table>
<thead>
<tr>
<th>Software Version</th>
<th>Hardware Suffix</th>
<th>Original Date of Issue</th>
<th>Description of Changes</th>
<th>S1 Compatibility</th>
<th>Technical Documentation</th>
</tr>
</thead>
</table>
| A3.1(07) P241 only | E | | ✓ Inclusion of filters for event recorder
✓ RDF file is modified
✓ Courier co-ordinates in the communication column are modified to relieve inconsistency in courier communication cell [0Exx] numbering | V2.09 or later | TG1.1555 |
<table>
<thead>
<tr>
<th>Software Version</th>
<th>Hardware Suffix</th>
<th>Original Date of Issue</th>
<th>Description of Changes</th>
<th>S1 Compatibility</th>
<th>Technical Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Minor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4.1 (08)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P241 only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>Dec2000</td>
<td>✓ Resolved problem of inaccuracies in KWh measurement which arises after a long period of operation</td>
<td>V2.09 or later</td>
<td>TG1.1555</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ The two thresholds of the overcurrent protection function are changed from 1 A to 0.2 A. Also the second threshold of the I2 overcurrent protection function is changed from 0.2 A to 0.05 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td>Feb2001</td>
<td>✓ Resolved problem of timer start initialization for drop off time of the out-of-step protection function</td>
<td>V2.09 or later</td>
<td>TG1.1555</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Resolved problem of opto command to change setting group</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Resolved problem of cold(hot) number of start after re-boot of relay</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Resolved problem of inaccuracies in KWh measurement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>Apr2001</td>
<td>✓ Correction for number of registers declared in the modbus (2 instead of 3 on G125 only)</td>
<td>V2.09 or later</td>
<td>TG1.1555</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Resolved problem of fault current measurement via modbus with G125 format</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>A</td>
<td>Sep2001</td>
<td>✓ Resolved incorrect generation of error code 0x9300ffd2 which occurred during short circuit test at 70 Hz</td>
<td>V2.09 or later</td>
<td>TG1.1555</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Corrected for wrong phase indication at the time of undervoltage protection activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>A</td>
<td>Nov2001</td>
<td>✓ Corrected for proper RTD number indication when corresponding RTD trip cell is active</td>
<td>V2.09 or later</td>
<td>TG1.1555</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Correction for intermittent twice resetting requirement of trip LED</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Resolved initialization problem related to protection/PSL programs secondary effect on LEDs and output relays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>A</td>
<td>Nov2001</td>
<td>✓ Resolved initialization problem related to protection/PSL programs secondary effect on LEDs and output relays</td>
<td>V2.09 or later</td>
<td>TG1.1555</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>A</td>
<td>Nov2001</td>
<td>✓ Resolved incorrect timing for trip operation under second stage negative phase sequence protection function</td>
<td>V2.09 or later</td>
<td>TG1.1555</td>
</tr>
</tbody>
</table>
Version History

<table>
<thead>
<tr>
<th>Software Version</th>
<th>Hardware Suffix</th>
<th>Original Date of Issue</th>
<th>Description of Changes</th>
<th>S1 Compatibility</th>
<th>Technical Documentation</th>
</tr>
</thead>
</table>
| A4.1 (08) | A | Mar2002 | ✓ Resolved generation of plerr error code on MODBUS to enhance data access method
✓ Courier co-ordinates in the communication column are modified to relieve inconsistency in courier communication cell [0Exx] numbering
✓ Corrected for mal-operation of thermal over load function after battery back-up RAM initialization when no RTD module is present | V2.09 or later | TG1.1555 |
| A4.1(09) | A | Mar2002 | ✓ Correction of the method by which I2 magnitude is calculated when "D E/F" function is enabled
✓ Resolved incorrect correlation between CT ratio and derived E/F threshold | V2.09 or later | TG1.1555 |
| | A | Jun2002 | ✓ Resolved problem of continuous EEPROM test (P241 only)
✓ Resolved problem of long polling duration of thermal protection function as well as correction for IMAX on the same function (P241 only) | V2.09 or later | TG1.1555 |
| | A | Aug2002 | ✓ Resolved problem of unwanted disabling of I2>1 when thermal overload function is enabled (P241 only) | V2.09 or Later | TG1.1555 |
| | A | Apr2004 | ✓ Resolved intermittent locking out the user interface and COMMS and loss of data when disturbance recorder is triggered
✓ Resolved modbus frame reception problem due to timer mismanagement | V2.09 or later | TG1.1555 |
| | A | Dec-04 | ✓ Resolved problem of resolution on analog channels
✓ Resolved problem of correct acquisition of 5 A CT choice | V2.09 or later | TG1.1555 |
| | A | Aug 2004 | ✓ Resolved problem with disturbance recorder triggering which could cause loss of record data
✓ Resolved unreliable MODBUS framing | V2.09 or Later | TG1.1555 |
<table>
<thead>
<tr>
<th>Software Version</th>
<th>Hardware Suffix</th>
<th>Original Date of Issue</th>
<th>Description of Changes</th>
<th>S1 Compatibility</th>
<th>Technical Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>F A</td>
<td></td>
<td>Jan 2005</td>
<td>✓ Software enhanced to reduce CPU usage during Event log</td>
<td>V2.09 or Later</td>
<td>TG1.1555</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Correction for 5 A CT connection</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Correction for flickering effect on LCD at low input current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G A</td>
<td></td>
<td>Apr 2005</td>
<td>✓ Correction of missing error codes during re-boots when S/W is upgraded from A 4.1F</td>
<td>V2.09 or Later</td>
<td>TG1.1555</td>
</tr>
<tr>
<td>B1.0 (20)</td>
<td>C</td>
<td>Jul 2004</td>
<td>✓ Addition of 2 new P24x relay models P242 and P243. P242 is the same as P241 but with additional inputs/outputs. P243 is the same as P242 except it has additional differential protection. P242/3 use Eight channel OPTO input card and Eight channel Relay Output card, increasing the total programmable inputs to 16 and the total programmable outputs to 16</td>
<td>V2.09 or later</td>
<td>TG1.1555 & P24x/EN T/A11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ User alarms are added and number of existing alarms are increased by 32</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Addition of Circuit Breaker Failure function</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Optional addition of 4 analog inputs and 4 analog outputs (current loop input output - CLIO) function. Each analog/transducer input and output selectable as 0-1/0-10/0-20/4-20 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Addition of measurement of I2/I1 to "measurement 1" column</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Addition of hottest RTD measurement and its assigned number to "measurement 1" column</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Addition of Clear Event selection to "record control" column</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Extra disturbance recorder channel is added to the disturbance recorder to increase the total to Eight</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Addition of numeric alarm setting to all four WHr and VArHr energy measurement functions in the "measurement setup" column</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Relay OUTPUTs and LEDs test facility via MODBUS is disabled to improve safety</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software Version</td>
<td>Hardware Suffix</td>
<td>Original Date of Issue</td>
<td>Description of Changes</td>
<td>S1 Compatibility</td>
<td>Technical Documentation</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>---</td>
<td>-----------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Major Minor</td>
<td></td>
<td></td>
<td>✓ Minimum current threshold for the second stage unbalance protection function is changed from 200 mA to 50 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Enhancement of motor start detection method by including current in conjunction with circuit breaker auxiliary contact</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Inclusion of temperature measurement in Fahrenheit unit as well as Ni100 and Ni120 options to RTDs temperature measurement</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Enhancement of programmable opto input module to operate at a wider range of voltage supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Inclusion of ddb signal DDB_ALARM_BATTERY_FAIL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Inclusion of ddb signal for password control</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Number of available DDB elements increased to 1024</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Average current is replaced with RMS current in calculation of Ieq in thermal protection algorithm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Resolved generation of plerr error code on MODBUS to enhance data access method</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Minor navigation bug (in cell 0804) removed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Addition of third setting “test mode” in the commissioning tests column with options disable/enable</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Courier co-ordinates in the communication column are modified to relieve inconsistency in Courier communication cell numbering</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Resolved incorrect generation of error code 0x9300ffd2 which occurred during short circuit test at 70 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Correction for wrong phase indication at the time of undervoltage protection function activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Correction for RTD temperature measurement in MODBUS fault records</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Correction for proper operation of the counter used for “number of start” function when the function is disabled and “stall detection” function is enabled at the same time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software Version</td>
<td>Hardware Suffix</td>
<td>Original Date of Issue</td>
<td>Description of Changes</td>
<td>S1 Compatibility</td>
<td>Technical Documentation</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>--</td>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Major</td>
<td>Minor</td>
<td></td>
<td>✓ Correction for proper RTD number indication when corresponding RTD trip cell is active</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Correction for intermittent twice-resetting requirement of trip LED</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Resolved initialization of protection/PSL programs secondary effect on LEDs and output relays</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Resolved re-scaling problem for I^m maintenance and I^m lockout settings arising from a change in Broken I^m setting in the MICOM S1 setting file</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Resolved incorrect timing for trip operation under second stage negative phase sequence function</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Resolved zero sequence current measurement algorithm. The quantity was obtained from derived nominal current rather than measured nominal current</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Correction for mal-operation of thermal over load function after battery back-up RAM initialization when no RTD module is present</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Correction of the method by which negative phase sequence current magnitude is calculated when "derived E/F" function in the "configuration" column is enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Resolved incorrect correlation between CT ratio and derived E/F threshold</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Removal of undesirable command for continuous test of EEPROM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Change of the acquisition time for thermal protection function from 50 ms to 20 ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Resolved momentary miss-representation of positive and negative phase sequence current magnitudes and malfunctioning of first stage I_2 trip function when thermal over load function is enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Resolved mal-operation of Derived E/F function when under test condition due to missing I2 polarizing quantity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Resolved improper dependency rules concerning RTD label in second group setting column</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Relay type: P241/2/3/...

<table>
<thead>
<tr>
<th>Software Version</th>
<th>Hardware Suffix</th>
<th>Original Date of Issue</th>
<th>Description of Changes</th>
<th>S1 Compatibility</th>
<th>Technical Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C</td>
<td>Aug2005</td>
<td>✓ Correction to acquisition of voltage inputs</td>
<td>V2.09 or later</td>
<td>TG1.1555 & P24x/EN T/A11</td>
</tr>
</tbody>
</table>
| B | C | Jan2005 | ✓ Resolved scaling problem of analog outputs on CLIO board write register
| | | | ✓ Resolved problem of correct acquisition of 5 A CT choice
| | | | ✓ Resolved problem of resolution on analog channels
| | | | ✓ Resolved scaling problem of analog outputs on CLIO board write register
| | | | ✓ Resolved problem of correct acquisition of 5 A CT choice
| | | | ✓ Resolved problem of not recording the IA2 data on disturbance recorder
| | | | ✓ Resolved problem of resolution on analog channels
| | | | ✓ Resolved problem of downloading default PSL via front port of P241 due to incompatibility of the platform version |
| A | C | Jun2005 | ✓ Resolved problem of upgrading software version from A4.1e to A4.1f on P241 which caused cyclic reboot
| | | | ✓ Resolved problem on MODBUS driver giving rise to cyclic reboot at 60 Hz |
| B1.2 (31) | A | Mar2006 | ✓ Resolved display of IA2,IB2 and IC2 differential bias on measurement 1 column of P242
| | | | ✓ Resolved problem of resetting trip relay and led after protection function operation and function is disabled
| | | | ✓ Resolved intermittent problem of not recognizing RTD module. 30 ms delay was included
| | | | ✓ Resolved problem of re-setting back to default setting (24/27 V) of universal Vcc setting of programmable inputs following a reboot
| | | | ✓ Resolved problem of re-setting LED alarm for "CB failed trip" on the front panel
| | | | ✓ Resolved error code 0x8439007C - unexpected event related to "Watt Fwd Alarm" |
| | | | ✓ Resolved problem of re-setting back to default setting (24/27 V) of universal Vcc setting of programmable inputs following a reboot
| | | | ✓ Resolved problem of re-setting LED alarm for "CB failed trip" on the front panel
<p>| | | | ✓ Resolved error code 0x8439007C - unexpected event related to "Watt Fwd Alarm" |</p>
<table>
<thead>
<tr>
<th>Software Version</th>
<th>Hardware Suffix</th>
<th>Original Date of Issue</th>
<th>Description of Changes</th>
<th>S1 Compatibility</th>
<th>Technical Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1.3 (32)</td>
<td>A</td>
<td>Mar2007</td>
<td>✓ Resolved "IN Derived Mag" measurement problem, CT ratio dependency was using the SEF CT ratio instead of phase CT ratio, Derived E/F protection is not affected</td>
<td>V2.14 (requires modification)</td>
<td>TG1.1555 & P24x/EN T/A11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Addition of Hour run meter feature</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Resolved conflict between "commissioning test" being enabled "test mode" blocked and operation of output relays</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Resolved initialization problem of KWh metering after relay is powered down and back to ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1.4 (33)</td>
<td>B</td>
<td>Mar2007</td>
<td>✓ Resolved re-boot error code 0x8232fd2 which was generated on P243 set at 60Hz</td>
<td>V2.14 (requires modification)</td>
<td>TG1.1555 & P24x/EN T/A11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Resolved initialization problem of KWh metering after relay is powered down and back to ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1.5 (33)</td>
<td>A</td>
<td>Apr2007</td>
<td>✓ Adaptation to recognize new RTD board ZN0044-1 (and of course previous board ZN0010-1). ZN0044 design has improved filtering</td>
<td>V2.09 or later</td>
<td>TG1.1555 & P24x/EN T/A11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Resolved initialization problem of KWh metering after relay is powered down and back to ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4.3 (09) P241 only</td>
<td>C</td>
<td>Oct2007</td>
<td>✓ Resolved problem of events extraction by PACiS system via modbus communication due to the system being unable to synchronize P24x</td>
<td>V2.14 (requires modification)</td>
<td>TG1.1555 & P24x/EN T/A11</td>
</tr>
<tr>
<td>B1.6(33)</td>
<td>C</td>
<td>Nov2007</td>
<td>✓ Resolved problem of all latched relay contacts dropping off for 5 ms on relay board 2 if another relay contact is set ON. This only affects P242/3 relays which have 2 relay boards of 8 contacts</td>
<td>V2.14 (requires modification)</td>
<td>TG1.1555 & P24x/EN T/A11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Resolved problem of relay contacts dropping off for 3ms when another relay is set on after a relay reboot</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Resolved problem of Out Of Service LEDs not turning off after Commission Tests Test Mode setting is disabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1.7(33)</td>
<td>C</td>
<td>Dec 2008</td>
<td>✓ Fixes major bug (when using multiple setting groups, changes of setting group using Courier or PAST will not update PSL group after first change)</td>
<td>V2.14 (requires modification)</td>
<td>TG1.1555 & P24x/EN T/A11</td>
</tr>
<tr>
<td>Software Version</td>
<td>Hardware Suffix</td>
<td>Original Date of Issue</td>
<td>Description of Changes</td>
<td>S1 Compatibility</td>
<td>Technical Documentation</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>B1.8(33)</td>
<td>C</td>
<td>July 2009</td>
<td>✓ Control inputs have been included (remote CB control using IEC 103 is now possible)
 ✓ Resolved issue of Modbus error when master station requests “Motor Run time” and the corresponding value is greater than 328 hours</td>
<td>V2.14 and S1 Studio 3.1.0</td>
<td>TG1.1555 & P24x/EN T/A11</td>
</tr>
<tr>
<td>B2.0(34)</td>
<td>J(P241) K(P242/3)</td>
<td>Jan 08</td>
<td>✓ Includes Field Failure protection function (40)
 ✓ Includes Anti Backspin protection function (27 remanant)
 ✓ Hot keys and programmable function keys (P242/3 only) have been added
 ✓ Second rear communication port (EIA(RS)232/EIA(RS)485) has been added
 ✓ Tri-State color LED’s (P242/3 only) have been added
 ✓ Dual characteristics optos and opto filter control have been added
 ✓ Control inputs have been included (remote CB control using IEC 103 is now possible)</td>
<td>V2.14 or later</td>
<td>TG1.1555 & P24x/EN M/A11</td>
</tr>
<tr>
<td>C1.1 (40)</td>
<td>J(P241) K(P242/3)</td>
<td>May 08</td>
<td>✓ A new DDB#118 Trip LED has been added
 ✓ Default PSL is modified to include new DDB#118 Trip LED
 ✓ Trip relay 3 restriction is removed
 ✓ 3 Phase volt check to ensure correct phase sequence before start has been added
 ✓ Measurement 4 menu is amended to include Number of Field Failure 1 Trip, Number of Field Failure 2 Trip, Number of I>3 Trip and Number of I>4 trip
 ✓ PSL positional data extraction facility has been included</td>
<td>V2.14 or later</td>
<td>TG1.1555 & P24x/EN M/A11</td>
</tr>
</tbody>
</table>
Version History

Relay type: P241/2/3/...

<table>
<thead>
<tr>
<th>Software Version</th>
<th>Hardware Suffix</th>
<th>Original Date of Issue</th>
<th>Description of Changes</th>
<th>S1 Compatibility</th>
<th>Technical Documentation</th>
</tr>
</thead>
</table>
| C2.0 (41) | J(P241) K(P242/3) | Aug 08 | ✓ Short Circuit Protection function is enhanced to include 2 stages of IDMT and 2 stages of DT
✓ A new non-protection function "Phase Rotation" has been added
✓ Visibility conflict between Out of Step and Field Failure protection functions is removed | V2.14 or later | TG1.1555 & P24x/EN M/A11 |
| | | | ✓ Inclusion of CT and VT supervision
✓ Supports Chinese and Russian HMI
✓ Additional 4 opto inputs and 4 relay outputs as an option (P241 only)
✓ Migrate DDB from 1024 to 2048
✓ Resolved Emergency Restart problem
✓ Resolved RTD calibration problem
✓ Resolved visibility issue between “Nb Emergency Rst” and “Reset Nb.Em.Rst” cells in Measurement 3 column not being coherent with “Emergency Rest.” Cell
✓ Resolved problem of changing field failure cell in configuration column not being taken into account by the relay
✓ Resolved visibility issues with Micom S1 on Derived E/F and Sensitive E/F: reset characteristics should be always DT (for IEC/UK curves)
✓ Resolved inconsistency between the PSL used and the active setting group when changing setting group via the commands in S&R Courier or PAST
✓ Removed dependency of “Limit Nb Starts” on “Stall detection” start criteria. Hence no need to enable “Stall Detection” to activate “Limit Nb Starts” Relay 4 in the default PSL and associated default LEDs on front panel will now operate correctly | V2.14 and S1 Studio 3.1.0 | TG1.1555 & P24x/EN M/A11 |
| C3.0 (45) | J(P241) K(P242/3) | Dec 08 | ✓ Resolved issue of incorrect file headers in data model 46. Data model 46 has been removed from cortec configurator | V2.14 and S1 Studio 3.1.0 | P24x/EN M/C22 |
| | | | ✓ Inclusion of CT and VT supervision
✓ Supports Chinese and Russian HMI
✓ Additional 4 opto inputs and 4 relay outputs as an option (P241 only)
✓ Migrate DDB from 1024 to 2048
✓ Resolved Emergency Restart problem
✓ Resolved RTD calibration problem
✓ Resolved visibility issue between “Nb Emergency Rst” and “Reset Nb.Em.Rst” cells in Measurement 3 column not being coherent with “Emergency Rest.” Cell
✓ Resolved problem of changing field failure cell in configuration column not being taken into account by the relay
✓ Resolved visibility issues with Micom S1 on Derived E/F and Sensitive E/F: reset characteristics should be always DT (for IEC/UK curves)
✓ Resolved inconsistency between the PSL used and the active setting group when changing setting group via the commands in S&R Courier or PAST
✓ Removed dependency of “Limit Nb Starts” on “Stall detection” start criteria. Hence no need to enable “Stall Detection” to activate “Limit Nb Starts” Relay 4 in the default PSL and associated default LEDs on front panel will now operate correctly | V2.14 and S1 Studio 3.1.0 | TG1.1555 & P24x/EN M/A11 |
<table>
<thead>
<tr>
<th>Software Version</th>
<th>Hardware Suffix</th>
<th>Original Date of Issue</th>
<th>Description of Changes</th>
<th>S1 Compatibility</th>
<th>Technical Documentation</th>
</tr>
</thead>
</table>
| C4.0 (47) | J(P241) K(P242/3) | Jan 09 | ✓ IEC 61850 Phase II Enhancements
✓ Read Only Mode
✓ Resolved problem with Stall detection threshold
✓ Resolved problem of CLIO output over flow | V2.14 and S1 Studio 3.0 | P24x/EN M/C32 |
| C5.1 (51) | K (P243) | November 2011 | ✓ Rebranded to Alstom. Released for P243 and IEC61850 only
✓ Integration of platform L1.7 (L1.2 changed to L1.7) to resolve the issues of “discrepancy in the DR analogue signals magnitudes if the CT and VT ratios (primary/secondary) are not integers” “NIC no response.” “IEC61850 communication terminating after operating a control with control status in RCB” and “change of state of Opto Inputs getting lost occasionally between main card and Ethernet card.”
✓ Resolved issue of max Pre-Time duration too short in Disturbance Record
✓ Resolved issue of Disturbance Record not handling DDB elements > 1024
✓ Resolved issue of “when « Virtual Output x » DDB is disabled in « Record Control » column, any change in « Virtual Output x » is not reported in gooses.”
✓ Resolved issue of incorrect display of angle in Measurement Viewer / Courier Device Browser/PAST
✓ Resolved issue of some Short Circuit settings changed using front panel not being taken into account
✓ Resolved issue of Browsing /DR folder intermittent fail using IEC 61850
✓ Resolved issue of Information concerning RTD inputs state not being updated in “Measurements 3” column
✓ Removal of some labels not required In Digital Input X cells (“Disturb Recorder” column) | V2.14 and S1 Studio 3.1.0 | P24x/EN M/C32 |
<table>
<thead>
<tr>
<th>Software Version</th>
<th>Hardware Suffix</th>
<th>Original Date of Issue</th>
<th>Description of Changes</th>
<th>S1 Compatibility</th>
<th>Technical Documentation</th>
</tr>
</thead>
</table>
| C5.1a_A (51) | J(P241) K(P242/3) | November 09 | ✓ Resolved issue of some Start elements missing When displaying Fault Record on LCD
✓ Resolved issue of distorted waveform in the DR
✓ Resolved issue of CTS IN pickup not matching CTS setting
✓ Resolved issue of I0 and IN measurement
✓ User programmable curve facility enhancement for Thermal, Short Circuit, Derived Earth Fault and Sensitive Earth Fault protection
✓ IEC 61850 Phase 2.1 enhancement. Phase 2.1 includes; Energy measurements and Reset controls for demand and thermal measurements using the MMTR Logical Node. Also Unit multipliers are provided for all measurements
✓ Redundant Ethernet communication enhancement
✓ Opto inputs 1 ms time stamping accuracy enhancement
✓ Resolved the issue of maximum pre-time duration being too short in the Disturbance Recorder (DR). Pre fault trig time in DR increased to 5 sec at 50 HZ
✓ Resolved problem of DR not handling DDBs > 1024
✓ Resolved issue of Modbus error when master station requests “Motor Run time” and the corresponding value is greater than 328 hours
✓ Dependency of “No. of Starts” with “Thermal Protection” function is removed. Thermal state will be evaluated whether or not “Thermal Protection” function is enabled
✓ Minimum current and voltage thresholds (20 mA and 1 V for In =1A and Vn = 100/120 V, 100 mA and 1 V for In = 5A and Vn = 100/120 V) are included in the “Out of Step” protection function. This function is blocked if current and voltage are less than threshold
✓ Dependency of “Stall detection” threshold with In setting is removed | V2.14 and S1 Studio 3.1.0 | P24x/EN M/C52 |
Version History

<table>
<thead>
<tr>
<th>Software Version</th>
<th>Hardware Suffix</th>
<th>Original Date of Issue</th>
<th>Description of Changes</th>
<th>S1 Compatibility</th>
<th>Technical Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>C6.2 or C6.3_A (57)</td>
<td>J(P241) K(P242/3)</td>
<td>November 09</td>
<td>✓ CLIO output “maximum power” setting is increased to 30 MW, MVA and MVAR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Firmware and Service Manual

MiCOM P40 Agile P241, P242, P243 (VH) 16-

Relay type: P241/2/3/…

<table>
<thead>
<tr>
<th>Software Version</th>
<th>Hardware Suffix</th>
<th>Original Date of Issue</th>
<th>Description of Changes</th>
<th>S1 Compatibility</th>
<th>Technical Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major</td>
<td>Minor</td>
<td>Suffix</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 60 | A | J(P241) K(P242/3) | July 2011 | ✓ V2> (2 stages) added
✓ Adjustable reacceleration and auto restart added
✓ Selection of volt measurement as phase-phase or ph-earth added
✓ I>, V< and V2> inhibit and block DDBs added
✓ Dependency between Field Failure and Out of Step removed, both functions can be independently Enabled.
✓ Zero power logic changed to include effect of I as well as V (and function)
✓ Resolved problem when displaying Fault Record on LCD, some Start elements may be missing
✓ Resolved problem of discrepancy in the disturbance recorder analogue signal magnitudes if the CT and VT ratios are not integers
✓ Resolved problem of some start elements not being displayed on the LCD
✓ Non existent labels removed from “Disturbance Recorder” column
✓ Resolved issue of not being able to read some of the fault record information via MODBUS
✓ Resolved missing MODBUS address for cell [0A11] VT connecting mode
✓ Resolved MODBUS overlap address between IN derived and IA2 Magnitude
✓ Maximum setting range for V<1, V<2, V>1 and V>2 time delay reduced to 600 sec from 7200 sec
✓ Maximum setting range of I2> increased to 4In from 0.8In
✓ New platform integration (L6.2)
✓ Resolved issue of Trip Element 2 display on LCD in case of fault | V2.14 and S1 Studio 3.1.0 and S1 Agile | P24x/EN M/D62 |
Version History

B

- **Software Version:** B
- **Hardware Suffix:** J(P241) K(P242/3)
- **Original Date of Issue:** October 2011
- **Description of Changes:**
 - CS103 Measurements (generic services) added
 - Resolved issue of not blocking V2> when VTS condition exists
 - Resolved visibility issue in the menu structure between Auto-Restart and CBF
 - Resolved issue of I< and I> measurement
 - Resolved issue of distorted waveform in the DR
 - Resolved issue of CTS IN pickup not matching CTS setting
- **S1 Compatibility:** V2.14 and S1 Studio 3.1.0 and S1 Agile
- **Technical Documentation:** P24x/EN M/E62

C

- **Software Version:** C
- **Hardware Suffix:** J(P241) K(P242/3)
- **Original Date of Issue:** January 2013
- **Description of Changes:**
 - Minimum setting range of I> is reduced from 0.2In to 0.08In
 - If PSL of non existent Group 3 or 4 is requested to be extracted via MiCOM S1 (Studio or Agile), Group 1 PSL will be extracted automatically
 - Menu Text translations are harmonized with other Px40 products
 - Resolved “Reac.Time” unit issue when setting value is changed to primary
 - Resolved Issue related to the user operation of “Extract all configuration”
- **S1 Compatibility:** V2.14 and S1 Studio 3.1.0
- **Technical Documentation:** P24x/EN M/F72

D

- **Software Version:** D
- **Hardware Suffix:** J(P241) K(P242/3)
- **Original Date of Issue:** October 2014
- **Description of Changes:**
 - Resolved Issues related to “Abs” and “FF”
 - Resolved Issues related to IEC61850 application and flash memory
- **S1 Compatibility:** V2.14 and S1 Studio 3.1.0
- **Technical Documentation:** P24x/EN M/F72

E

- **Software Version:** E
- **Hardware Suffix:** J(P241) K(P242/3)
- **Original Date of Issue:** February 2016
- **Description of Changes:**
 - Resolved issue related to Field Failure. Setting range is corrected so that this element can use standard wiring.
 - Resolved issue related the “start criteria” when chosen as current only and “I+52A”.
 - Resolved issue related to the change of state of the output contact when setting is extracted from the relay.
 - Resolved issue related to “Time to next Start”.
 - Resolve issue of saturation of energy values after 2^{32}
- **S1 Compatibility:** V2.14 and S1 Studio 3.1.0
- **Technical Documentation:** P24x/EN M/G72
Version History

MiCOM P40 Agile P241, P242, P243 (VH) 16-

<table>
<thead>
<tr>
<th>Software Version</th>
<th>Hardware Suffix</th>
<th>Original Date of Issue</th>
<th>Description of Changes</th>
<th>S1 Compatibility</th>
<th>Technical Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Minor</td>
<td>Major Minor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>J(P241) K(P242/3)</td>
<td>September 2017</td>
<td>✓ Bug fixes</td>
<td>MiCOM S1 agile 1.3.1</td>
<td>P24x/EN M/H72</td>
</tr>
<tr>
<td>H</td>
<td>J(P241) K(P242/3)</td>
<td>July 2018</td>
<td>✓ Bug fixes and improvement ✓ Resolved data model issue related to Russian language</td>
<td>MiCOM S1 agile 1.4</td>
<td>P24x/EN M/I72</td>
</tr>
</tbody>
</table>
Relay Software Version (P24x)

<table>
<thead>
<tr>
<th></th>
<th>B1.0 (20)</th>
<th>B1.0 (20A)</th>
<th>B1.0 (20B)</th>
<th>B1.2 (31)</th>
<th>B1.3 (32)</th>
<th>B1.4 (33)</th>
<th>B1.5 (33)</th>
<th>B1.6 (33)</th>
<th>B1.7 (33)</th>
<th>B1.8 (33)</th>
<th>B2.0 (34)</th>
<th>C1.1 (40)</th>
<th>C2.0 (41)</th>
<th>C3.0 (45)</th>
<th>C4.0 (46)</th>
<th>C4.0 (47)</th>
<th>C5.1 (51)</th>
<th>C6.2 (57)</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>✓</td>
</tr>
<tr>
<td>30</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>31</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>32</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>33</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>34</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>35</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>36</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>37</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>38</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>39</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>40</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>41</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>42</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>43</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>44</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>45</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>46</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>47</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>48</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>49</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>50</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>51</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>52</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>53</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>54</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>55</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>56</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>57</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>58</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>59</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>60</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
</tbody>
</table>
Relay Software Version (P241 only)

<table>
<thead>
<tr>
<th></th>
<th>A3.0 (00)</th>
<th>A3.1 (00)</th>
<th>A3.1 (02)</th>
<th>A3.1 (04)</th>
<th>A3.1 (07)</th>
<th>A3.1 (09)</th>
<th>A3.1 (13)</th>
<th>A4.0 (06)</th>
<th>A4.0 (08)</th>
<th>A4.0 (09)</th>
<th>A4.1 (09)</th>
<th>A4.2 (09)</th>
<th>A4.3 (09)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>02</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>04</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>07</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>03</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>06</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>08</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>09</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Setting File Software Version

- 00
- 02
- 04
- 07
- 03
- 06
- 08
- 09
<table>
<thead>
<tr>
<th>PSL File Software Version</th>
<th>B1.0</th>
<th>B1.0</th>
<th>B1.2</th>
<th>B1.3</th>
<th>B1.4</th>
<th>B1.5</th>
<th>B1.6</th>
<th>B1.7</th>
<th>B1.8</th>
<th>B2.0</th>
<th>C1.0</th>
<th>C1.0</th>
<th>C3.0</th>
<th>C3.0</th>
<th>C4.0</th>
<th>C4.0</th>
<th>C4.0</th>
<th>C5.1</th>
<th>C6.2</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>×</td>
</tr>
<tr>
<td>31</td>
<td>×</td>
</tr>
<tr>
<td>32</td>
<td>×</td>
</tr>
<tr>
<td>33</td>
<td>×</td>
</tr>
<tr>
<td>34</td>
<td>×</td>
</tr>
<tr>
<td>40</td>
<td>×</td>
</tr>
<tr>
<td>41</td>
<td>×</td>
</tr>
<tr>
<td>45</td>
<td>×</td>
</tr>
<tr>
<td>46</td>
<td>×</td>
</tr>
<tr>
<td>51</td>
<td>×</td>
</tr>
<tr>
<td>57</td>
<td>×</td>
</tr>
<tr>
<td>60</td>
<td>×</td>
</tr>
</tbody>
</table>
Relay Software Version (P241 only)

<table>
<thead>
<tr>
<th>PSL File Software Version</th>
<th>A3.0 (00)</th>
<th>A3.1 (00)</th>
<th>A3.1 (02)</th>
<th>A3.1 (04)</th>
<th>A3.1 (07)</th>
<th>A4.0 (03)</th>
<th>A4.0 (06)</th>
<th>A4.0 (08)</th>
<th>A4.1 (09)</th>
<th>A4.1 (09)</th>
<th>A4.1 (09)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>02</td>
<td>x</td>
<td>x</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>04</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>07</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>03</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>06</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>08</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>09</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Menu Text File Software Version

Menu text remains compatible within each software version but is not compatible across different versions.

<table>
<thead>
<tr>
<th>Menu Text File Software Version</th>
<th>B1.0 (20)</th>
<th>B1.0 (20A)</th>
<th>B1.0 (20B)</th>
<th>B1.2 (31)</th>
<th>B1.3 (32)</th>
<th>B1.4 (33)</th>
<th>B1.5 (33)</th>
<th>B1.6 (33)</th>
<th>B1.7 (33)</th>
<th>B1.8 (33)</th>
<th>B2.0 (34)</th>
<th>C1.1 (40)</th>
<th>C2.0 (41)</th>
<th>C3.0 (45)</th>
<th>C4.0 (46)</th>
<th>C4.0 (47)</th>
<th>C5.1 (51)</th>
<th>C6.2 (57)</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>✓</td>
</tr>
<tr>
<td>30</td>
<td>x</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>31</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>32</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>33</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>34</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>40</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>41</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>45</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>46</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>47</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>51</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>57</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>60</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>✔</td>
<td>✔</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>×</td>
<td>×</td>
<td>✔</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>×</td>
<td>×</td>
<td>✔</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✔</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✔</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Imagination at work

Grid Solutions
St Leonards Building
Redhill Business Park
Stafford, ST16 1WT, UK
+44 (0) 1785 250 070
www.gegridsolutions.com/contact